
Kriging is well-suited to parallelize optimization

David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro

1 Introduction

1.1 Motivations: efficient optimization algorithms for expensive computer experiments

Beyond both estalished frameworks of derivative-based descent and stochastic search algorithms, the rise
of expensive optimization problems creates the need for newspecific approaches and procedures. The word
”expensive” —which refers to price and/or time issues— implies severely restricted budgets in terms of
objective function evaluations. Such limitations contrast with the computational burden typically associated
with stochastic search techniques, like genetic algorithms. Furthermore, the latter evaluations provide no
differential information in a majority of expensive optimization problems, whether the objective function
originate from physical or from simulated experiments. Hence there exists a strong motivation for devel-
oping derivative-free algorithms, with a particular focuson their optimization performances in a drastically
limited number of evaluations. Investigating and implementing adequate strategies constitute a contemporary
challenge at the interface between Applied Mathematics andComputational Intelligence, especially when it
comes to reducing optimization durations by efficiently taking advantage of parallel computation facilities.

The primary aim of this chapter is to address parallelization issues for the optimization of expensive-to-
evaluate simulators, such as increasingly encountered in engineering applications like car crash tests, nu-
clear safety, or reservoir forecasting. More specifically,the work presented here takes place in the frame of
metamodel-based design of computer experiments, in the sense of [42]. Even though the results and discus-
sions might be extended to a more general scope, we restrict ourself here for clarity to single-objective opti-
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mization problems for deterministic codes. The simulator is seen as black-box functiony with d-dimensional
vector of inputs and scalar output, the latter being often obtained as combination of several responses.Meta-
models, also calledsurrogate models, are simplified representations ofy. They can be used for predicting
values ofy outside the initial design, or visualizing the influence of each variable ony [27, 43]. They may also
guide further sampling decisions for various purposes, such as refining the exploration of the input space in
preferential zones or optimizing the functiony [22]. Classical surrogates include radial basis functions[37],
interpolation splines [52], neural nets [8] (deterministicmetamodels), or linear and non-linear regression
[2], and Kriging [7] (probabilistic metamodels). We concentrate here on the advantages of probabilistic
metamodels for parallel exploration and optimization, with a particular focus on the virtues of Kriging.

1.2 Where Computational Intelligence and Kriging meet

Computational intelligence (CI) methods share, in variousproportions, four features:

An history going from experiments to theory: CI methods very often originate from empirical comput-
ing experiments, in particular from experiments that mimick natural processes (e.g., neural networks [4],
ant colony optimization [5], simulated annealing [25]). Later on, as researchers use and analyze them,
theory develops and their mathematical content grows. A good example is provided by the evolutionary
algorithms [9] which have progressively mixed the genetic metaphor and stochastic optimization theory.

An indirect problem representation: In standard evolutionary optimization methods, knowledgeabout
the cost function takes the indirect form of a set of well-performing points, known as “current population”.
Such set of points is an implicit, partial, representation of a function. In fuzzy methods, the probability
density functions of the uncertain variables are averaged out. Such indirect representations enable to work
with few mathematical assumptions and have broadened the range of applicability of CI methods.

Parallelized decision process: Most CI approaches are inherently parallel. For example, the evolution-
ary or particle swarm optimization [24] methods process sets of points in parallel. Neural networks have
a internal parallel structure. Today, parallelism is crucial for taking advantage of the increasingly dis-
tributed computing capacity. The parallel decision makingpossibilities are related to the indirect problem
representations (through set of points, distributions) and to the use of randomness in the decision process.

Heuristics: Implicit problem representations and the empirical genesis of the CI methods rarely allow
mathematical proofs of the methods properties. Most CI methods are thusheuristics.

Kriging has recently gained popularity among several research communities related to CI, ranging from
Data Mining[16] andBayesian Statistics[34, 48] toMachine Learning[39], where it is linked toGaussian
Process Regression[53] andKernel Method[12]. Recent works [17, 30, 31] illustrate the practical relevance
of Kriging to approximate computer codes in application areas such as aerospace engineering or materials
science. Indeed, probabilistic metamodels like Kriging seem to be particularly adapted for the optimization
of black-box functions, as analyzed and illustrated in the excellent article [20]. The current Chapter is de-
voted to the optimization of black-box functions using a kriging metamodel [14, 22, 49, 51]. Let us now
stress some essential relationships between Kriging and CIby revisiting the above list of features.

A history from field studies to mathematical statistics: Kriging comes from the earth sciences [29, 33],
and has been progressively developed since the 1950’s alongwith the discipline calledgeostatistics[23,
32]. Originally aimed at estimating natural ressources in mining applications, it has later been adapted
to address very general interpolation and approximation problems [42, 43]. The word “kriging” comes
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from the name of a mining engineer, Prof. Daniel G. Krige, whowas a pioneer in the application of
mathematical statistics to the study of new gold mines usinga limited number of boreholes [29].

An indirect representation of the problem: As will be detailed later in the text, the kriging metamodel
has a powerful interpretation in terms of stochastic process conditionned by observed data points. The
optimized functions are thus indirectly represented by stochastic processes.

Parallelized decision process: The central contribution of this chapter is to propose toolsenabling paral-
lelized versions of state-of-the art kriging-based optimization algorithms.

Heuristics: Although the methods discussed here are mathematically founded on the multipoints expected
improvement, the maximization of this criterion is not mathematically tractable beyond a few dimensions.
In the last part of the chapter, it is replaced by the “krigingbeliever” and the “constant liar” heuristics.

Through their indirect problem representation, their parallelism and their heuristical nature, the kriging-
based optimization methods presented hereafter are Computational Intelligence methods.

1.3 Towards Kriging-based parallel optimization: summary of obtained results and
outline of the chapter

This chapter is a follow-up to [14]. It proposes metamodel-based optimization criteria and related algorithms
that are well-suited to parallelization since they yield several points at each iteration. The simulations asso-
ciated with these points can be distributed on different processors, which helps performing the optimization
when the simulations are calculation intensive. The algorithms are derived from a multi-points optimization
criterion, themulti-pointsor q-points expected improvement(q-EI). In particular, an analytic expression is
derived for the 2-EI, and consistent statistical estimatesrelying on Monte-Carlo methods are provided for
the general case. All calculations are performed in the framework of Gaussian processes (GP). Two classes
of heuristic strategies, theKriging Believer(KB ) andConstant Liar(CL ), are subsequently introduced to
obtain approximatelyq-EI-optimal designs. The latter strategies are tested and compared on a classical test
case, where theConstant Liarappears to constitute a legitimate heuristic optimizer of the q-EI criterion.
Without too much loss of generality, the probabilistic metamodel considered is Ordinary Kriging (OK , see
eqs. 1,2,35), like in the founder work [22] introducing the now famousEGO algorithm. In order to make this
document self-contained, non-specialist readers may find an overview of existing criteria for kriging-based
sequential optimization in the next pages, as well as a shortbut dense introduction to GP and OK in the body
of the chapter, with complements in appendix. The outline ofthe chapter is as follows:

• Section 2 (Background in Kriging for Sequential Optimization) recalls the OK equations, with a focus
on the joint conditional distributions associated with this probabilistic metamodel. A progressive in-
troduction to kriging-based criteria for sequential optimization is then proposed, culminating with the
presentation of the EGO algorithm and its obvious limitations in a context of distributed computing.

• Section 3 (The Multi-points Expected Improvement) consists in the presentation of theq-EI criterion —
continuing the work initiated in [47]—, its explicit calculation whenq= 2, and the derivation of estimates
of the latter criterion in the general case, relying on Monte-Carlo simulations of gaussian vectors.

• Section 4 (Approximated q-EI maximization) introduces two heuristic strategies, KB and CL, to circum-
vent the computational complexity of a directq-EI maximization. These strategies are tested on a classical
test-case, and CL is found to be a very promizing competitor for approximatedq-EI maximization
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• Section 5 (Towards Kriging-based Parallel Optimization: Conclusionand Perspectives) gives a summary
of obtained results as well as some related practical recommendations, and finally suggests what the
authors think are perspectives of research to address the most urgently in order to extend this work.

• The appendix 6 is a short but dense introduction to GP for machine learning, with an emphasis on the
foundations of both Simple Kriging and Ordinary Kriging by GP conditionning.

Some notations: y : x∈D⊂Rd→ y(x)∈R refers to the objective function, whered∈N\{0} is the number
of input variables andD is the set in which the inputs vary, most of the time assumed tobe a compact and
connex1 subset ofRd. At first, y is known at aDesign of ExperimentsX = {x1, ...,xn} , wheren∈ N is the
number of initial runs or experiments, and eachxi (1≤ i ≤ n) is hence ad-dimensional vector(xi

1, . . . ,x
i
d).

We denote byY = {y(x1), ...,y(xn)} the set of observations made by evaluatingy at the points ofX. The
data(X,Y) provides information on which is initially based the metamodeling ofy, with an accuracy that
depends onn, the geometry ofX, and the regularity ofy. The OK mean predictor and prediction variance
are denoted by the functionsmOK(.) ands2

OK(.). The random process implicitely underlying OK is denoted
by Y(.), in accordance with the notations of eq. (35) presented in appendix. The symbol ”|” is used for
conditioning, together with the classical symbols for probability and expectation, respectivelyP andE.

2 Background in Kriging for Sequential Optimization

2.1 The Ordinary Kriging metamodel and its Gaussian Process interpretation

OK is the most popular Kriging metamodel, simultaneously due to its great versatility and applicability. It
provides a mean predictor of spatial phenomena, with a quantification of the expected prediction accuracy
at each site. A full derivation of the OK mean predictor and variance in a GP setting is proposed in the
appendix. The corresponding OK mean and variance functionsare given by the following formulae:

mOK(x) =

[

c(x)+

(

1−c(x)TΣ−11n

1T
n Σ−11n

)

1n

]T

Σ−1Y, (1)

s2
OK(x) = σ2−c(x)TΣ−1c(x)+

(1−1T
n Σ−1c(x))2

1T
n Σ−11n

, (2)

wherec(x) :=
(

c(Y(x),Y(x1)), ...,c(Y(x),Y(xn))
)T

, andΣ andσ2 are defined following the assumptions2

and notations given in appendix 6. Classical properties of OK include that∀i ∈ [1,n] mOK(xi) = y(xi) and
s2
OK(xi) = 0, therefore[Y(x)|Y(X) = Y] is interpolating. Note that[Y(xa)|Y(X) = Y] and[Y(xb)|Y(X) = Y]

are dependent random variables, wherexa andxb are arbitrary points of D, as we will develop later.

The OK metamodel of the Branin-Hoo function (Cf. eq. 25) is plotted on fig. 2.1. The OK interpolation
(upper middle) is based only on 9 observations. Even if the shape is reasonably respected (lower middle),

1 Connexity is sometimes untenable in practical applications, seee.g. [46] for a treatment of disconnected feasible regions.
2 An extension to covariance non-stationary processes [35] is straightforward but beyond the scope of the present work.
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Fig. 1 Ordinary Kriging of the Branin-Hoo function (function, Kriging mean value and variance, from left to right). The design
of experiments is a 3×3 factorial design. The covariance is an anisotropic squared exponential with parameters estimated by
gaussian likelihood maximization [7].

the contour of the mean shows an artificial optimal zone (upper middle, around the point(6,2)). In other
respects, the variance is not depending on the observations3 (eq. 2). Note its particular shape, due to the
anisotropy of the covariance kernel estimated by likelihood maximization. In modern interpretations [39],
deriving OK equations is often based on the assumption thaty is a realization of a random process Y with
unknown constant mean and known covariance (see [1] or [12] for a review of classical covariance kernels).
Here we follow the derivation of 6.4, which has the advantageof delivering a gaussian posterior distribution:

[Y(x)|Y(X) = Y]∼N (mOK(x),s2
OK(x)) (3)

Note that both a structure selection and a parametric estimation are made in practice: one often chooses a
generalized exponential kernel with plugged-in maximum likelihood covariance hyperparameters, i.e. with-
out taking the estimation variance into account [22]. This issue is sometimes addressed using a full bayesian
treatment, as can be found in [43], or more recently in [15, 34, 39]. Rephrasing 3, under the latter GP as-

3 phenomenon known as homoskedasticity of the Kriging variance with respect to the observations [7]
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sumptions, the random variableY(x) knowing the values of{y(x1), ...,y(xn)} follows a gaussian distribution
which mean and variance are respectivelyE[Y(x)|Y(X) = Y] = mOK(x) andVar[Y(x)|Y(X) = Y] = s2

OK(x).
In fact, as shown in appendix (Cf. eq. 38), one can even get much more than these marginal conditional
distributions;Y(.)|Y(X) = Y constitutes a random process which is itself gaussian, and as such completely
characterized by its conditional mean,mOK, and conditional covariance kernelcOK explicited herunder:

[Y(.)|Y(X) = Y]∼GP(mOK(.),cOK(., .)), (4)

wherecOK(x,x′) = c(x−x′)−c(x)TΣ−1c(x′)+σ2
[

(1−1T
n Σ−1c(x))(1−1T

n Σ−1c(x′))
1T

n Σ−11n

]

. (5)

This new kernelcOK is not stationary, even ifc is. In other respects, the knowledge ofmOK andcOK is the first
step to performing conditional simulations ofY knowing the observationsY(X) = Y, which is easily feasible
at any new finite design of experiments, whatever the dimension of inputs. This will enable the computation
of any multi-points sampling criterion, such as proposed inthe forthcoming section about parallelization.

2.2 Kriging-based optimization criteria

GP metamodels [39, 53] such as OK has been used for optimization (minimization, by default). There is a
detailed review of optimization methods relying on a metamodel in [44, 45] or [20]. The latter analyzes why
directly optimizing a deterministic metamodel (like a spline, a polynomial, or the kriging mean) is dangerous,
and does not even necessarily lead to a local optimum. Kriging-based sequential optimization strategies (as
developed in [22], and commented in [20]) address the issue of converging to non (locally) optimal points,
by taking the kriging variance term into account (hence encouraging the algorithms to explore outside the
already visited zones). Such algorithms produce one point at each iteration that maximizes a figure of merit
based upon[Y(x)|Y(X) = Y]. In essence, the criteria balance kriging mean prediction and uncertainty.

2.2.1 Visiting the point with most promizing mean: minizingmOK

When approximatingy by mOK, it might seem natural to hope that minimizingmOK instead ofy brings
satisfying results. However, a function and its approximation (mOK or other) can show substantial differences
in terms of optimal values and optimizers. More specifically, depending on the kind of covariance kernel used
in OK, the minimizer ofmOK is susceptible to lie at (or near to) the design point with minimal y value. Taking
the geometry of the design of experiments and space-filling considerations into account within exploration
criteria then makes sense. The Kriging variance can be of providential help for this purpose.

2.2.2 Visiting the point with highest uncertainty: maximizing sOK

A fundamental mistake of minimizingmOK is that no account is done of the uncertainty associated withit.
At the extreme inverse, it is possible to define the next optimization iterate as the least known point inD,
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x′ = argmaxx∈D sOK(x) (6)

This procedure defines a series ofx′s which will fill the spaceD and hence ultimately locate a global opti-
mum. Yet, since no use is made of previously obtainedY information —look at formula 2 fors2

OK—, there
is no bias in favor of high performance regions. Maximizing the uncertainty is inefficient in practice.

2.2.3 Compromizing betweenmOK and sOK

The most general formulation for compromizing between the exploitation of previous simulations brought
by mOK and the exploration based onsOK is the multicriteria problem

{

minx∈D mOK(x)
maxx∈D sOK(x)

(7)

Let P denote the Pareto set of solutions4. Finding one (or many) elements inP remains a difficult problem
sinceP typically contains an infinite number of points. A comparable approach calleddirect, although not
based on OK, is described in [21]: the metamodel is piecewiselinear and the uncertainty measure is a
distance to already known points. The spaceD is discretized and the Pareto optimal set defines areas where
discretization is refined. The method becomes computationally expensive as the number of iterations and
dimensions increase. Note that [3] proposes several parallelized versions ofdirect.

2.2.4 Maximizing the probability of improvement

Among the numerous criteria presented in [20], the probability of getting an improvement of the function
with respect to the past evaluations seems to be one of the most fundamental. This function is defined for
every x ∈ D as the probability for the random variableY(x) to be below the currently known minimum
min(Y) = min{y(x1), ...,y(xn)} conditional on the observations at the design of experiments:

PI(x) := P(Y(x)≤min(Y(X))|Y(X) = Y) (8)

= E
[

1Y(x)≤min(Y(X))|Y(X) = Y
]

= Φ
(

min(Y)−mOK(x)

sOK(x)

)

, (9)

whereΦ is the gaussian cumulative distribution function, and the last equality follows 3. The threshold
min(Y) is sometimes replaced by some arbitrary targetT ∈ R, as evokated in [38]. PI is known to provide
a very local search whenever the value of T is equal or close tomin(Y). Taking severalT ’s is a remedy
proposed by [20] to force global exploration. Of course, this new degree of freedom is also one more pa-
rameter to fit. In other respects, PI has also been succesfully used as pre-selection criterion in GP-assisted
evolution strategies [49], where it was pointed out that PI is performant but has a tendency to sample in un-
explored areas. We argue that the chosen covariance structure plays a capital role in such matters, depending
whether the kriging mean is overshooting the observations or not. The next presented criterion, theexpected
improvement, is less sensitive to such issues since it explicitly integrates both kriging mean and variance.

4 Definition of the Pareto front of (sOK,−mOK): ∀x ∈P,∄ z∈ D : (mOK(z) < mOK(x) andsOK(z) ≥ sOK(x)) or (mOK(z) ≤
mOK(x) andsOK(z) > sOK(x))
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Fig. 2 PI and EI surfaces of the Branin-Hoo function (same design of experiments, Kriging model, and covariance parameters
as in fig. (2.1)). Maximizing PI leads to sample near the good points (associated with low observations) whereas maximizing
EI leads here to sample between the good points. By construction,both criteria are null at the design of experiments, but the
probability of improvement is very close to12 in a neighborhood of the point(s) where the function takes itscurrent minimum.

2.2.5 Maximizing the expected improvement

An alternative solution is to maximize theexpected improvement(EI),

EI(x) := E[(min(Y(X)−Y(x))+|Y(X) = Y] = E[max{0,min(Y(X)−Y(x)}|Y(X) = Y], (10)

that additionally takes into account the magnitude of the improvements. EI measures how much improvement
is expected by sampling atx. In fine, the improvement will be 0 ify(x) is abovemin(Y) andmin(Y)−y(x)
else. Knowing the conditional distribution ofY(x), it is straightforward to calculate EI in closed form:

EI(x) = (min(Y)−mOK(x))Φ
(

min(Y)−mOK(x)

sOK(x)

)

+sOK(x)φ
(

min(Y)−mOK(x)

sOK(x)

)

, (11)
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whereφ stands for the probability density function of the standardnormal lawN (0,1).

Proof of 11:EI(x) = E[(min(Y)−Y(x)) Y(x)≤min(Y)|Y(X) = Y]

=
∫ min(Y)

−∞
(min(Y)− t) f

N (mKO(x),s2KO(x))
(t)dt =

∫

min(Y)−mKO(x)
sKO(x)

−∞
(min(Y)−mKO(x)−sKO(x)×u) fN (0,1)(u)du

= (min(Y)−mKO(x))
∫

min(Y)−mKO(x)
sKO(x)

−∞
fN (0,1)(u)du−sKO(x)

∫

min(Y)−mKO(x)
sKO(x)

−∞
u× fN (0,1)(u)du

= (min(Y)−mKO(x))Φ
(

min(Y)−mKO(x)

sKO(x)

)

+sKO(x)φ
(

min(Y)−mKO(x)

sKO(x)

)

EI represents a trade-off between promising and uncertain zones. This criterion has important properties for
sequential exploration: it is null at the already visited sites, and positive everywhere else with a magnitude
that is increasing with the Kriging variance and with the decreasing Kriging mean (EI maximizers are indeed
part of the Pareto front of (sOK,−mOK)). Such features are usually demanded from global optimization
procedures (see [21] for instance). EI and the probability of improvement are compared in fig. (2).

2.2.6 TheStepwise Uncertainty Reduction(SUR) strategy

SUR has been introduced in [11] and extended to global optimization in [50, 51]. By modelingy using the
processY’s conditional lawY(x)|Y, it is possible to definex∗|Y, the conditional law ofY’s global minimizer
x∗, and its densitypx∗|Y(x). The uncertainty about the location ofx∗ is measured as the entropy ofpx∗|Y(x),
H(x∗|Y). H(x∗|Y) diminishes as the distribution ofx∗|Y gets more peaked. Conceptually, the SUR strategy
for global optimization chooses as next iterate the point that specifies the most the location of the optimum,

x′ = argminx∈DH(x∗|Y,Y(x)) (12)

In practice,px∗|Y(x) is estimated by Monte-Carlo sampling ofY(x)|Y at a finite number of locations inD,
which may become a problem in high dimensionalD’s as the number of locations must geometrically in-
crease withd to properly fill the space. The SUR criterion is different in nature from the criteria presented
so far in that it does not maximize an immediate (i.e. at the next iteration) payoff but rather lays the founda-
tion of a delayed payoff by gaining a more global knowledge onY (reduce the entropy of its optima). The
multi-points EI criterion we are focusing on in the present chapter also uses a delayed payoff measure.

2.2.7 TheEfficient Global Optimization(EGO) algorithm

EGO [22] relies on the EI criterion. Starting with an initialDesignX (typically a Latin Hypercube), EGO
sequentially visits the current global maximizer of EI (saythe first visited one if there is more than one global
maximizer) and updates the OK metamodel at each iteration, including hyperparameters re-estimation:

1. Evaluate y at X, set Y = y(X) and estimate covariance parameters of Y by
MLE (Maximum Likelihood Estimation)

2. While stopping criterion not met

a. Compute x′ = argmaxx∈DEI(x), set X = X∪{x′} and Y = Y∪{y(x′)}
b. Re-estimate covariance parameters by MLE
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After having been developed in [22, 47], EGO has inspired contemporary works in optimization of
expensive-to-evaluate functions. For instance, [19] exposes some EGO-based methods for the optimiza-
tion of noisy black-box functions like stochastic simulators. [18] focuses on multiple numerical simulators
with different levels of fidelity, and introduces the so-calledaugmented EIcriterion, integrating possible het-
erogeneity in the simulation times. Moreover, [26] proposes an adaptation to multi-objective optimization,
[17] proposes an original multi-objective adaptation of EGO for physical experiments, and [28] focuses on
robust criteria for multiobjective constrained optimization with applications to laminating processes.

In all, one major drawback of the EGO-like algorithms discussed so far is that they do not allow parallel
evaluations ofy, which is desirable for costly simulators (e.g. a crash-test simulation run typically lasts 24
hours). This was already pointed out in [47], where the multi-points EI was defined but not further developed.
Here we continue this work by expliciting the latter multi-points EI (q-EI), and by proposing two classes
of heuristics strategies meant to approximatly optimize the q-EI, and hence (almost) simultaneously deliver
an arbitrary number of points without intermediate evaluations of y. In particular, we analytically derive
the 2-EI, and explain in detail how to take advantage of statistical interpretations of Kriging to consistently
computeq-EI by simulation whenq > 2, which happens to provide quite a general template for desiging
Kriging-based parallel evaluation strategies dedicated to optimization or other purposes.

3 The Multi-points Expected Improvement (q-EI) Criterion

The main objective of the present work is to analyze and then approximately optimize a global optimization
criterion, theq-EI, that yieldsq points. Sinceq-EI is an extension of EI, all derivations are performed within
the framework of OK. Such criterion is the first step towards aparallelized version of the EGO algorithm
[22]. It also departs, like the SUR criterion, from other criteria that look for an immediate payoff. We now
propose a progressive construction of theq-EI, by coming back to the random variableimprovement.

Both criteria of PI and EI that we have previously recalled share indeed the feature of being conditional
expectations of quantities involving theimprovement. Theimprovementbrought by sampling at somex ∈ D
is indeed defined byI(x) := (min(Y(X))−Y(x))+, and is positive whenever the value sampled atx, Y(x),
is below the current minimummin(Y(X)). Now, if we sampleY at q new locationsxn+1, . . . ,xn+q ∈ D
simultaneously, it seems quite natural to define the joint —ormultipoints— improvement as follows:

∀xn+1
, . . . ,xn+q ∈ D, I(xn+1

, . . . ,xn+q) : = max
(

I(xn+1), . . . , I(xn+q)
)

= max
(

(min(Y(X))−Y(xn+1))+, . . . ,(min(Y(X))−Y(xn+q))+
)

=
(

min(Y(X))−min(Y(xn+1), . . . ,Y(xn+q))
)+

,

(13)

where we used the fact that∀a,b,c∈R, max((a−b)+,(a−c)+) = (a−b)+ if b≤ c and(a−c)+ else. The
way of unifying theq criteria of (1-point) improvements used in eq. 13 deserves to be calledelitist: one juges
the quality of the set ofq-points as a function only of the one that performs the best. This is to be compared
for instance to the weighted sums of criteria encountered inmany political science applications.

The q-points EI criterion (as already defined but not developed in [47] under the name ”q-step EI”) is then
straightforwardly defined as conditional expectation of the improvement brought by the q considered points:
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EI(xn+1
, ...,xn+q) : = E[max{(min(Y(X))−Y(xn+1))+, ...,(min(Y)−Y(xn+q))+}|Y(X) = Y]

= E
[

(min(Y(X))−min
(

Y(xn+1), ...,Y(xn+q)
)

)+|Y(X) = Y
]

= E
[

(min(Y)−min
(

Y(xn+1), ...,Y(xn+q)
)

)+|Y(X) = Y
]

(14)

Hence, theq-EI may be seen as the regular EI applied to the random variable min(Y(xn+1), ...,Y(xn+q)). We
thus have to deal with a minimum of dependent random variables. Fortunately, eq. 4 provides us with the
exact joint distribution of the q unknown responses conditional on the observations:

[(Y(xn+1), ...,Y(xn+q))|Y(X) = Y]∼N ((mOK(xn+1), ...,mOK(xn+q)),Sq) (15)

where the elements of the conditional covariance matrixSq are(Sq)i, j = cOK(xn+i ,xn+ j) (See eq. 5). We now
propose two different ways to evaluate the criterion eq. 14,depending whetherq = 2 orq≥ 3.

3.1 Analytical calculation of 2-EI

Fig. 3 1-EI (lower left) and 2-EI (right) functions associated with amonodimensional quadratic function (y(x) = 4×(x−0.45)2

known atX = {−1,−0.5,0,0.5,1}. The OK metamodel has here a cubic covariance with parametersσ2 = 10, scale= 0.9).
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We first focus on the calculation of the 2-EI associated with two arbitrary pointsxn+1,xn+2 ∈ D, defined as

EI(xn+1
,xn+2) := E[(min(Y(X))−min(Y(xn+1),Y(xn+2)))+|Y(X) = Y],

Let us remark that in reformulating the positive part function, the expression above can also be written:

EI(xn+1
,xn+2) = E[(min(Y(X))−min(Y(xn+1),Y(xn+2)))1min(Y(xn+1),Y(xn+2))≤min(Y)|Y(X) = Y].

We will now show that the 2-EI can be developed as a sum of two 1-EI’s, plus a correction term involving
1- and 2-dimensional gaussian cumulative distributions.

Before all, some classical results of conditional calculusallow us to precise the dependence betweenY(xn+1)
andY(xn+2) conditional onY(X) = Y, and to fix some additional notations.∀i, j ∈ {1,2} (i 6= j), we note:







































mi := mKO(xi) = E[Y(xn+i)|Y(X) = Y],

σi := sKO(xn+i) =
√

Var[Y(xn+i)|Y(X) = Y],

c1,2 := ρ1,2σ1σ2 := cov[Y(xn+1),Y(xn+2)|Y(X) = Y],

mi| j = E[Y(xn+i)|Y(X) = Y,Y(xn+ j))] = mi +c1,2σ−2
i (Y(xn+ j)−mj),

σ2
i| j = σ2

i −c1,2σ−2
j = σ2

i (1−ρ2
12).

(16)

At this stage we are in position to computeEI(xn+1,xn+2) in four steps. From now on, we replace the com-
plete notationY(xn+i) by Yi and forget the conditioning onY(X) = Y for the sake of clarity.

Step 1.

EI(xn+1
,xn+2) = E[(min(Y)−min(Y1,Y2))1min(Y1,Y2)≤min(Y)]

= E[(min(Y)−min(Y1,Y2))1min(Y1,Y2)≤min(Y)(1Y1≤Y2 +1Y2≤Y1)]

= E[(min(Y)−Y1)1Y1≤min(Y)1Y1≤Y2 ]+E[(min(Y)−Y2)1Y2≤min(Y)1Y2≤Y1]

Since both terms of the last sum are similar (up to a permutation betweenxn+1 andxn+2), we will restrict
our attention to the first one. Using1Y1≤Y2 = 1−1Y2≤Y1

5 , we get:

E[(min(Y)−Y1)1Y1≤min(Y)1Y1≤Y2 ] = E[(min(Y)−Y1)1Y1≤min(Y)(1−1Y2≤Y1)]

= EI(xn+1)−E[(min(Y)−Y1)1Y1≤min(Y)1Y2≤Y1]

= EI(xn+1)+B(xn+1
,xn+2)

whereB(xn+1,xn+2) = E[(Y1−min(Y))1Y1≤min(Y)1Y2≤Y1]. Informally, B(xn+1,xn+2) is the opposite of the
improvement brought byY1 whenY2 ≤ Y1 and hence that doesn’t contribute to the 2-points improvement.
Our aim in the next steps will be to give an explicit expression for B(xn+1,xn+2).

Step 2.

5 This expression should be noted 1−1Y2<Y1, but since we work with continous random variables, it sufficiesthat their correla-
tion is 6= 1 for the expression to be exact ({Y1 = Y2}) is then neglectable). We implicitely do this assumption in the following.
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B(xn+1
,xn+2) = E[Y11Y1≤min(Y)1Y2≤Y1 ]−min(Y)E[1Y1≤min(Y)1Y2≤Y1]

At this point, it is worth noticing thatY1
L
= m1+σ1N1 (always conditional onY(X) = Y) with N1∼N (0,1).

Substituing this decomposition in the last expression ofB(xn+1,xn+2) delivers:

B(xn+1
,xn+2) = σ1E[N11Y1≤min(Y)1Y2≤Y1]+ (m1−min(Y))E[1Y1≤min(Y)1Y2≤Y1 ]

The two terms of this sum require some attention. We compute them in detail in the two next steps.

Step 3. Using a key property of conditional calculus6, we obtain

E[N11Y1≤min(Y)1Y2≤Y1 ] = E[N11Y1≤min(Y)E[1Y2≤Y1|Y1]],

and the fact thatY2|Y1∼N (m2|1(Y1),s2
2|1(Y1)) (all conditional on the observations) leads to the following:

E[1Y2≤Y1|Y1] = Φ
(

Y1−m2|1
s2|1

)

= Φ





Y1−m2− c1,2

σ2
1

(Y1−m1)

σ2

√

1−ρ2
12





Back to the main term and using again the normal decomposition of Y1, we get:

E
[

N11Y1≤min(Y)1Y2≤Y1

]

=



N11
N1≤

min(Y)−m1
σ1

Φ





m1−m2 +(σ1−ρ12σ2)N1

σ2

√

1−ρ2
12







= E
[

N11N1≤γ1Φ(α1N1 +β1)
]

whereγ1 =
min(Y)−m1

σ1
, β1 =

m1−m2

σ2

√

1−ρ2
12

andα1 =
σ1−ρ12σ2

σ2

√

1−ρ2
12

(17)

E[N11N1≤γ1Φ(α1N1 +β1)] can be computed applying an integration by parts:

∫ γ1

−∞
uφ(u)Φ(α1u+β1)du=−φ(γ1)Φ(α1γ1 +β1)+

α1

2π

∫ γ1

−∞
e
−u2−(α1u+β1)2

2 du

And sinceu2 +(α1u+β1)
2 =

(

√

(1+α2
1)u+ α1β1√

1+α2
1

)2

+
β 2

1
1+α2

1
, the last integral reduces to:

√
2πφ

(
√

β 2
1

1+α2
1

)

∫ γ1

−∞
e

−





√
(1+α2

1 )u+
α1β1√

1+α2
1





2

2 du=

2πφ
(√

β 2
1

1+α2
1

)

√

(1+α2
1)

∫

√
(1+α2

1)γ1+
α1β1√

1+α2
1

−∞

e
−v2

2
√

2π
dv

We conclude in using the definition of the cumulative distribution function:

6 For all functionφ in L 2(R,R), E[Xφ(Y)] = E[E[X|Y]φ(Y)]
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E[N11Y1≤min(Y)1Y2≤Y1] =−φ(γ1)Φ(α1γ1 +β1)+

α1φ
(√

β 2
1

1+α2
1

)

√

(1+α2
1)

Φ





√

(1+α2
1)γ1 +

α1β1
√

1+α2
1





Step 4. We then compute the termE[1Y1≤min(Y)1Y2≤Y1] = E[1X≤min(Y)1Z≤0], where(X,Z) := (Y1,Y2−Y1) fol-
lows a 2-dimensional gaussian distribution with expectationM = (m1,m2−m1), and covariance matrixΓ :=
(

σ2
1 c1,2−σ2

1
c1,2−σ2

1 σ2
2 +σ2

1 −2c1,2

)

. The final results rely on the fact that:E[1X≤min(Y)1Z≤0] =CDF(M,Γ )(min(Y),0),

where CDF stands for the bi-gaussian cumulative distribution function:

EI(x1
,x2) = EI(x1)+EI(x2)+B(x1

,x2)+B(x2
,x1) (18)

where























B(x1,x2) = (mOK(x1)−min(Y))δ (x1,x2)+σOK(x1)ε(x1,x2)

ε(x1,x2) = α1φ
(

|β1|√
(1+α2

1)

)

Φ
(

(1+α2
1)

1
2

(

γ + α1β1
1+α2

1

))

−φ(γ)Φ(α1γ +β1)

δ (x1,x2) = CDF(Γ )

(

min(Y)−m1

m1−m2

)

Figure 3.1 represents the 1-EI and the 2-EI contour plots associated with a deterministic polynomial function
known at 5 points. 1-EI advises here to sample between the ”good points” ofX. The 2-EI contour illustrates
some general properties: 2-EI is symmetric and its diagonalequals 1-EI, what can be easily seen by coming
back to the definitions. Roughly said, 2-EI is high whenever the 2 points have high 1-EI and are reasonably
distant from another (precisely, in the sense of the metric used in OK). Additionally, maximizing 2-EI selects
here the two best local optima of 1-EI (x1 = 0.3 andx2 = 0.7). This is not a general fact. The next example
illustrates for instance how 2-EI maximization can yield two points located around (but different from) 1-EI’s
global optimum whenever 1-EI has one single peak of great magnitude (see fig. 4).

3.2 q-EI computation by Monte Carlo Simulations

Extrapolating the calculation of 2-EI to the general case gives complex expressions depending on q-
dimensional gaussian cdf’s. Hence, it seems that the computation of q-EI when q is large would have to
rely on numerical multivariate integral approximation techniques anyway. Therefore, directly evaluating q-
EI by Monte-Carlo Simulation makes sense. Thanks to eq. 15, the random vector(Y(xn+1), ...,Y(xn+q)) can
be simulated conitional onY(X) = Y using a decomposition (e.g. Mahalanobis) of the covariancematrixSq:

∀k∈ [1,nsim], Mk = (mOK(xn+1), ...,mOK(xn+q))+ [S
1
2
q Nk]

T
,Nk ∼N (0q, Iq) i.i.d. (19)

Computing the conditional expectation of any function (notnecessarily linearly) of the conditioned random
vector(Y(xn+1), ...,Y(xn+q)) knowingY(X) = Y can then be done in averaging the images of the simulated
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Fig. 4 1-point EI (lower left) and 2-points EI (right) functions associated with a monodimensional linear function (y(x) = 3×x)
known atX = {−1,−0.5,0,0.5,1}. The OK metamodel has here a cubic covariance with parametersσ2 = 10, scale= 1.4).

vectors by the considered function:

1: function Q-EI(X, Y, Xnew)
2: L = chol(Var[Y(Xnew)|Y(X) = Y]) ⊲ Decomposition ofSq (Cholesky, Mahalanobis, etc.)
3: for i← 1,nsim do
4: N∼N (0, Iq) ⊲ Drawing a standard gaussian vectorN at random
5: Mi = mOK(Xnew)+LN ⊲ Simulating Y atXnew conditional onY(X) = Y
6: qIsim(i)=[min(Y)−min(Mi)]

+ ⊲ Simulating the improvement atXnew

7: end for
8: qEIsim = 1

nsim
∑nsim

i=1 qIsim(i) ⊲ Estimation of theq-points Expected Improvement
9: end function

A straightforward application of the Law of Large Numbers (LLN) yields indeed

qEIsim =
nsim

∑
i=1

[min(Y)−min(Mi)]
+

nsim
−−−−−→
nsim→+∞

EI(x1
, ...,xq) a.s., (20)

and the Central Limit Theorem (CLT) can finally be used to control the precision of the Monte Carlo ap-
proximation as a function ofnsim (see [40] for details concerning the variance estimation):
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√
nsim

(

qEIsim−EI(x1, ...,xq)
√

Var[I(x1, ...,xq)]

)

−−−−−→
nsim→+∞

N (0,1) in law. (21)

4 Approximated q-EI maximization

The multi-points criterion that we have presented in the last section can potentially be used to deliver an
additional design of experiments in one step through the resolution of the optimization problem

(x
′n+1

,x
′n+2

, ...,x
′n+q) = argmaxX′∈Dq[EI(X′)] (22)

However, the computation ofq-EI becomes intensive asq increases. Moreover, the optimization problem
(22) is of dimensiond× q, and with a noisy and derivative-free objective function inthe case where the
criterion is estimated by Monte-Carlo. Here we try to find pseudo-sequential greedy strategies that approach
the result of problem 22 while avoiding its numerical cost, hence circumventing the curse of dimensionality.

4.1 A first greedy strategy to build a q-points design with the 1-point EI

Instead of searching for the globally optimal vector(x
′n+1,x

′n+2, ...,x
′n+q), an intuitive way of replacing it

by a sequential approach is the following: first look for the next best single pointxn+1 = argmaxx∈DEI(x),
then feed the model and look forxn+2 = argmaxx∈DEI(x), and so on. Of course, the valuey(xn+1) is not
known at the second step (else we would be in a real sequentialalgorithm, like EGO). Nevertheless, we
dispose of two pieces of information: the sitexn+1 is assumed to have already been visited at the previous
iteration, and[Y(xn+1)|Y = Y(X)] has a known distribution. More precisely, the latter is[Y(xn+1)|Y(X) =
Y]∼N (mOK(xn+1),s2

OK(xn+1)). Hence, the second sitexn+2 can be computed as:

xn+2 = argmaxx∈DE
[

E
[

(Y(x)−min(Y(X)))+|Y(X) = Y,Y(xn+1)
]]

, (23)

and the same procedure can be applied iteratively to deliverq points, computing∀ j ∈ [1,q−1]:

xn+ j+1 = argmaxx∈D

∫

u∈R j

[

E
[

(Y(x)−min(Y(X)))+|Y(X) = Y,Y(xn+1), ...,Y(xn+ j−1)
]]

fY(X1: j )|Y(X)=Y(u)du, (24)

wherefY(X1: j )|Y(X)=Y is the multivariate gaussian density of the OK conditional distrubtion at(xn+1, ...,xn+ j).
Although eq. 24 is a sequentialized version of the q-points expected improvement maximization, it doesn’t
completely fulfill our objectives. There is still a multivariate gaussian density to integrate, which seems to
be a typical curse in such problems dealing with dependent random vectors. We now present two classes of
heuristic strategies meant to circumvent the computational complexity encountered in (24).
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4.2 The Kriging Believer (KB) and Constant Liar (CL) strategies

Lying to escape intractable calculations: starting from the principle of (24), we propose to weaken the
conditional knowledge taken into account at each iteration. This very elementary idea inspired two heuristic
strategies that we expose and test in the next two subsections: theKriging Believerand theConstant Liar.

4.2.1 Believing the OK predictor: the KB heuristic strategy

The Kriging Believerstrategy replaces the conditional knowledge about the responses at the sites chosen
within the last iterations by deterministic values equal tothe expectation of the kriging predictor. Keeping
the same notations as previously, the strategy can be summedup as follows:

Algorithm 1 The Kriging Believer algorithm: a first approximate solution of the multipoints problem
(x
′n+1,x

′n+2, ...,x
′n+q) = argmaxX′∈Dq[EI(X′)]

1: function KB(X, Y, q)
2: for i← 1,q do
3: xn+i = argmaxx∈DEI(x)
4: mOK(xn+i) = E[Y(xn+i)|Y(X) = Y]
5: X = X

⋃{xn+i}
6: Y = Y

⋃{mOK(xn+i)}
7: end for
8: end function

This sequential strategy delivers a q-points design and is computationally affordable since it relies on the
analytically known EI, optimized ind dimensions. However, there is a risk of failure, since believing an OK
predictor that overshoots the observed data may lead to a sequence that gets trapped in a non-optimal region
for many iterations (see 4.3). We now propose a second strategy that reduces this risk.

4.2.2 Updating the OK metamodel with fake observations: theCL heuristic strategy

Let us now consider a sequential strategy in which the metamodel is updated (still without hyperparameter
re-estimation) at each iteration with a valueL exogenously fixed by the user, here called a ”lie”. The strategy
referred to as theConstant Liarconsists in lying with the same valueL at every iteration: maximize EI (i.e.
find xn+1), actualize the model as ify(xn+1) = L, and so on always with the sameL ∈ R:
The effect ofL on the performance of the resulting optimizer is investigated in the next section.L should
logically be determined on the basis of the values taken byy at X. Three values,min{Y}, mean{Y}, and
max{Y} are considered here. The largerL is, the more explorative the algorithm will be, and vice versa.

4.3 Empirical comparisons with the Branin-Hoo function

The four optimization strategies presented in the last section are now compared on the the Branin-Hoo
function which is a classical test-case in global optimization [22, 38, 47]:
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Algorithm 2 The Constant Liar algorithm: another approximate solutionof the multipoints problem
(x
′n+1,x

′n+2, ...,x
′n+q) = argmaxX′∈Dq[EI(X′)]

1: function CL(X, Y, L, q)
2: for i← 1,q do
3: xn+i = argmaxx∈DEI(x)
4: X = X

⋃{xn+i}
5: Y = Y

⋃{L}
6: end for
7: end function

{

yBH(x1,x2) = (x2− 5.1
4π2 x2

1 + 5
π x1−6)2 +10(1− 1

8π )cos(x1)+10
x1 ∈ [−5,10], x2 ∈ [0,15]

(25)

yBH has three global minimizers(−3.14,12.27), (3.14,2.27), (9.42,2.47), and the global minimum is ap-
proximately equal to 0.4. The variables are normalized by the transformationx

′
1 = x1+5

15 andx
′
2 = x2

15. The
initial design of experiments is a 3×3 complete factorial designX9 (see 5 ), thusY = yBH(X9). Ordinary
Kriging is applied with a stationary, anisotropic, gaussian covariance function

∀h = (h1,h2) ∈ R2
, c(h1,h2) = σ2e−θ1h2

1−θ2h2
2 (26)

where the parameters (θ1,θ2) are fixed to their Maximum Likelihood Estimate (5.27,0.26), andσ2 is es-
timated within kriging, as an implicit function of (θ1,θ2) (like in [22]). We build a 10-points optimization
design with each strategy, and additionally estimated by Monte Carlo simulations (nsim = 104) the PI and EI
values brought by theq first points of each strategy (hereq∈ {2,6,10}). The results are gathered in Tab. 4.3.

Fig. 5 (Left) contour of the Branin-Hoo function with the designX9 (small black points) and the 6 first points given by the
heuristic strategy CL[min(yBH(X9))] (large bullets). (Right) Histogram of 104 Monte Carlo simulated values of the improve-
ment brought by the 6-points CL[min(yBH(X9))] strategy. The corresponding estimates of 6-points PI and EI aregiven above.
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The four strategies (KB and the three variants of CL) gave clearly different designs and optimization perfor-
mances. In the first case,Constant Liar(CL) sequences behaved as if the already visited points generated
a repulsion, with a magnitude increasing withL. The tested valuesL = max(Y) andL = mean(Y) forced
the exploration designs to fill the space by avoidingX9. Both strategies provided space-filling, exploratory
designs with high probabilities of improvement (10-PI near 100%) and promising q-EI values (see Table 1).
In fine, they brought respective actual improvements of 7.86 and 6.25.

Of all the tested strategies, CL[min(Y)] gave here the best results. In 6 iterations, it visited the three
locally optimal zones ofyBH. In 10 iterations, it gave the best actual improvement amongthe considered
strategies, which is furthermore in agreement with the 10-points EI values simulated by Monte-Carlo. It
seems in fact that the soft repulsion whenL = min(Y) is the right tuning for the optimization of the Branin-
Hoo function, with the initial designX9.

In the second case, the KB has yielded here disappointing results. All the points (except one) were clustered
around the first visited pointxn+1 (the same as inCL, by construction). This can be explained by the exag-
geratedly low prediction given by Kriging at this very point: the mean predictor overshoots the data (because
of the Gaussian covariance), and the expected improvement becomes abusively large in the neighborhood
of xn+1. Thenxn+2 is then chosen nearxn+1, and so on. The algorithm gets temporarily trapped at the first
visited point. KB behaves in the same way asCL would do with a constantL below min(Y). As can be
seen in Table 1 (last column), the phenomenon is visible on both the q-PI and q-EI criteria: they remain
almost constant when q increases. This illustrates in particular how q-points criteria can help in rejecting
unappropriate strategies.

CL[min(Y)] CL[mean(Y)] CL[max(Y)] KB
PI (first 2 points) 87.7% 87% 88.9% 65%
EI (first 2 points) 114.3 114 113.5 82.9
PI (first 6 points) 94.6% 95.5% 92.7% 65.5%
EI (first 6 points) 117.4 115.6 115.1 85.2
PI (first 10 points) 99.8% 99.9% 99.9% 66.5%
EI (first 10 points) 122.6 118.4 117 85.86

Improvement (first 6 points) 7.4 6.25 7.86 0
Improvement (first 10 points) 8.37 6.25 7.86 0

Table 1 Multipoints PI, EI, and actual improvements for the 2, 6, and 10first iterations of the heuristic strategies CL[min(Y)],
CL[mean(Y)], CL[max(Y)], and Kriging Believer (here min(Y) = min(yBH(X9))). q−PI andq−EI are evaluated by Monte-
Carlo simulations (Eq. (20),nsim = 104).

In other respects, the results shown in Tab. 4.3 highlight a major drawback of the q-PI criterion. Whenq
increases, thePI associated with all 3 CL strategies quickly converges to 100%, such that it is not possible
to discriminate between the good and the very good designs. Theq-EI is a more selective measure thanks to
taking the magnitude of possible improvements into account. Nevertheless, q-EI overevaluates the improve-
ment associated with all designs considered here. This effect (already pointed out in [47]) can be explained
by considering both the high value ofσ2 estimated fromY and the small difference between the minimal
value reached atX9 (9.5) and the actual minimum ofyBH (0.4).
We finally compared CL[min], CL[max], latin hypercubes (LHS) and uniform random designs (UNIF) in
terms ofq-EI values, withq ∈ [1,10]. For everyq ∈ [1,10], we sampled 2000q-elements designs of each
type (LHS and UNIF) and compared the obtained empirical distributions ofq-points Expected Improvement
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Fig. 6 Comparaison of theq-EI associated with theq first points (q ∈ [1,10]) given by the constant liar strategies (min and
max), 2000q-points designs uniformly drawn for everyq, and 2000q-points LHS designs taken at random for everyq.

to theq-points Expected Improvement estimates associated with theq first points of both CL strategies.

As can be seen on fig. 6, CL[max] (light bullets) and CL[min] (dark squares) offer very goodq-EI results
compared to random designs, especially for small values ofq. By definition, the two of them start with the
1-EI global maximizer, which ensures aq-EI at least equal to 83 for allq≥ 1. Both associatedq-EI series
then seem to converge to threshold values, almost reached for q≥ 2 by CL[max] (which dominates CL[min]
whenq= 2 andq= 3) and forq≥ 4 by CL[min] (which dominates CL[max] for all 4≤ q≤ 10). The random
designs have less promizingq-EI expected values. Theirq-EI distributions are quite dispersed, which can
be seen for instance by looking at the 10%− 90% interpercentiles represented on fig. 6 by thin full lines
(respectively dark and light for UNIF and LHS designs). Notein particular that theq-EI distribution of the
LHS designs seem globally better than the one of the uniform designs. Interestingly, the best designs ever
found among the UNIF designs (dark dotted lines) and among the LHS designs (light dotted lines) almost
match with CL[max] whenq ∈ {2,3} and CL[min] when 4≤ q≤ 10. We haven’t yet observed a design
sampled at random that clearly provides betterq-EI values than the proposed heuristic strategies.
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5 Towards Kriging-based Parallel Optimization: Conclusion and Perspectives

Optimization problems with objective functions steming from expensive computer simulations strongly
motivates the use of data-driven simplified mathematical representations of the simulator, ormetamod-
els. An increasing number of optimization algorithms developed for such problems rely on metamodels,
competing with and/or complementing population-based Computational Intelligence methods. A repre-
sentative example is given by the EGO algorithm [22], a sequential black-box optimization procedure,
which has gained popularity during the last decade and inspired numerous recent works in the field
[10, 17, 18, 19, 20, 26, 28, 36, 44, 50]. EGO relies on a Kriging-based criterion, the expected improvement
(EI), accounting for the exploration-exploitation trade-off7. The latter algorithm unfortunately produces only
one point at each iteration, which prevents to take advantage of parallel computation facilities. In the present
work, we came back to the interpretation of Kriging in terms of Gaussian Process[39] in order to propose a
framework for Kriging-based parallel optimization, and toprepare the work for parallel variants of EGO.

The probabilistic nature of the Kriging metamodel allowed us to calculate the joint probability distribution
associated with the predictions at any set of points, upon which we could rediscover (see [47]) and char-
acterize a criterion named heremulti-points expected improvement, or q-EI. The q-EI criterion makes it
possible to get an evaluation of the ”optimization potential” given by any set of q new experiments. An
analytical derivation of 2-EI was performed, providing a good example of how to manipulatejoint Krig-
ing distributions for choosing additional designs of experiments, and enabling us to shed more light on the
nature of the q-EI thanks to selected figures. For the computation of q-EI in the general case, an alterna-
tive computation method relying on Monte-Carlo simulations was proposed. As pointed out in illustrated in
the chapter, Monte-Carlo simulations offer indeed the opportunity to evaluate the q-EI associated with any
given design of experiment, whatever its sizen, and whatever the dimension of inputsd. However, deriving
q-EI-optimal designs on the basis of such estimates is not straightforward, and crucially depending on both
n andd. Hence some greedy alternative problems were considered: four heuristic strategies, the ”Kriging
Believer” and three ”Constant Liars” have been proposed andcompared that aim at maximizing q-EI while
being numerically tractable. It has been verified in the frame of a classical test case that theCL strategies
provide q-EI vales comparable with the best Latin Hypercubes and uniformdesigns of experiments found
by simulation. This simple application illustrated a central practical conclusion of this work: considering
a set of candidate designs of experiments, provided for instance by heuristic strategies, it is always possi-
ble —whatevern andd— to evaluate and rank them using estimates of q-EI or related criteria, thanks to
conditional Monte-Carlo simulation.

Perspectives include of course the development of synchronous parallel EGO variants delivering a set ofq
points at each iteration. The tools presented in the chaptermay constitute bricks of these algorithms, as it
has very recently been illustrated on a succesful 6-dimensional test-case in the thesis [13]. An R package
covering that subject is in an advanced stage of preparationand should be released soon [41]. On a longer
term, the scope of the work presented in this chapter, and notonly its modest original contributions, could
be broaden. If the considered methods could seem essentially restricted to the Ordinary Kriging metamodel
and concern the use of an optimization criterion meant to obtain q points in parallel, several degrees of
freedom can be played on in order to address more general problems. First, any probabilistic metamodel
potentially providing joint distributions could do well (regression models, smoothing splines, etc.). Second,
the final goal of the new generated design might be to improve the global accuracy of the metamodel,

7 Other computational intelligence optimizers, e.g. evolutionary algorithms [9], address the exploration/exploitation trade-off
implicitely through the choice of parameters such as the population size and the mutation probability.
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to learn a quantile, to fill the space, etc : the work done here with the q-EI and associate strategies is
just a particular case of what one can do with the flexibility offered by probabilistic metamodels and all
possible decision-theoretic criteria. To finish with two challenging issues of Computationnal Intelligence,
the following perspectives seem particularly relevant at both sides of the interface with this work:

• CI methods are needed to maximize theq-EI criterion, which inputs live in a(n×d)-dimensional space,
and which evaluation is noisy, with tunable fidelity depending on the chosennsim values,

• q-EI and related criteria are now at disposal to help pre-selecting good points in metamodel-assisted
evolution strategies, in the flavour of [10].
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6 Appendix

6.1 Gaussian Processes for Machine Learning

A real random process(Y(x))x∈D is defined as aGaussian Process(GP) whenever all its finite-dimensional distributions
are gaussian. Consequently, for alln∈ N and for all setX = {x1, ...,xn} of n points ofD, there exists a vectorm ∈ Rn and a
symmetric positive semi-definite matrixΣ ∈Mn(R) such that(Y(x1), ...,Y(xn)) is a gaussian Vector, following a multigaussian
probability distributionN (m,Σ). More specifically, for alli ∈ [1,n], Y(xi) ∼N (E[Y(xi)],Var[Y(xi)]) whereE[Y(xi)] is the
ith coordinate ofm andVar[Y(xi)] is theith diagonal term ofΣ . Furthermore, all couples(Y(xi),Y(x j )) i, j ∈ [1,n], i 6= j are
multigaussian with a covarianceCov[Y(xi),Y(x j )] equal to the non-diagonal term ofΣ indexed byi and j.
A Random ProcessY is said to befirst order stationaryif its mean is a constant, i.e. if∃µ ∈ R| ∀x ∈ D, E[Y(x)] = µ. Y
is said to besecond order stationaryif it is first order stationary and if there exists furthermore a function of positive type,
c : D−D−→R, such that for all pairs(x,x′) ∈D2, Cov[Y(x),Y(x′)] = c(x−x′). We then have the following expression for the
covariance matrix of the observations atX:

Σ := (Cov[Y(xi),Y(x j )])i, j∈[1,n] = (c(xi −x j ))i, j∈[1,n] =









σ2 c(x1−x2) ... c(x1−xn)
c(x2−x1) σ2 ... c(x2−xn)

... ... ... ...

c(xn−x1) c(xn−x2) ... σ2









(27)

whereσ2 := c(0). Second order stationary processes are sometimes calledweakly stationary. A major feature of GPs is that
their weak stationarityis equivalent tostrong stationarity: if Y is a weakly stationary GP, the law of probability of the random
variableY(x) doesn’t depend onx, and the joint distribution of(Y(x1), ...,Y(xn)) is the same as the distribution of(Y(x1 +
h), ...,Y(xn +h)) whatever the set of points{x1, ...,xn} ∈Dn and the vectorh ∈Rn such that{x1 +h, ...,xn +h} ∈Dn. To sum
up, a stationary GP is entirely defined by its meanµ and its covariance functionc(.). The classical framework of Kriging for
Computer Experiments is to make predictions of a costly simulatory at a new set of sitesXnew= {xn+1, ...,xn+q} (most of the
time, q = 1), on the basis of the collected observations at the initial designX = {x1, ...,xn}, and under the assumption thaty
is one realization of a stationary GPY with known covariance functionc (in theory). Simple Kriging (SK) assumes a known
mean,µ ∈ R. In Ordinary Kriging (OK),µ is estimated.



Kriging is well-suited to parallelize optimization 23

6.2 Conditioning Gaussian Vectors

Let us consider a centered Gaussian vectorV = (V1,V2) with covariance matrix

ΣV = E[VVT ] =

(

ΣV1 ΣT
cross

Σcross ΣV2

)

(28)

Key properties of Gaussian vectors include that the orthogonal projection of a Gaussian vector onto a linear subspace is still
a Gaussian vector, and that the orthogonality of two subvectorsV1,V2 of a Gaussian vectorV (i.e. Σcross= E[V2VT

1 ] = 0) is
equivalent to their independence. We now express the conditional expectationE[V1|V2]. E[V1|V2] is by definition such that
V1−E[V1|V2] is independent ofV2. E[V1|V2] is thus fully characterized as orthogonal projection on thevector space spanned by
the components ofV2, solving the so callednormal equations:

E[(V1−E[V1|V2])V
T
2 ] = 0 (29)

Assuming linearity ofE[V1|V2] in V2, i.e. E[V1|V2] = AV2 (A ∈Mn(R)), a straightforward development of (eq.29) gives the
matrix equationΣT

cross= AΣV2 , and henceΣT
crossΣ−1

V2
V2 is a suitable solution providedΣV2 is full ranked8. We conclude that

E[V1|V2] = ΣT
crossΣ−1

V2
V2 (30)

by uniqueness of the orthogonal projection onto a closed linear subspace in a Hilbert space. Using the independence between
(V1−E[V1|V2]) andV2, one can calculate the conditional covariance matrixΣV1|V2

:

ΣV1|V2
= E[(V1−E[V1|V2])(V1−E[V1|V2])

T |V2] = E[(V1−AV2)(V1−AV2)
T ]

= ΣV1−AΣcross−ΣT
crossA

T +AΣV2AT = ΣV1−ΣT
crossΣ−1

V2
Σcross

(31)

Now consider the case of a non-centered random vectorV = (V1,V2) with meanm= (m1,m2). The conditional distributionV1|V2
can be obtained by coming back to the centered random vectorV−m. We then find thatE[V1−m1|V2−m2] = ΣT

crossΣ−1
V2

(V2−
m2) and henceE[V1|V2] = m1 +ΣT

crossΣ−1
V2

(V2−m2).

6.3 Simple Kriging Equations

Let us come back to our metamodeling problem and assume thaty is one realization of a Gaussian ProcessY, defined as follows:
{

Y(x) = µ + ε(x)
ε(x) centered stationary GP with covariance functionc(.)

(32)

whereµ ∈ R is known. Now say thatY has already been observed atn locationsX = {x1, ...,xn} (Y(X) = Y) and that we wish
to predictY aq new locationsXnew= {xn+1, ...,xn+q}. Since(Y(x1), ...,Y(xn),Y(xn+1), ...,Y(xn+q)) is a Gaussian Vector with
meanµ1n+q and covariance matrix

Σtot =

(

Σ ΣT
cross

Σcross Σnew

)

=









σ2 c(x1−x2) ... c(x1−xn+q)
c(x2−x1) σ2 ... c(x2−xn+q)

... ... ... ...

c(xn+q−x1) c(xn+q−x2) ... σ2









(33)

We can directly apply eq. (30) and eq. (31) to derive the SimpleKriging Equations:

[Y(Xnew)|Y(X) = Y]∼N (mSK(Xnew),ΣSK(Xnew)) (34)

8 If ΣV2 is not invertible, the equation holds in replacingΣ−1
V2

by the pseudo-inverseΣ†
V2

.
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with mSK(Xnew) = E[Y(Xnew)|Y(X) = Y] = µ1q +ΣT
crossΣ−1(Y−µ1q) andΣSK(Xnew) = Σnew−ΣT

crossΣ−1Σcross. Whenq = 1,
Σcross= c(xn+1) = Cov[Y(xn+1),Y(X)] and the covariance matrix reduces tos2

SK(x) = σ2− c(xn+1)TΣ−1c(xn+1), which is
called theKriging Variance. Whenµ is constant but not known in advance, it is not mathematically correct to sequentially
estimateµ and plug in the estimate in the Simple Kriging equations. Ordinary Kriging addresses this issue.

6.4 Ordinary Kriging Equations

Compared to Simple Kriging, Ordinary Kriging (OK) is used when the mean of the underlying random process is constant
and unknown. We give here a derivation of OK in a Bayesian framework, assuming thatµ has an improper uniform prior
distributionµ ∼U (R). y is thus seen as a realization of a random processY, defined as the sum ofµ and a centered GP9:







Y(x) = µ + ε(x)
ε(x) centered stationary GP with covariance functionc(.)

µ ∼U (R) (prior), independent ofε
(35)

Note that conditioning with respect toµ actually provides SK equations. Lettingµ vary, we aim to find the law of
[Y(Xnew)|Y(X) = Y]. Starting with[Y(X) = Y|µ]∼N (µ1n,Σ), we getµ ’s posterior distribution:

[µ|Y(X) = Y]∼N
(

µ̂,σ2
µ
)

= N

(

1TΣ−1Y
1TΣ−11

,
1

1T
q Σ−11q

)

(posterior) (36)

We can re-write the SK equations[Y(Xnew)|Y(X) = Y,µ] ∼N (mSK(Xnew),ΣSK(Xnew)). Now it is very useful to notice that
the random vector(Y(Xnew),µ) is Gaussian conditional onY(X) = Y. 10. It follows that[Y(Xnew)|Y(X) = Y] is Gaussian, and
its mean and covariance matrix can finally be calculated with the help of classical conditional calculus results. Hence using
mOK(Xnew) = E[Y(Xnew)|Y(X) = Y] = Eµ [E[Y(Xnew)|Y(X) = Y,µ]], we find thatmOK(Xnew) = µ̂ + ΣT

crossΣ−1(Y − µ̂1n).
Similarly, ΣOK(Xnew) can be obtained using thatCov[A,B] = Cov[E[A|C],E[B|C]] + E[Cov[A,B|C]] for all random variables
A,B, C such that all terms exist. We then get for all couples of points(xn+i ,xn+ j ) (i, j ∈ [1,q]):

Cov[Y(xn+i),Y(xn+ j )|Y(X) = Y]

=E
[

Cov[Y(xn+i),Y(xn+ j )|Y(X) = Y,µ]
]

+Cov
[

E[Y(xn+i)|Y(X) = Y,µ],E[Y(xn+ j )|Y(X) = Y,µ]
]

.
(37)

The left termCov[Y(xn+i),Y(xn+ j )|Y(X) = Y,µ] is the conditional covariance under the Simple Kriging Model. The right
term is the covariance betweenµ + c(xn+i)TΣ−1(Y− µ1q) andµ + c(xn+ j)TΣ−1(Y− µ1q) conditional on the observations
Y(X) = Y. Using eq. 36, we finally obtain:

Cov[Y(xn+i),Y(xn+ j )|Y(X) = Y]

=CovSK[Y(xn+i),Y(xn+ j )|Y(X) = Y]

+Cov[c(xn+i)TΣ−1(Y)+ µ(1+c(xn+i)TΣ−11q),c(xn+ j)TΣ−1(Y)+ µ(1+c(xn+ j)TΣ−11q)]

=c(xn+i −xn+ j )−c(xn+i)TΣ−1c(xn+ j )+
(1+c(xn+i)TΣ−11q)(1+c(xn+ j)TΣ−11q)

1T
q Σ−11q

.

(38)

9 The resulting random processY is not Gaussian.
10 which can be proved by considering its Fourier transform.
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