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1 Introduction

1.1 Motivations: efficient optimization algorithms for exgnsive computer experiments

Beyond both estalished frameworks of derivative-basedatgsand stochastic search algorithms, the rise
of expensive optimization problems creates the need forapaeific approaches and procedures. The word
"expensive” —which refers to price and/or time issues— implseverely restricted budgets in terms of
objective function evaluations. Such limitations contraish the computational burden typically associated
with stochastic search techniques, like genetic algosthRurthermore, the latter evaluations provide no
differential information in a majority of expensive optiraition problems, whether the objective function
originate from physical or from simulated experiments. etethere exists a strong motivation for devel-
oping derivative-free algorithms, with a particular foarstheir optimization performances in a drastically
limited number of evaluations. Investigating and impletimepadequate strategies constitute a contemporary
challenge at the interface between Applied MathematicsGordputational Intelligence, especially when it
comes to reducing optimization durations by efficientlyingkadvantage of parallel computation facilities.

The primary aim of this chapter is to address parallelizatgsues for the optimization of expensive-to-
evaluate simulators, such as increasingly encounteredgmeering applications like car crash tests, nu-
clear safety, or reservoir forecasting. More specificalig, work presented here takes place in the frame of
metamodel-based design of computer experiments, in tr&esﬂ@]. Even though the results and discus-
sions might be extended to a more general scope, we resirglbhere for clarity to single-objective opti-
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mization problems for deterministic codes. The simulat@gen as black-box functigrwith d-dimensional
vector of inputs and scalar output, the latter being oftemioled as combination of several responésta-
models also calledsurrogate modelsare simplified representations wfThey can be used for predicting
values ofy outside the initial design, or visualizing the influence atke variable oy [27,43]. They may also
guide further sampling decisions for various purposedh siscrefining the exploration of the input space in
preferential zones or optimizing the functigifi22]. Classical surrogates include radial basis functi3/i$,
interpolation splinesIEZ], neural nefg [&dterministicmetamodels), or linear and non-linear regression
[Iﬂ], and Kriging E’] (probabilistic metamodels). We concentrate here on the advantages ofhilistia
metamodels for parallel exploration and optimization fvétparticular focus on the virtues of Kriging.

1.2 Where Computational Intelligence and Kriging meet

Computational intelligence (Cl) methods share, in variotggportions, four features:

An history going from experiments to theory:  Cl methods very often originate from empirical comput-
ing experiments, in particular from experiments that mkmatural processes (e.g., neural networks [41,
ant colony optimization[[S], simulated annealirﬂ[ZS]).tdnaon, as researchers use and analyze them,
theory develops and their mathematical content grows. Algo@mple is provided by the evolutionary
algorithms [EB] which have progressively mixed the genetétaphor and stochastic optimization theory.

An indirect problem representation: In standard evolutionary optimization methods, knowledbeut
the cost function takes the indirect form of a set of wellfpening points, known as “current population”.
Such set of points is an implicit, partial, representatiba éunction. In fuzzy methods, the probability
density functions of the uncertain variables are averagédSuich indirect representations enable to work
with few mathematical assumptions and have broadened tige 1@t applicability of CI methods.

Parallelized decision process: Most Cl approaches are inherently parallel. For example etlolution-
ary or particle swarm optimizatioE[|24] methods process sépoints in parallel. Neural networks have
a internal parallel structure. Today, parallelism is caldor taking advantage of the increasingly dis-
tributed computing capacity. The parallel decision malkdngsibilities are related to the indirect problem
representations (through set of points, distributionsl)tarthe use of randomness in the decision process.

Heuristics:  Implicit problem representations and the empirical genesithe ClI methods rarely allow
mathematical proofs of the methods properties. Most Cl odslare thudeuristics.

Kriging has recently gained popularity among several neseaommunities related to Cl, ranging from
Data Mining [IE] andBayesian Statistic@,] toMachine Learnind39], where it is linked taGaussian
Process Regressiqﬁ] andKernel Methoo{@]. Recent Workdﬂﬂ 1] illustrate the practicakxence

of Kriging to approximate computer codes in applicatiorearsuch as aerospace engineering or materials
science. Indeed, probabilistic metamodels like Krigingrsdo be particularly adapted for the optimization
of black-box functions, as analyzed and illustrated in theefient article . The current Chapter is de-
voted to the optimization of black-box functions using egkig metamodelﬂﬂ@ﬂ@ﬂ]. Let us now
stress some essential relationships between Kriging aty @visiting the above list of features.

A history from field studies to mathematical statistics: Kriging comes from the earth sciences| [@ 33],
and has been progressively developed since the 1950'’s alitimghe discipline calle@eostatistics{lﬁ,
@]. Originally aimed at estimating natural ressources inimg applications, it has later been adapted
to address very general interpolation and approximatiablpms @2@3]. The word “kriging” comes
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from the name of a mining engineer, Prof. Daniel G. Krige, wias a pioneer in the application of
mathematical statistics to the study of new gold mines uaihigiited number of boreholes [29].

An indirect representation of the problem: As will be detailed later in the text, the kriging metamodel
has a powerful interpretation in terms of stochastic pre@enditionned by observed data points. The
optimized functions are thus indirectly represented bglsastic processes.

Parallelized decision process: The central contribution of this chapter is to propose teolabling paral-
lelized versions of state-of-the art kriging-based optettion algorithms.

Heuristics:  Although the methods discussed here are mathematicalhyfmion the multipoints expected
improvement, the maximization of this criterion is not nmetfatically tractable beyond a few dimensions.
In the last part of the chapter, it is replaced by the “krigidiever” and the “constant liar” heuristics.

Through their indirect problem representation, their fpeliam and their heuristical nature, the kriging-
based optimization methods presented hereafter are Catignal Intelligence methods.

1.3 Towards Kriging-based parallel optimization: summarfabtained results and
outline of the chapter

This chapter is a follow-up t(L_[jA]. It proposes metamodetdnl optimization criteria and related algorithms
that are well-suited to parallelization since they yieldesal points at each iteration. The simulations asso-
ciated with these points can be distributed on differentessors, which helps performing the optimization
when the simulations are calculation intensive. The allgors are derived from a multi-points optimization
criterion, themulti-pointsor g-points expected improvemgitEl). In particular, an analytic expression is
derived for the 2-El, and consistent statistical estimatgng on Monte-Carlo methods are provided for
the general case. All calculations are performed in the émank of Gaussian process&sK). Two classes
of heuristic strategies, thi€riging Believer(KB) and Constant Liar(CL), are subsequently introduced to
obtain approximatelg-El-optimal designs. The latter strategies are tested ampared on a classical test
case, where th€onstant Liarappears to constitute a legitimate heuristic optimizerhefd-El criterion.
Without too much loss of generality, the probabilistic nmetalel considered is Ordinary Krigin@K, see
eqs[L2.3b), like in the founder work [22] introducing tlewfamousEGO algorithm. In order to make this
document self-contained, non-specialist readers may firmvarview of existing criteria for kriging-based
sequential optimization in the next pages, as well as a Slubdense introduction to GP and OK in the body
of the chapter, with complements in appendix. The outlinthefchapter is as follows:

e Section 2 Background in Kriging for Sequential Optimizatjorecalls the OK equations, with a focus
on the joint conditional distributions associated withstiprobabilistic metamodel. A progressive in-
troduction to kriging-based criteria for sequential opgation is then proposed, culminating with the
presentation of the EGO algorithm and its obvious limitasian a context of distributed computing.

e Sectior 8 The Multi-points Expected Improvemgnbnsists in the presentation of theEl criterion —
continuing the work initiated ir@?]—, its explicit calcdian whenq = 2, and the derivation of estimates
of the latter criterion in the general case, relying on Me@tglo simulations of gaussian vectors.

e Sectior# Approximated g-EI maximizatipmtroduces two heuristic strategies, KB and CL, to circum-
vent the computational complexity of a diregEl maximization. These strategies are tested on a cldssica
test-case, and CL is found to be a very promizing competitoapproximated-El maximization
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o Sectiorl b Towards Kriging-based Parallel Optimization: Conclusiand Perspectivggjives a summary
of obtained results as well as some related practical re@mdations, and finally suggests what the
authors think are perspectives of research to address teeumgently in order to extend this work.

e The appendixl6 is a short but dense introduction to GP for madearning, with an emphasis on the
foundations of both Simple Kriging and Ordinary Kriging by?@onditionning.

Some notationsy: x € D ¢ RY — y(x) € R refers to the objective function, whede= N\ {0} is the number

of input variables and® is the set in which the inputs vary, most of the time assumditta compact and
connexf] subset ofRY. At first, y is known at aDesign of Experiment¥ = {x%,...,x"} , wheren € N is the
number of initial runs or experiments, and eatlfl < i < n) is hence a-dimensional vectofx}, ..., x}).

We denote byy = {y(x!),...,y(x")} the set of observations made by evaluatynat the points ofX. The
data(X,Y) provides information on which is initially based the metataling ofy, with an accuracy that
depends om, the geometry oK, and the regularity of. The OK mean predictor and prediction variance
are denoted by the functiomspk (.) and%K(.). The random process implicitely underlying OK is denoted
by Y(.), in accordance with the notations of €g.1(35) presented pemgix. The symbol |* is used for
conditioning, together with the classical symbols for @boitity and expectation, respectivelyandE.

2 Background in Kriging for Sequential Optimization

2.1 The Ordinary Kriging metamodel and its Gaussian Procesterpretation

OK is the most popular Kriging metamodel, simultaneouslg thits great versatility and applicability. It
provides a mean predictor of spatial phenomena, with a dication of the expected prediction accuracy
at each site. A full derivation of the OK mean predictor andarce in a GP setting is proposed in the
appendix. The corresponding OK mean and variance funcéimngiven by the following formulae:

()T 5-1 v

mor() = [o0+ (R E ) 1,] 5y, @

(1= 17530
0s11,

B (X) = 0% —c(x)TZ te(x) + )

wherec(x) := (c(Y(x),Y(xl)),...,c(Y(x),Y(x”)))T, and> ando? are defined following the assur_npti&n;
and notations given in appendik 6. Classical propertieskfit@lude thatvi € [1,n] mok(x') = y(x') and
Sk (X') = 0, therefordY (x)|Y (X) = Y] is interpolating. Note thaly (x?)[Y (X) = Y] and[Y (x?)|Y(X) = Y]
are dependent random variables, wheétandx? are arbitrary points of D, as we will develop later.

The OK metamodel of the Branin-Hoo function (Cf. €ql 25) istfeld on fig[2.1l. The OK interpolation
(upper middle) is based only on 9 observations. Even if tta@shs reasonably respected (lower middle),

L Connexity is sometimes untenable in practical applicationse spd46] for a treatment of disconnected feasible regions.
2 An extension to covariance non-stationary proces$sés [35] iglstfarward but beyond the scope of the present work.
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Fig. 1 Ordinary Kriging of the Branin-Hoo function (function, Kjing mean value and variance, from left to right). The design
of experiments is a 3 factorial design. The covariance is an anisotropic squarpdrential with parameters estimated by
gaussian likelihood maximizatiohl [7].

the contour of the mean shows an artificial optimal zone (upmédle, around the poin6,2)). In other

respects, the variance is not depending on the obser\Et(equ). Note its particular shape, due to the
anisotropy of the covariance kernel estimated by likelthataximization. In modern interpretatio@[39],
deriving OK equations is often based on the assumptionytigah realization of a random process Y with
unknown constant mean and known covariance Bee [Ebr (it feview of classical covariance kernels).
Here we follow the derivation ¢f 6.4, which has the advanfgielivering a gaussian posterior distribution:

[YOOIY(X) = Y] ~ A (Mok (x), Bk (X)) ®)

Note that both a structure selection and a parametric estimare made in practice: one often chooses a
generalized exponential kernel with plugged-in maximukalihood covariance hyperparameters, i.e. with-
out taking the estimation variance into accolint [22]. Thsuk is sometimes addressed using a full bayesian
treatment, as can be found [43], or more recentI)Erh @r} Rephrasinf@l3, under the latter GP as-

3 phenomenon known as homoskedasticity of the Kriging variantterespect to the observations [7]
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sumptions, the random variabféx) knowing the values ofy(x!),...,y(x")} follows a gaussian distribution
which mean and variance are respectiély (x)|Y (X) = Y] = mok (x) andVar[Y (x)|Y (X) = Y] = 3 (X).

In fact, as shown in appendix (Cf. dq.138), one can even gehmuare than these marginal conditional
distributions;Y (.)|Y(X) =Y constitutes a random process which is itself gaussian, sisdeh completely
characterized by its conditional meangk, and conditional covariance kerngjx explicited herunder:

[YIY(X) = Y] ~ GP(mok(.), Cok(-,-)), (4)

(-Gt @-G2texX)]
1711, - ©®

wherecok (X, X') = ¢(x — X') — ¢(x)T =~ c(x') 4 02

This new kernetok is not stationary, even dis. In other respects, the knowledgenafx andco is the first
step to performing conditional simulationsYoknowing the observation§(X) =Y, which is easily feasible
at any new finite design of experiments, whatever the dinoensi inputs. This will enable the computation
of any multi-points sampling criterion, such as proposethenforthcoming section about parallelization.

2.2 Kriging-based optimization criteria

GP metamodel@ﬁﬂ such as OK has been used for optioniz@tiinimization, by default). There is a
detailed review of optimization methods relying on a metdeidn ,|Z_!6] orl[zb]. The latter analyzes why
directly optimizing a deterministic metamodel (like a sli a polynomial, or the kriging mean) is dangerous,
and does not even necessarily lead to a local optimum. Krigased sequential optimization strategies (as
developed in|E2], and commented [20]) address the issuerwerging to non (locally) optimal points,
by taking the kriging variance term into account (hence araging the algorithms to explore outside the
already visited zones). Such algorithms produce one poedeh iteration that maximizes a figure of merit
based uporY (x)|Y (X) = Y]. In essence, the criteria balance kriging mean predictihuacertainty.

2.2.1 Visiting the point with most promizing mean: minizing mpog

When approximatingy by mok, it might seem natural to hope that minimizingy instead ofy brings
satisfying results. However, a function and its approxiorafmpk or other) can show substantial differences
in terms of optimal values and optimizers. More specificalgpending on the kind of covariance kernel used
in OK, the minimizer oimpk is susceptible to lie at (or near to) the design point withimaly value. Taking
the geometry of the design of experiments and space-fillomgiderations into account within exploration
criteria then makes sense. The Kriging variance can be efgential help for this purpose.

2.2.2 Visiting the point with highest uncertainty: maximizing sok

A fundamental mistake of minimizingok is that no account is done of the uncertainty associateditvith
At the extreme inverse, it is possible to define the next dgtition iterate as the least known pointDi)
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x' = argmaxep Sok (X) (6)

This procedure defines a seriesxg which will fill the spaceD and hence ultimately locate a global opti-
mum. Yet, since no use is made of previously obtaiMedformation —look at formulal2 fo%K—, there
is no bias in favor of high performance regions. Maximizihg tincertainty is inefficient in practice.

2.2.3 Compromizing betweermok and sok

The most general formulation for compromizing between th@atation of previous simulations brought
by mpk and the exploration based egk is the multicriteria problem

MinNkep Mok (X)
{ MaXep Sok (X) ™

Let &2 denote the Pareto set of solutidﬂnsk:inding one (or many) elements i remains a difficult problem
since Z typically contains an infinite number of points. A compagabpproach calledirect, although not
based on OK, is described iE[Zl]: the metamodel is piecelingar and the uncertainty measure is a
distance to already known points. The spBxis discretized and the Pareto optimal set defines areas where
discretization is refined. The method becomes computdljoerpensive as the number of iterations and
dimensions increase. Note that [3] proposes several phrzalll versions oflirect

2.2.4 Maximizing the probability of improvement

Among the numerous criteria presentedﬂ [20], the probigwf getting an improvement of the function
with respect to the past evaluations seems to be one of thefammamental. This function is defined for
everyx € D as the probability for the random variab¥éx) to be below the currently known minimum
min(Y) = min{y(x}),...,y(x")} conditional on the observations at the design of experiment

Pl(x) :=P(Y(x) <min(Y(X))[Y(X)=Y) (8)

=E [Lyp<minyoxp[YX) = Y] = @ (min(\;iK()r(r)bK(x)> ; 9)

where @ is the gaussian cumulative distribution function, and th&t equality follows 8. The threshold
min(Y) is sometimes replaced by some arbitrary tafget R, as evokated ir [38]. Pl is known to provide
a very local search whenever the value of T is equal or clogrimgY). Taking severall's is a remedy
proposed by|E0] to force global exploration. Of courses théw degree of freedom is also one more pa-
rameter to fit. In other respects, Pl has also been succesi&dld as pre-selection criterion in GP-assisted
evolution strategieﬂhQ], where it was pointed out thatsRiérformant but has a tendency to sample in un-
explored areas. We argue that the chosen covariance stytalys a capital role in such matters, depending
whether the kriging mean is overshooting the observatiom®b The next presented criterion, thepected
improvementis less sensitive to such issues since it explicitly irdégg both kriging mean and variance.

4 Definition of the Pareto front ofspx, —Mok): VX € 2,7 z€ D : (mok(2) < Mok (X) andsok (2) > Sok (X)) or (Mok (2) <
Mok (X) andsok () > sok (X))



8 David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro

oo
Probability of Inprovement Expected Improvement
10 0.7 1
084~ 0B 08
0.6 : - 06
R : 0.4
0.4 ( 0.4
0.3
0.2 g 0.2
0 - 0
0 0s 1 0

Fig. 2 Pl and El surfaces of the Branin-Hoo function (same design ofréxpats, Kriging model, and covariance parameters
as in fig. [2Z.1)). Maximizing PI leads to sample near the goodtpdassociated with low observations) whereas maximizing
El leads here to sample between the good points. By construbiidin criteria are null at the design of experiments, but the
probability of improvement is very close @in a neighborhood of the point(s) where the function takesutsent minimum.

2.2.5 Maximizing the expected improvement
An alternative solution is to maximize tlexpected improveme(l),

El(x) :=E[(min(Y(X) =Y (X)) T|Y(X) = Y] = E[max{0,min(Y (X) = Y (X) }|Y(X) = Y], (10)
that additionally takes into account the magnitude of theromements. El measures how much improvement

is expected by sampling at In fing, the improvement will be 0 if/(x) is abovemin(Y) andmin(Y) — y(X)
else. Knowing the conditional distribution ¥{x), it is straightforward to calculate El in closed form:
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whereg stands for the probability density function of the standawdmal law.4(0, 1).

Proof of T1:E1(x) = E[(min(Y) =Y (X)) y(x)<miny)[Y(X) =Y]
min(Y) min(Y)—M o (X)
= ‘/m (min(Y) —t) f/‘"(mxo(xiio(x})(t)dt = / sKo(X) (Min(Y) — Mco(X) — Sco(X) x U) Ty .1 (u)du

min(Y)—mygo(x) min(Y)—my o (X)
= (min(Y) ~meo(9) [ %O 10 (Wdu-so0) [ ¥ ux £ (u)du

min(Y) — mgo(x) min(Y) — mko(x)
) e (e )

= (min(Y) —mko(X)) @ (
El represents a trade-off between promising and uncertaias This criterion has important properties for
sequential exploration: it is null at the already visitei@sj and positive everywhere else with a magnitude
that is increasing with the Kriging variance and with therdasing Kriging mean (El maximizers are indeed
part of the Pareto front ofs¢x, —mok)). Such features are usually demanded from global optimizat
procedures (seHlZl] for instance). El and the probabifitpnprovement are compared in fig. (2).

2.2.6 TheStepwise Uncertainty ReductiofsUR) strategy

SUR has been introduced E[ll] and extended to global opditiain in @E’ih] By modeling using the
process'’s conditional lawY (x)|Y, it is possible to defing*|Y, the conditional law o¥’s global minimizer

x*, and its density,: |y (x). The uncertainty about the locationxfis measured as the entropymf |y (),
H(x*|Y). H(x*|Y) diminishes as the distribution &f|Y gets more peaked. Conceptually, the SUR strategy
for global optimization chooses as next iterate the poiat specifies the most the location of the optimum,

X' = argminepH (X*|Y,Y(x)) (12)

In practice,py«|y (X) is estimated by Monte-Carlo sampling6fx)|Y at a finite number of locations iD,
which may become a problem in high dimensiobBa as the number of locations must geometrically in-
crease withd to properly fill the space. The SUR criterion is different imture from the criteria presented
so far in that it does not maximize an immediate (i.e. at the iteration) payoff but rather lays the founda-
tion of a delayed payoff by gaining a more global knowledgeraineduce the entropy of its optima). The
multi-points El criterion we are focusing on in the presdmuter also uses a delayed payoff measure.

2.2.7 ThekEfficient Global Optimization(EGO) algorithm

EGO ] relies on the El criterion. Starting with an init2ksignX (typically a Latin Hypercube), EGO
sequentially visits the current global maximizer of El (Ha first visited one if there is more than one global
maximizer) and updates the OK metamodel at each iteratichyding hyperparameters re-estimation:

1. Evaluate y at X, set Y=y(X) and estimate covari ance paraneters of Y by
MLE (Maxi mum Li kel i hood Esti nati on)
2. Wil e stopping criterion not net

a. Conput e x' =argmaxepEIl(x), set X=XU{X} and Y=Y U{y(X)}
b. Re-estimate covari ance paraneters by ME
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After having been developed irﬂzﬂ 47], EGO has inspiredteroporary works in optimization of
expensive-to-evaluate functions. For instancel, [19] sepasome EGO-based methods for the optimiza-
tion of noisy black-box functions like stochastic simumdﬂ] focuses on multiple numerical simulators
with different levels of fidelity, and introduces the sotedlaugmented Etriterion, integrating possible het-
erogeneity in the simulation times. Moreover,] [26] promoaa adaptation to multi-objective optimization,

] proposes an original multi-objective adaptation of &€r physical experiments, arm28] focuses on
robust criteria for multiobjective constrained optiminatwith applications to laminating processes.

In all, one major drawback of the EGO-like algorithms dis®d so far is that they do not allow parallel
evaluations ofy, which is desirable for costly simulators (e.g. a crash4asulation run typically lasts 24
hours). This was already pointed out[47], where the roiints El was defined but not further developed.
Here we continue this work by expliciting the latter mulbipts El @-El), and by proposing two classes
of heuristics strategies meant to approximatly optimizsgtiEl, and hence (almost) simultaneously deliver
an arbitrary number of points without intermediate evabret ofy. In particular, we analytically derive
the 2-El, and explain in detail how to take advantage ofsfaél interpretations of Kriging to consistently
computeg-El by simulation wherg > 2, which happens to provide quite a general template forgiesi
Kriging-based parallel evaluation strategies dedicatamptimization or other purposes.

3 The Multi-points Expected Improvement (g-El) Criterion

The main objective of the present work is to analyze and tippncximately optimize a global optimization
criterion, theg-El, that yieldsq points. Sincey-El is an extension of El, all derivations are performed with

the framework of OK. Such criterion is the first step towardsagallelized version of the EGO algorithm
[22]. It also departs, like the SUR criterion, from othetteria that look for an immediate payoff. We now
propose a progressive construction of ¢fEl, by coming back to the random varialheprovement

Both criteria of Pl and EI that we have previously recalledrshindeed the feature of being conditional
expectations of quantities involving tivaprovementTheimprovemenbrought by sampling at somec D

is indeed defined by(x) := (min(Y (X)) —Y(x))", and is positive whenever the value sampled,at(x),

is below the current minimunmin(Y (X)). Now, if we sampleY at g new locationsx™*,... x4 € D
simultaneously, it seems quite natural to define the joint #uoltipoints— improvement as follows:

P XM e D, (XML X = max(H(xMT), L LX)
= max((min(Y (X)) = Y(x™™1)*, ..., (min(Y (X)) — Y (x""9)) ") (13)
= (min(Y (X)) —min(Y(x™1), ... Y (x79)))
where we used the fact thaa, b,c € R, max((a—b)",(a—c)") =(a—b)" if b<cand(a—c)" else. The
way of unifying theq criteria of (1-point) improvements used in 13 desemvéetcallecklitist: one juges

the quality of the set of-points as a function only of the one that performs the bédss iE to be compared
for instance to the weighted sums of criteria encounteredany political science applications.

The g-points El criterion (as already defined but not devedoip ] under the name "g-step EI”) is then
straightforwardly defined as conditional expectation efithprovement brought by the q considered points:
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EI(X™L . x"9) - = E[max{ (min(Y (X)) — Y (X)), ... (min(Y) = Y(x™ ) FHY (X) = Y]
= [(min(Y (X)) — min (Y(x™L), . Y (x™9)) )Y (X) = Y] (14)
=E [(min(Y) —min (Y(x™),.., YX™ ) |V (X) = Y]

Hence, the-El may be seen as the regular El applied to the random varials{Y (x™*1), ..., Y (x"+9)). We
thus have to deal with a minimum of dependent random vaatflertunately, ed.4 provides us with the
exact joint distribution of the q unknown responses coanddl on the observations:

(YD), Y)Y (X) = Y]~ A (Mo (XM, .. mok (X)), &) (15)

where the elements of the conditional covariance m&yare(S;)i j = cok (X", x™1) (See ed.5). We now
propose two different ways to evaluate the criterionet|dbpending whether= 2 orq > 3.

3.1 Analytical calculation of 2EI

y function 2-El

(
024 8 8
1

0.8

El(x)
0.3

00

Fig. 3 1-El (lower left) and 2-El (right) functions associated witmanodimensional quadratic functioy() = 4 x (x— 0.45)?
known atX = {—1,-0.5,0,0.5,1}. The OK metamodel has here a cubic covariance with parametersl0, scale= 0.9).
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We first focus on the calculation of the 2-El associated with &rbitrary points<™1,x"2 ¢ D, defined as
E1(X™E,X2) := E[(min(Y (X)) — min(Y (x"1), ¥ (x"2))) FY (X) = Y],
Let us remark that in reformulating the positive part fuactithe expression above can also be written:
E1 (™, X™2) = E[(min(Y (X)) —min(Y (X™3).Y (X™2))) Ly e v e <mingr) [Y (X) = Y.

We will now show that the 2-El can be developed as a sum of tb'sl-plus a correction term involving
1- and 2-dimensional gaussian cumulative distributions.

Before all, some classical results of conditional calcalimv us to precise the dependence betwegedi 1)
andY (x"*2) conditional onY (X) =Y, and to fix some additional notationd, j € {1,2} (i # j), we note:
m = mko(X) = E[Y(x™)|Y(X) = Y],

0 1= sco(x™) = VarlY (xn+) Y (X) = Y],

CL2 := P120102 := coMY (X™1), Y (x"2)|Y (X) = Y], (16)
my; = E[Y(x n+')IY( ) =YY (X)) = m+caa07 2(Y (xT) —my),

2 2 2
Ofj = 0F —€1207 2 = 07 (1— p2y).

At this stage we are in position to compuEe(x™+1, x"*2) in four steps. From now on, we replace the com-
plete notatiorY (x"*') by Y; and forget the conditioning ovi(X) = Y for the sake of clarity.
Step 1.

E1(x™ 1 x™2) = E[(min(Y) — min(Y1, Y2)) Iminvy.v5)<miny)

E[(min(Y) — min(YlvYZ))lmin(Yl,Yz)gmin(Y) (1Y1§Y2 + 1Y2§Y1)]
E[(min(Y) — Y1) 1y, <minty) Ly <v,] 4+ E[(MIN(Y) = Y2) Ly, < mingy) Lvp <vy ]

Since both terms of the last sum are similar (up to a pernutatetweenx™* andx™*2), we will restrict
our attention to the first one. Usirdg, <v, = 1—1y,<y, 1, we get:
E[(min(Y) 7Yl)1Y1§min(Y)lY1§Y2] = E[(min(Y) 7Yl)1Y1§min(Y)(17 1Y2§Y1)]
= EI(x™) —E[(Min(Y) — Y1)y, <miny) Lrp<va
_ El(xn+l) 4 B(Xn+17xn+2)

whereB(x™1, x™2) = E[(Y1 — min(Y))1y, <min(v) v,<v,]. Informally, B(x"* x"2) is the opposite of the
improvement brought by; whenY, <Y; and hence that doesn’t contribute to the 2-points improveme
Our aim in the next steps will be to give an explicit expresdior B(x™1, x"+2).

Step 2.

5 This expression should be notee-dy, -y, , but since we work with continous random variables, it suffities their correla-
tion is # 1 for the expression to be exag¥{ = Y2}) is then neglectable). We implicitely do this assumption in thiefdng.
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B(X"",x2) = E[11y, <mintv) va<v,] — MIn(Y)E[Ly, <miniy) v <v,]

At this point, it is worth noticing that; £ my + 01N; (always conditional oY (X) = Y) with Ny ~ .47(0, 1).
Substituing this decomposition in the last expressioB(ef**,x"+2) delivers:

B(X",x™2) = 01E [Ny, cmingy) Iy, + (Mo — min(Y ) E[ Ly, <miny) Irp<vs

The two terms of this sum require some attention. We comhaten tin detail in the two next steps.

Step 3. Using a key property of conditional calculBswe obtain
E[N1 1y, <min(y) I <vy ] = E[N1 Ly, <miney) E[Lv,<v, Y]],

and the fact thatz|Y;, ~ W(wb‘l(Yl),g‘l(Yl)) (all conditional on the observations) leads to the follagvin

C12
E[ly,<y,[Y1] = ® (Yl_ mz‘l) =@ nomen JTZ(Yl_ml)
2=1
2 024/ 1-p3

Back to the main term and using again the normal decomposifiy;, we get:

My — My + (01 — p1202)N
E[NllYlgmin(Y)lein] = [N11N1<min(Y)m1¢< 1 —Mp + (01 — P1202) l>j| :E[N11N1§y1¢(01N1+B1)]

<o o2\/1-0%,

min(Y) — rr11

m —
o O24/1— 7

01— P1202

O2¢/1- P2

anda; = a7)

wherey; =

E[N11n, <y @(a1Ny + B1)] can be computed applying an integration by parts:

a1u+B1

[ uow)@(awu+ pydu=—p(m) dlav+ py + 5% [T e T HE

2
And sinceu? + (au+ B1)? = ( (1+a?)u+ %) + 1f -, the last integral reduces to:

\Witez) /|w m - Ve

We conclude in using the definition of the cumulative disttibn function:

6 For all functiong in Z?(R,R), E[X@(Y)] = E[E[X|Y]@(Y)]
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a By
19 1+a? 2 a1
E[N1ly, <minv) Lvp<vy] = —@(V) @(Q1ya + B1) + —F—=—=>@ [ /(1 +af)n +

(1+a?) \/1+a?

Step 4. We then compute the terif{ 1y, < miny) 1v,<v;] = E[Ix<min(y)1z<0], Where(X, Z) := (Y1,Y2 Y1) fol-
lows a 2-dimensional gaussian distribution with expectsltil = (m;, m, —my ), and covariance matrix :=

2 _ A2 ) X
< Clﬁzail ot o2 frlélz f%cl.) . The final results rely on the fact th@f1y < minry) 1z<o] = CDF(M, " )(min(Y),0),

where CDF stands for the bi-gaussian cumulative distidoutiinction:

El(x},x?) = EI(x}) + EI(x?) + B(x},x?) + B(x?,x}) (18)

B, X) = (Mox () — min(Y )3 3) + 0o (g,
e() = asp (oL ) o (1+af>%( +28)) — g(y) Doy + By

min(Y) — m1>
M — N

where
d(xt,x?) =CDF(I) (

Figure 3.1 represents the 1-El and the 2-El contour plotscésed with a deterministic polynomial function
known at 5 points. 1-El advises here to sample between thed’goints” ofX. The 2-El contour illustrates
some general properties: 2-El is symmetric and its diagegaals 1-El, what can be easily seen by coming
back to the definitions. Roughly said, 2-El is high wheneler2 points have high 1-El and are reasonably
distant from another (precisely, in the sense of the megadun OK). Additionally, maximizing 2-El selects
here the two best local optima of 1-B4 (= 0.3 andx, = 0.7). This is not a general fact. The next example
illustrates for instance how 2-EI maximization can yiel@tpoints located around (but different from) 1-El's
global optimum whenever 1-El has one single peak of greanihade (see fig.14).

3.2 g-El computation by Monte Carlo Simulations

Extrapolating the calculation of 2-El to the general caseegicomplex expressions depending on g-
dimensional gaussian cdf’'s. Hence, it seems that the catipntof g-EI when q is large would have to
rely on numerical multivariate integral approximationteirjues anyway. Therefore, directly evaluating g-
El by Monte-Carlo Simulation makes sense. Thanks t@ dqhisandom vectofy (x™1), ..., Y (x"9)) can

be simulated conitional o¥i(X) = Y using a decomposition (e.g. Mahalanobis) of the covarianaix S;:

VK € [1, Ninds Mi = (Mo (XD, ... Mok (X 9)) + [SENT, N ~ A (Og. 1 ) ... (19)

Computing the conditional expectation of any function (netessarily linearly) of the conditioned random
vector (Y (x™1), ... Y(x"9)) knowingY (X) = Y can then be done in averaging the images of the simulated
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Y function two-points El

Fig. 4 1-point El (lower left) and 2-points EI (right) functions asgted with a monodimensional linear functigriX) = 3 x x)
known atX = {—1,-0.5,0,0.5,1}. The OK metamodel has here a cubic covariance with parametersl0, scale= 1.4).

vectors by the considered function:

1: function Q-EI(X, Y, X"eW

2 L = chol(Var[Y (X"W Y (X) = Y]) > Decomposition o, (Cholesky, Mahalanobis, etc.)
3 for i « 1, ngjn do

4: N~ 40, lq) > Drawing a standard gaussian vedibat random
5: Mi = mok (X"") + LN > Simulating Y atX"" conditional onY (X) =Y

6 Alsim(i)=[Min(Y) — min(M;)] ™ > Simulating the improvement "%

7 end for

8 gElsim = fl.m 1M lim((i ) > Estimation of theg-points Expected Improvement
9: end function

A straightforward application of the Law of Large Number& ) yields indeed

e ,
C @ min(Y) —min(M;)] T 1 q
QE ksim= ; — E—- El(x},....x%) ass, (20)

and the Central Limit Theorem (CLT) can finally be used to malrthe precision of the Monte Carlo ap-
proximation as a function ofsiy, (see[40] for details concerning the variance estimation):
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qus|m7 E|(X1, ..7Xq)
Nsim
Varll (x1,...,x9)]

) P— A(0,1) in law. (21)

4 Approximated g-El maximization

The multi-points criterion that we have presented in thé dastion can potentially be used to deliver an
additional design of experiments in one step through theluéen of the optimization problem

(X’n+l7 X/n+27 ey X/n+q) = argmaxcpa [El (X/)] (22)

However, the computation @-El becomes intensive agincreases. Moreover, the optimization problem
(22) is of dimensiord x g, and with a noisy and derivative-free objective functiorthie case where the
criterion is estimated by Monte-Carlo. Here we try to findym®sequential greedy strategies that approach
the result of probleri 22 while avoiding its numerical cosine circumventing the curse of dimensionality.

4.1 Afirst greedy strategy to build a g-points design with th@dint El

Instead of searching for the globally optimal vecta*,x ™2, ... x"*9), an intuitive way of replacing it

by a sequential approach is the following: first look for trextrbest single point™* = argmax<pEl(x),

then feed the model and look faPf*? = argmaxc<pEI(x), and so on. Of course, the valy&™*1) is not
known at the second step (else we would be in a real sequalg@lithm, like EGO). Nevertheless, we
dispose of two pieces of information: the sit®! is assumed to have already been visited at the previous
iteration, andY (x"1)|Y = Y(X)] has a known distribution. More precisely, the lattefigx™1)|Y (X) =

Y]~ A (mok (X™1), 2 (x71)). Hence, the second si¥8"2 can be computed as:

X" = argmaxcpE [E [(Y(x) —min(Y (X)) T[Y(X) = Y,Y(x"™)]], (23)

and the same procedure can be applied iteratively to dejipaints, computing/j € [1,q— 1J:

X"+ — argmaxep /u [E [(Y () = min(Y (X)) F[Y(X) = Y, Y (M), YT By ooy (Wu,— (24)

€RJ
wherefy 1)y (x)—y is the multivariate gaussian density of the OK conditionisirdbtion at(x™*,...., XM,
Although eq is a sequentialized version of the g-poirfeeted improvement maximization, it doesn’t
completely fulfill our objectives. There is still a multivate gaussian density to integrate, which seems to
be a typical curse in such problems dealing with depende&wtora vectors. We now present two classes of
heuristic strategies meant to circumvent the computalticoraplexity encountered if (24).
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4.2 The Kriging Believer (KB) and Constant Liar (CL) strategies
Lying to escape intractable calculations: starting from the principle of{24), we propose to weaken the

conditional knowledge taken into account at each iterafidis very elementary idea inspired two heuristic
strategies that we expose and test in the next two subsscti@Kriging Believerand theConstant Liar

4.2.1 Believing the OK predictor: the KB heuristic strategy
The Kriging Believerstrategy replaces the conditional knowledge about theoresgs at the sites chosen

within the last iterations by deterministic values equathe expectation of the kriging predictor. Keeping
the same notations as previously, the strategy can be summpnasifollows:

Algorithm 1 The Kriging Believer algorithm: a first approximate solutiof the multipoints problem
(XML 2 X)) — argmaxcpa[E1(X)]

1: function KB(X, Y, q)

2: for i« 1,qdo

3 X" = argmaxcpEl(x)
4: Mok (x1) = E[Y (X" )| Y (X) = Y]
5: X =XU{x™1}
6
7
8:

Y =Y U{mok (X"}
end for
end function

This sequential strategy delivers a g-points design andrgpatationally affordable since it relies on the
analytically known El, optimized id dimensions. However, there is a risk of failure, since lvéig an OK
predictor that overshoots the observed data may lead toeeseg that gets trapped in a non-optimal region
for many iterations (see 4.3). We now propose a second gir#ttat reduces this risk.

4.2.2 Updating the OK metamodel with fake observations: th&€L heuristic strategy

Let us now consider a sequential strategy in which the medeiris updated (still without hyperparameter
re-estimation) at each iteration with a valuexogenously fixed by the user, here called a "lie”. The sirate
referred to as th€onstant Liarconsists in lying with the same vallieat every iteration: maximize El (i.e.
find x"*1), actualize the model asyfx""!) = L, and so on always with the sarhes R:

The effect ofL on the performance of the resulting optimizer is invesédan the next sectiorl. should
logically be determined on the basis of the values takey ByX. Three valuesmin{Y}, mear{Y}, and
max Y } are considered here. The lardeis, the more explorative the algorithm will be, and vice gers

4.3 Empirical comparisons with the Branin-Hoo function

The four optimization strategies presented in the lasti@eare now compared on the the Branin-Hoo
function which is a classical test-case in global optiniaa{22,[38/ 47):
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Algorithm 2 The Constant Liar algorithm: another approximate solutidnthe multipoints problem
(XML X2 M) — argmaxcpa E (X))

1: function CL(X, Y, L, q)

2: fori« 1,gdo

3 X" = argmaxcpEl(x)
4: X =XU{x™1}
5: Y =YU{L}
6
7:

end for
end function

{ YBH (X1, X2) = (X2 — 25X + 2x1 — 6)2+ 10(1 — g5 )cogx1) + 10
X1 € [-5,10], x2 € [0,15]

yer has three global minimizers-3.14,12.27), (3.14,2.27), (9.42,2.47), and the global minimum is ap-

proximately equal to @. The variables are normalized by the transformagps: £ andx, = 32. The

initial design of experiments is ax33 complete factorial desighg (sed® ), thuy = ygy(Xg). Ordinary

Kriging is applied with a stationary, anisotropic, gaussiavariance function

(25)

Vh=(h,hp) € R?, c(hy,hp) = g2e~ B3 5)

where the parameter$y( 6,) are fixed to their Maximum Likelihood Estimate.?,0.26), ando? is es-
timated within kriging, as an implicit function oB(, 6,) (like in [Iﬂ]). We build a 10-points optimization
design with each strategy, and additionally estimated bptél€arlo simulationsgm = 10%) the Pl and El
values brought by thefirst points of each strategy (heges {2,6,10}). The results are gathered in Tabl4.3.

6 iterations of CL[min(y,,(X)] DISTRIBUTION OF THE MC-SIMULATED IMPROVEMENTS
‘ o (given by 6 iterations of CL[min(y,, (X,))])

e s
\§ & Contaur of g
o Initial Design ¥y 4
@ Sites visited by CL

6-ElI=117.3802 6-PI=0.9453

L L
500 600 700

Fig. 5 (Left) contour of the Branin-Hoo function with the desidflg (small black points) and the 6 first points given by the
heuristic strategy CL[mifysH(Xs))] (large bullets). (Right) Histogram of f0Monte Carlo simulated values of the improve-
ment brought by the 6-points CL[m(ysH (Xg))] strategy. The corresponding estimates of 6-points Pl and Ejieea above.
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The four strategies (KB and the three variants of CL) gavarblaifferent designs and optimization perfor-
mances. In the first cas€onstant Liar(CL) sequences behaved as if the already visited pointsrgiste
a repulsion, with a magnitude increasing withThe tested valueks = max(Y) andL = mearY) forced
the exploration designs to fill the space by avoidifyg Both strategies provided space-filling, exploratory
designs with high probabilities of improvement (P0Onear 100%) and promisingEt values (see Table 1).
In fing, they brought respective actual improvements.867and 625.

Of all the tested strategies, CL[n{ivi)] gave here the best results. In 6 iterations, it visited tiree
locally optimal zones of/gy. In 10 iterations, it gave the best actual improvement antbegconsidered
strategies, which is furthermore in agreement with the 4iodp El values simulated by Monte-Carlo. It
seems in fact that the soft repulsion wHea min(Y) is the right tuning for the optimization of the Branin-
Hoo function, with the initial desigiXg.

In the second case, the KB has yielded here disappointindgtseall the points (except one) were clustered
around the first visited point™! (the same as i€L, by construction). This can be explained by the exag-
geratedly low prediction given by Kriging at this very poitite mean predictor overshoots the data (because
of the Gaussian covariance), and the expected improvenaeoinies abusively large in the neighborhood
of X", Thenx™2 is then chosen neaf*1, and so on. The algorithm gets temporarily trapped at the firs
visited point. KB behaves in the same way@is would do with a constant below min(Y). As can be
seen in Table 1 (last column), the phenomenon is visible dh tie qPl and gEl criteria: they remain
almost constant when g increases. This illustrates inqdati how g-points criteria can help in rejecting
unappropriate strategies.

CL[min(Y)]|CL[meartY)]|CL[maxY)]| KB
PI (first 2 points) 87.7% 87% 88.9% | 65%
El (first 2 points) 114.3 114 113.5 82.9
PI (first 6 points) 94.6% 95.5% 92.7% |65.5%
ET (first 6 points) 117.4 115.6 1151 | 85.2
PI (first 10 points) 99.8% 99.9% 99.9% (66.5%
El (first 10 points) 122.6 118.4 117 85.86
Improvement (first 6 points 7.4 6.25 7.86 0
Improvement (first 10 points) 8.37 6.25 7.86 0

Table 1 Multipoints PI, El, and actual improvements for the 2, 6, anditkd iterations of the heuristic strategies CL[r{if)],
CL[meartY)], CL[max(Y)], and Kriging Believer (here mifY') = min(ysn(X9))). q— Pl andq— EI are evaluated by Monte-
Carlo simulations (Eq[{20hsim = 10%).

In other respects, the results shown in Tabl 4.3 highlighagondrawback of the d@l criterion. Whenq
increases, th@l associated with all 3 CL strategies quickly converges t®4,08uch that it is not possible
to discriminate between the good and the very good desidreg-El is a more selective measure thanks to
taking the magnitude of possible improvements into accduexertheless, &l overevaluates the improve-
ment associated with all designs considered here. Thisté¢#&eady pointed out ilm7]) can be explained
by considering both the high value of estimated fron¥ and the small difference between the minimal
value reached &g (9.5) and the actual minimum ggy (0.4).

We finally compared CL[min], CL[max], latin hypercubes (LH&d uniform random designs (UNIF) in
terms ofg-El values, withq € [1,10]. For everyq € [1,10], we sampled 200@-elements designs of each
type (LHS and UNIF) and compared the obtained empiricafidigions ofg-points Expected Improvement
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Fig. 6 Comparaison of the-El associated with the first points ¢ € [1,10]) given by the constant liar strategies (min and
max), 2000g-points designs uniformly drawn for evegy and 20003-points LHS designs taken at random for evgry

to theg-points Expected Improvement estimates associated wétf fiinst points of both CL strategies.

As can be seen on fifl] 6, CL[max] (light bullets) and CL[mindud squares) offer very goagEl results
compared to random designs, especially for small valueg B/ definition, the two of them start with the
1-El global maximizer, which ensuresgeEl at least equal to 83 for af| > 1. Both associated-El series
then seem to converge to threshold values, almost reachgdf@ by CL[max] (which dominates CL[min]
whenqg = 2 andg = 3) and forq > 4 by CL[min] (which dominates CL[max] for all & g < 10). The random
designs have less promizirmgEl expected values. TheirEl distributions are quite dispersed, which can
be seen for instance by looking at the 16980% interpercentiles represented on ffilg. 6 by thin full lines
(respectively dark and light for UNIF and LHS designs). Niot@articular that they-El distribution of the
LHS designs seem globally better than the one of the unifoesigths. Interestingly, the best designs ever
found among the UNIF designs (dark dotted lines) and amoad HS designs (light dotted lines) almost
match with CL[max] wherg € {2,3} and CL[min] when 4< q < 10. We haven't yet observed a design
sampled at random that clearly provides bedqt&tl values than the proposed heuristic strategies.
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5 Towards Kriging-based Parallel Optimization: Conclusion and Perspectives

Optimization problems with objective functions stemingnT expensive computer simulations strongly
motivates the use of data-driven simplified mathematicpfegentations of the simulator, aretamod-
els An increasing number of optimization algorithms devebbper such problems rely on metamodels,
competing with and/or complementing population-based @dational Intelligence methods. A repre-
sentative example is given by the EGO algorit [22], a setjaleblack-box optimization procedure,
which has gained popularity during the last decade and redpahumerous recent works in the field
[IE,, dﬁé 50]. EGO relies on a Krigiaged criterion, the expected improvement
(El), accounting for the exploration-exploitation traoffl. The latter algorithm unfortunately produces only
one point at each iteration, which prevents to take advanégarallel computation facilities. In the present
work, we came back to the interpretation of Kriging in ternmi§saussian Proce@39] in order to propose a
framework for Kriging-based parallel optimization, andorepare the work for parallel variants of EGO.

The probabilistic nature of the Kriging metamodel allowestal calculate the joint probability distribution
associated with the predictions at any set of points, upoichwive could rediscover (seE[47]) and char-
acterize a criterion named heneulti-points expected improvement g-EI. The gEl criterion makes it
possible to get an evaluation of the "optimization potdhiigven by any set of g new experiments. An
analytical derivation of Z1 was performed, providing a good example of how to manipylzite Krig-

ing distributions for choosing additional designs of expents, and enabling us to shed more light on the
nature of the dg1 thanks to selected figures. For the computation &fldn the general case, an alterna-
tive computation method relying on Monte-Carlo simulasavas proposed. As pointed out in illustrated in
the chapter, Monte-Carlo simulations offer indeed the ojymity to evaluate the &I associated with any
given design of experiment, whatever its siz@nd whatever the dimension of inputsHowever, deriving
g-El-optimal designs on the basis of such estimates is not ktfaigvard, and crucially depending on both
n andd. Hence some greedy alternative problems were considesadhguristic strategies, the "Kriging
Believer” and three "Constant Liars” have been proposedcanapared that aim at maximizingg} while
being numerically tractable. It has been verified in the #aoha classical test case that @Bk strategies
provide qEI vales comparable with the best Latin Hypercubes and unifitegigns of experiments found
by simulation. This simple application illustrated a cahpractical conclusion of this work: considering
a set of candidate designs of experiments, provided foammtst by heuristic strategies, it is always possi-
ble —whateven andd— to evaluate and rank them using estimates &lpr related criteria, thanks to
conditional Monte-Carlo simulation.

Perspectives include of course the development of syncloparallel EGO variants delivering a setopf
points at each iteration. The tools presented in the chapagrconstitute bricks of these algorithms, as it
has very recently been illustrated on a succesful 6-dino@asitest-case in the thesis | 13]. An R package
covering that subject is in an advanced stage of preparatidrshould be released soon|[41]. On a longer
term, the scope of the work presented in this chapter, andmigtits modest original contributions, could
be broaden. If the considered methods could seem essgnéistiticted to the Ordinary Kriging metamodel
and concern the use of an optimization criterion meant tainlgf points in parallel, several degrees of
freedom can be played on in order to address more generdeprsbFirst, any probabilistic metamodel
potentially providing joint distributions could do wellggression models, smoothing splines, etc.). Second,
the final goal of the new generated design might be to imprbeeglobal accuracy of the metamodel,

7 Other computational intelligence optimizers, e.g. evoluigralgorithms([9], address the exploration/exploitaticmié-off
implicitely through the choice of parameters such as the ptipulaize and the mutation probability.
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to learn a quantile, to fill the space, etc : the work done heth the gEl and associate strategies is
just a particular case of what one can do with the flexibilitieied by probabilistic metamodels and all
possible decision-theoretic criteria. To finish with twaattbnging issues of Computationnal Intelligence,
the following perspectives seem particularly relevantahisides of the interface with this work:

e Cl methods are needed to maximize thEl criterion, which inputs live in &n x d)-dimensional space,
and which evaluation is noisy, with tunable fidelity depermgdon the chosengj, values,

e ¢-El and related criteria are now at disposal to help preeselg good points in metamodel-assisted
evolution strategies, in the flavour E[lO].
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6 Appendix

6.1 Gaussian Processes for Machine Learning

A real random procesgY (X))xep Iis defined as @aussian Proces§GP) whenever all its finite-dimensional distributions
are gaussian. Consequently, forai N and for all seiX = {x%,...,x"} of n points ofD, there exists a vecton € R" and a
symmetric positive semi-definite matie ., (R) such thatY (x),...,Y(x")) is a gaussian Vector, following a multigaussian
probability distribution.#"(m, ). More specifically, for ali € [1,n], Y(x') ~ A (E[Y(x')],Var[Y(x')]) whereE[Y (x')] is the
ith coordinate om andVar([Y(x')] is theith diagonal term o&. Furthermore, all couple§/(x'),Y(x!)) i,j € [1,n],i # | are
multigaussian with a covarian€@o\Y (x'), Y (x!)] equal to the non-diagonal term &findexed byi and j.

A Random Proces¥ is said to befirst order stationaryif its mean is a constant, i.e. #u € R| ¥x € D, E[Y(X)] = p. Y

is said to besecond order stationarif it is first order stationary and if there exists furthermore adiion of positive type,
c:D—D — R, such that for all pairgx, x’) € D?, Co\[Y(x),Y(x')] = c(x — x'). We then have the following expression for the
covariance matrix of the observationsxat

0% (X1 —X2) ... (X1 —Xn)

2
2 = (COMY (XY X)) eray = (006 =) e = | ETY T o) (27)
c(Xn—X1) C(Xn—X2) ... 02

whereo? := ¢(0). Second order stationary processes are sometimes gadiakly stationaryA major feature of GPs is that
theirweak stationaritys equivalent testrong stationarityif Y is a weakly stationary GP, the law of probability of the random
variableY (x) doesn't depend ow, and the joint distribution ofY(x'),...,Y(x")) is the same as the distribution 6f (x* +
h),...,Y(x"4-h)) whatever the set of poin{?, ...,x"} € D" and the vectoh € R" such thaf{x* +h,...,x"4-h} € D". To sum
up, a stationary GP is entirely defined by its mgaand its covariance functiot(.). The classical framework of Kriging for
Computer Experiments is to make predictions of a costly simujgatia new set of site¥pey = {x"*1, ..., x"*4} (most of the
time, g = 1), on the basis of the collected observations at the initisigeX = {x*,...,x"}, and under the assumption that

is one realization of a stationary GPwith known covariance function (in theory). Simple Kriging (SK) assumes a known
mean,u € R. In Ordinary Kriging (OK),u is estimated.
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6.2 Conditioning Gaussian Vectors

Let us consider a centered Gaussian veter (Vq,V,) with covariance matrix

Sy =EWVT) = ( 2% Zoss (28)
Z(:ross ZVZ

Key properties of Gaussian vectors include that the orthdgmogection of a Gaussian vector onto a linear subspace is still
a Gaussian vector, and that the orthogonality of two subvedoké of a Gaussian vector (i.e. Zeross= ]E[VZVlT] =0)is
equivalent to their independence. We now express the condltiexpectatioE[Vy |Vz]. E[V1|V-] is by definition such that

Vi —EM1|V,] is independent of,. E[V1|V-] is thus fully characterized as orthogonal projection orviéhetor space spanned by
the components df, solving the so calledormal equations

E[(Vi—EMN2)V; | =0 (29)

Assuming linearity ofE[V1|V2] in Vo, i.e. JE[\/l\v%: AV (A € .,(R)), a straightforward development of (€d.29) gives the

matrix equationsJ,.ss= ASy,, and henca‘(}ossz\jz V is a suitable solution provides,, is full rankefl. We conclude that

ENV1|V2] = Zgossy, V2 (30)

by uniqueness of the orthogonal projection onto a closedrisglaspace in a Hilbert space. Using the independence between
(V1 —EM|Vz]) andVa, one can calculate the conditional covariance maix, :

Suv, = E[(V1 — EV1V2]) (V1 — EV1V2)) T Vo] = E[(Va — AVp) (Vi — AV)T]

_ (31)
=2, — Alcross— ZchSgAT "rAZVzAT =2y, — Z(;rrosszvzlzcross

Now consider the case of a non-centered random victo(Vy,V,) with meanm= (my, mp). The conditional distributiol; |V>
can be obtained by coming back to the centered random Véctan. We then find thaE[V; — my Vo — mp] = ZcTrossZ\jzl(Vz —

mp) and hence Vi Vo] = my + 5oy, (Vo — Mp).

6.3 Simple Kriging Equations

Let us come back to our metamodeling problem and assumgighane realization of a Gaussian Procésdefined as follows:

Y(x) = 1+ &(x) 32)
£(x) centered stationary GP with covariance funciign

wherep € R is known. Now say thaY has already been observedhdocationsX = {x%,...,x"} (Y(X) = Y) and that we wish

to predictY aq new locationsXpew= {X"1, ..., x" 91, Since(Y(x1),...,Y(x"),Y (x"1),...,Y(x"9)) is a Gaussian Vector with

meani 1y, and covariance matrix

. o? C(X1—X2) ... C(X1—Xnsq)

s (F Bhos)_[ cbex) 0 cbaxua) @)
ZCTOSS Znew .

C(Xntq—X1) C(Xntq—X2) - a?

We can directly apply eq_(80) and ed.}(31) to derive the SirKpiging Equations:

[Y(XnEW)‘Y(X) = Y] ~ JV('T‘SK(XneW)7ZSK(XneW)) (34)

8|f 2\, is not invertible, the equation holds in replaci.ﬁ@l by the pseudo—inversﬁ\‘,‘z.
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with Msk(Xnew) = E[Y (Xnew)[Y (X) = Y] = plg+ ZdosZ 1Y — plq) and Zsk(Xnew) = Znew— ZgoseE +Zcross Wheng = 1,
Seross = C(X™1) = CoMY (x™1),Y(X)] and the covariance matrix reducessig(x) = 02 — c(x™1)T =~ 1c(x™1), which is
called theKriging Variance Whenu is constant but not known in advance, it is not mathematicaltyeco to sequentially
estimateu and plug in the estimate in the Simple Kriging equations. Orgilaiging addresses this issue.

6.4 Ordinary Kriging Equations

Compared to Simple Kriging, Ordinary Kriging (OK) is used whée tmean of the underlying random process is constant
and unknown. We give here a derivation of OK in a Bayesian fraonkewassuming tha: has an improper uniform prior
distributionpt ~ 7% (R). y is thus seen as a realization of a random pro¥estefined as the sum @f and a centered dg

Y(X) = pu+&(x)
£(x) centered stationary GP with covariance functn) (35)
u ~ 7 (R) (prior), independent of

Note that conditioning with respect tg actually provides SK equations. Letting vary, we aim to find the law of
[Y(Xnew)[Y(X) = Y]. Starting with[Y (X) = Y |u] ~ A (uln,X), we getu’s posterior distribution:

sy 1
Tri s

MY (X) = Y]~ A (1,08) =N < ) (posterior) (36)

We can re-write the SK equatiof(Xnew)|Y (X) =Y, t] ~ A (Msk(Xnew), Zsk(Xnew)). Now it is very useful to notice that
the random vectofY (Xnew), 4) is Gaussian conditional on(X) = Y.[=. It follows that[Y (Xpew)|Y (X) = Y] is Gaussian, and

its mean and covariance matrix can finally be calculated wighhielp of classical conditional calculus results. Hence using
Mok (Xnew) = E[Y (Xnew)|Y(X) = Y] = Ey [E[Y (Xnew)|Y (X) =Y, 1], we find thatmok (Xnew) = [ + ZhossE MY — f1ly).
Similarly, Zok (Xnew) can be obtained using th@oVA, B] = CoyE[A|C], E[B|C]] 4 E[CoVA,B|C]] for all random variables
A,B, C such that all terms exist. We then get for all couples ofitsdix™', x" 1) (i, j € [1,q]):

CovY (x™),Y(x™ )Y (X) = Y]

B [CovY ("), Y (P I (X) = Y. ] + COVEI OV (X) = YV, BN GO0 = Vo). )

The left termCoMY (x™), Y (x™1)]Y (X) =Y, u] is the conditional covariance under the Simple Kriging Modéle right
term is the covariance betwegnt c(x™)TZ-1(Y — ulq) and p + c(x™HT>~1(Y — ul,) conditional on the observations
Y(X) =Y. Using eq[3b, we finally obtain:

CovY (x™),Y(x™ )Y (X) = Y]
Y]

=Covsk[Y (X)), Y (X" DY (X) =
HCOMe(X™ )T ZHY) + p(1+c(xM)T 2 ), c(x™ ) TE 1Y) + p(1+ c(x™ ) T2 Hg)] (38)
(14 c(x™N)TZ11) (L4 c(xMHT3-11,)

:C(Xn+i _ Xn+j) _ C(Xn+i)T Z—lc(xn+j) 4 121_2711(1

9 The resulting random proce¥sis not Gaussian.
10\which can be proved by considering its Fourier transform.
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