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ABSTRACT
The standard language for describing the asymptotic behavior of
algorithms is theoretical computational complexity. We propose
a method for describing the asymptotic behavior of programs in
practice by measuring theirempirical computational complexity.
Our method involves running a program on workloads spanning
several orders of magnitude in size, measuring their performance,
and fitting these observations to a model that predicts performance
as a function of workload size. Comparing these models to the
programmer’s expectations or to theoretical asymptotic bounds can
reveal performance bugs or confirm that a program’s performance
scales as expected. Grouping and ranking program locations based
on these models focuses attention on scalability-critical code. We
describe our tool, theTrend Profiler (trend-prof), for con-
structing models of empirical computational complexity that pre-
dict how many times each basic block in a program runs as a linear
(y = a + bx) or a powerlaw (y = axb) function of user-specified
features of the program’s workloads. We rantrend-prof on
several large programs and report cases where a program scaledas
expected, beat its worst-case theoretical complexity bound, or had
a performance bug.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing Tools, Debugging Aids;
D.2.8 [Metrics]: Performance Measures

General Terms
Performance, Measurement
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1. INTRODUCTION
Computer scientists talk about the scalability of algorithms in

terms of computational complexity: Quicksort isO(n log n) in the
size of the array; depth-first search isO(e) in the number of edges
in the graph. Big-O bounds describe the worst case performance of
an algorithm as its inputs become large, but large programs contain
many interconnected data structures and algorithms whose empiri-
cal performance depends on the particulars of the program’s work-
loads. In contrast, by measuring a run of a program, profilers like
gprof [8] estimate the fraction of the program’s run time for which
eachlocation(e.g., each basic block) in the program is responsible.
Profilers give a detailed picture of a program’s performance on a
single workload, but say nothing about its performance on work-
loads on which the program was not run. In this work, we seek to
combine the empiricism ofgprof with the generality of a big-O
bound by measuring and statistically modelling the performance of
each location across many workloads. The following code illus-
trates the need for our technique.

node * last_node(node *n) {
if (!n) return NULL;
while (n->next) n = n->next;
return n;

}

From a performance perspective, this programming idiom looks
suspicious: it is finding the last element in a list in time linear in the
list’s length. Adding a pointer directly to the last element in the list
would admit an obvious constant time implementation. If the list’s
size is a small constant, the performance impact of the linear search
is likely negligible, and adding the pointer might not be worth the
cost in space or code complexity. On the other hand, if the lists tend
to be long, and especially if the list length increases with the size of
the program input, then use of this idiom constitutes a performance
bug.

The crucial piece of information is how this list is used in the
context of the rest of the program. The code above is from a C
parser used in a program analysis system [10] and is called from
a list append function. In practice the sizes of the lists increase as
inputs grow larger. On small- to medium-size inputs,last_node
is not particularly high on the list of what a typical,gprof-style
profiler reports, but on large inputs the problem suddenly becomes
apparent. We call this phenomenon aperformance surprise. In
contrast, we found a similar linear-time list append in a C and C++
front-end [11] that turned out to be benign: the lists are so small in
practice that use of this idiom does not substantially contribute to
the overall performance of the system. Our technique automatically
distinguishes these two different situations.



Our technique for measuring empirical computational complex-
ity is as follows:

• Choose a programto profile.

• Choose workloads{w1, . . . , wk} for the program.

• Describe the workloads with numerical features
(f1, . . . , fk) , (g1, . . . , gk), for example the number of
bytes in an input file or the number of nodes in a graph.

• Measure program performance; run the program on each
workload and record the cost of each each basic block,ℓ,
as ak-vector:(yℓ,1, . . . , yℓ,k).

• Trend-prof predicts performance in terms of features, fit-
ting the performance measurements,y, to features of the pro-
gram’s input,f . We use linear models,y = a + bf , and
powerlaw models,y = afb.

Thesemodels of empirical computational complexitydescribe
the scalability of a piece of code in practice. By comparing the
empirically-determined model to our expectations, we can deter-
mine whether code performs as expected or if it has a performance
bug. Our contributions are as follows:

• We describe our models of empirical computational com-
plexity and explore some implementation design choices
(Section 2).

• We presenttrend-prof, a tool that describes program
performance using linear and powerlaw models: predicting
basic block executions in terms of user-specified features of
program workloads (Section 4).

• We show thattrend-prof reports simple results for pro-
grams with simple performance behavior (Section 5.2), con-
firm that desired performance behavior is realized in prac-
tice (Section 5.3), measure the empirical performance of a
complex algorithm (Section 5.4), and find a scalability bug
(Section 5.5).

• We argue thattrend-prof reports the empirical computa-
tional complexity of a program succinctly (Section 5.1) and
that it helps focus attention on performance and scalability
critical code (Section 5.6).

• We consider threats to the validity oftrend-prof’s results
and discuss features oftrend-prof that mitigate these
threats (Section 6).

2. MEASURING EMPIRICAL
COMPUTATIONAL COMPLEXITY

In describing models of empirical computational complexity in
general, we use the termlocationto refer to the parts of the program
(e.g., basic blocks) andcostto refer to a location’s performance (for
instance, its execution count). We discuss our choice of counting
the number of times each basic block executes as a measure of per-
formance in Section 2.1.

After running and measuringk workloads, we have ak-vector
of costs for each location (one measurement per workload) andk-
vector for each feature (one value of the feature per workload);
thesek-vectors are rows in the matrix below. Profilers such as
gprof [8] report results for one column of this matrix. In con-
trast, we predict the costs of locations in terms of features; i.e., we

construct models to predict one row in terms of another. For exam-
ple, we might predict the number of compares a bubble sort does in
terms of a feature like the number of elements to be sorted.
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In general, this matrix contains a great deal of data.
Trend-prof summarizes it with succinct, interpretable models
as follows.

Clusters.The costs of many locations vary together. If a matrix
row x is sufficiently linearly-correlated with the matrix rowy, that
is, if there area, b such thata+bx is a good prediction ofy, then we
placex andy into the samecluster(Section 4.1). We do not nec-
essarily know what determines the performance of the locations in
a cluster or what asymptotic complexity they have, but whatever
it is, it is the same for all the locations in the cluster — if one is
Θ(n2 log n), the others are too. Section 4.1 describes our cluster-
ing algorithm in detail. We show in Section 5.1 that empirically
programs have many fewer clusters than locations.

Performance Models.The ultimate goal oftrend-prof is
to explain the performance of the program as a function of fea-
tures of the input. In order to keep output succinct,trend-prof
models performance one cluster at a time. For each cluster,
trend-prof powerlaw-fits the cost of the clustery with each fea-
turex. If the model fits well, that is if we finda, b such thataxb is
a good predictor ofy, then we have succeeded: we have a model of
the cluster’s cost as the input exhibits more of this feature (e.g., cost
increases quadratically in the number of nodes in the input). Even
if the model is not a perfect fit, it is often a good low-dimensional
approximation of a more complex relationship (Section 6.2). We
may further use these models to predict the cluster’s cost — even
for inputs larger than any we measured (Section 4.2).

2.1 Execution Counts
Our focus on modeling scalability rather than exact running time

led to our choice of execution counts as a measure of performance.
The amount of time (or number of clock cycles) each basic block
takes is another measure, but we chose basic block counts because
of the following advantages:

• ACCURACY: Block counts are exact: issues of insufficient
timer resolution do not apply.

• REPEATABILITY : If a program is deterministic, so is its mea-
sure. Our measurements do not depend on the operating sys-
tem or architecture if the program’s control flow does not.

• LACK OF BIAS: The mechanism of measurement does not
affect its result. In contrast, the mechanism of measuring
time distorts its own result. We do not sample, so there is no
sampling bias.

• LOW OVERHEAD: Counting basic block executions by com-
puting control-flow edge coverage [4] is cheap (Section 5).

• PORTABILITY : We rely only ongcc’s coverage mecha-
nism [7] and not on platform-specific performance registers.



2.2 Other notions of location
Our notion of basic blocks as locations is useful, but is not the

only sort of location we might measure. We could extend the notion
of location by aggregating existing location counts into larger loca-
tions. For instance,gprof estimates the amount of work of a func-
tion in its own code and the transitive work that it and its callees
do. Also, the work of Ammons et al. [2] (see discussion in Sec-
tion 7.1) measures the work of a sequence of nested function calls.
With some information about the control flow and a call graph,
trend-prof could compute and operate on counts for these “lo-
cations”. Alternately, one might regard each memory reference as a
location and measure cost in terms of real time; this approach more
closely models bottom line performance, but requires more effort
to obtain useful measurements.

While the program runs,trend-prof keeps a histogram
where each bin records the execution count of a single basic block.
Other dimensions of bins are possible as follows. Bins could count
each (call stack, basic block)combination; in this scenario we
might limit the significant depth of the call stack to keep the number
of bins small (e.g.,gprof counts caller-callee pairs, a significant
depth of two). Also, bins could count each(object, basic block)
combination; for example, we could separate the counts for a hash
table class by instance of the hash table.

We have not tried these approaches. They are sensible extensions
to this work, but they involve even larger amounts of data.

2.3 Model Construction
In constructing models to predict performance and put locations

into clusters,trend-prof makes use of least-squares linear re-
gression and powerlaw regression. Regression selects model pa-
rameters (a and b below) that minimize some measure of error.
Regression does not evaluate the suitability of these models, but
trend-prof provides diagnostics that allow the user to asses
their plausibility (Section 2.3.1).

Linear Models.Given a set of points(xi, yi), least-squares lin-

ear regression constructs a model that predictsy asŷ(x)
def
= a+bx,

an affine function ofx. Given a data point,(xi, yi), defineŷi
def
=

ŷ(xi) = a + bxi. The quantityri
def
= yi − ŷi is called theresidual

of the fit at(xi, yi). Linear regression choosesa andb to minimize
the sum of the squared residuals:
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Powerlaw Models.Our interest in measuring the scalability of
a program led us toward powerlaw models. A powerlaw predictsy

asŷ(x) = axb. On log-log axes, the plot of a powerlaw is a straight
line. Thus to fit observations to a powerlaw,trend-prof uses
linear regression on(log xi, log yi) to find a andb that minimize
the following quantity:
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2.3.1 How good is a model?
There are a number of ways for the user oftrend-prof to

evaluate the usefulness of a particular model. The primary output
of trend-prof is a web page showing a list of clusters with their
models. Following a link for a model leads to two scatter plots:
one with the data points(xi, yi) and the line of best fit(x, ŷ(x))

and another with the residuals(xi, ri). Inspecting these plots is
a good way to decide iftrend-prof’s model is plausible. To
the extent that a model captures the variation in a data set, the data
points in the best-fit scatter plot closely track the line of best fit and
the residuals scatter plot looks like random noise. Therefore, any
pattern in the residuals plot or systematic deviation from the line of
best fit is an indication that there is more going on than the model
describes (Section 6.2).

Plots are not very compact, however, so for each of its fits
trend-prof reports theR2 statistic, a measure of the model’s
goodness-of-fit that quantifies the fraction of the variance iny ac-
counted for by a least-squares linear regression onx:

R
2 def

=

Pk

i=1
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The formula forR2 applies to powerlaw fits, but withx replaced
by log x andy replaced bylog y. Values forR2 range from 0 (bad)
to 1 (excellent). Note thaty denotes the sample mean of ak-vector
y andσ2

y denotes its bias-corrected sample variance:

y
def
=

1
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k
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(yi − y)2 .

3. AN EXAMPLE
Before exploring our methodology in detail, we illustrate the

use oftrend-prof with the following implementation of bub-
ble sort. This example is purely for pedagogical purposes;
trend-prof gives useful results in significantly more complex
situations (see Section 5).

// pre: The memory at arr[0..n-1] is
// an array of ints.
// post: The ints in arr[0..n-1] are
// sorted in place from least to greatest.
void bubble_sort(int n, int *arr) {

1: int i=0;
2: while (i<n) {
3: int j=i+1;
4: while (j<n) {
5: if (arr[j] < arr[i]) //compare
6: swap(&arr[i], &arr[j]);
7: j++;

}
8: i++;

}
}

This code has eightlocations(each of which happens to be ex-
actly one line of code), numbered one through eight above. Each
workloadfor bubble_sort consists of an array ofn integers. The
size,n, is a featureof the workload. We ranbubble_sort on 30
workloads: 3 arrays of random integers at each of the following
sizes 60, 200, 500, 1000, 2000, 4000, 8000, 15000, 30000, 60000.
We chose these sizes because they span a wide range, their log-
arithms span a wide range, and the smallest size is large enough
that the high order terms dominate all other terms. We find that
including very small workloads, for instance an array with 3 inte-
gers, serves only to add noise to the left of the plot. In subsequent
sections we show the output oftrend-prof on this example.

4. Trend Profiler
We describe howtrend-prof builds and ranks clusters and

how it models the performance of these clusters.



4.1 Summarizing with Clusters
Studying the performance variation of the thousands of basic

blocks in a large program would be overwhelming. Fortunately, do-
ing so is unnecessary for understanding the performance and scal-
ability of a program. In practice, large groups of locations have
executions counts that are very well correlated with each other: on
a run ofbubble_sort where line 2 executes many times, lines 3
and 8 will also execute many times; when line 2 executes only a
few times, lines 3 and 8 execute few times.

This observation leads us to divide the locations in a program
into clustersof locations that vary linearly together. Acluster
consists of one location, called thecluster representative, together
with the set of locations that linearly fit the representative with
R2 > 1 − α, for some small constant0 < α < 0.5. Every lo-
cation belongs to at least one, and possibly multiple, clusters.
Trend-prof computes the set of cluster representatives to-

gether with computing cluster membership. Initially the set of clus-
ter representatives is the set of user-specified features. We consider
locations in descending order of variance (σ2

ℓ ) and add locationℓ
to all clusters whose representative it fits. Ifℓ fits no existing clus-
ter representatives,ℓ becomes the cluster representative for a new
cluster. Thus, when the cluster representative is a location and not a
feature, it has higher variance than any other location in the cluster.

The choice of a value forα is a tradeoff between how many
clusterstrend-prof finds and how well the locations in these
clusters fit each other. Lower values ofα produce more, but tighter
clusters. In this work we useα = 0.02. This choice is somewhat
arbitrary, but it is informed by the following intuition. As we show
in Section 4.1.1, this choice guarantees that all the locations in a
cluster fit each other better thanR2 > 0.92; note that the converse
does not hold. In our experience, many fits withR2 < 0.90 do
not convincingly demonstrate the sameness of the locations being
fit. In choosingα, we err on the side of having a strong guarantee
about the locations in a cluster at the cost of having more clusters.

We discard data for locations executing a constant number of
times or showing very little variation (σℓ < 10) as they contain
little information: for example, a location whose cost is always
between 100 and 120 might be so discarded.

4.1.1 The Meaning of Clusters
Clustering organizes the mass of information without compro-

mising the ability to point to specific places in the code since the
costs of locations in the same cluster vary together. The following
theorem gives us a simple guarantee about what it means for a lo-
cation to be in a cluster: ifα is 0.02 and locationx is in the same
cluster as locationy, then the performance ofx is linearly related
to the performance ofy with anR2 better than 0.92.

THEOREM: If x, y, andp are vectors of lengthk such thatx and
y both fitp with R2 > 1 − α and0 < α < 0.5, thenx fits y with
R2 > 1 − 4α(1 − α).

PROOF: Without loss of generality, assume thatx, y, andp are
normalized to have mean 0 and variance 1, since they can be made
so with an affine transformation and such transformations preserve
R2. We denote theR2 statistic for the fit ofx to p by R2

x,p and the
angle (inR

k) betweenx andp by φx,p. We have

1 − α < R
2

x,p = (x · p)2 = cos2 φx,p

Rearranging terms yields

φx,p < arcsin
√

α

and similarly forφy,p. By the triangle inequality on the surface of

Cluster Max Fit with n R
2

COMPARES 1.1 e10 3.0n
2.00 1.00

SWAPS 2.6 e9 3.1n
1.93 0.99

SIZE 1.3 e6 22n
1.00 1.00
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Figure 1: The table (top) shows powerlaw models predicting clus-
ter costs for the Bubble Sort example. The graph (bottom) shows
three powerlaw best-fit plots showing observed cluster costs for
COMPARES, SWAPS, and SIZE (y axis) versusn (x axis) with their
lines of best fit.

thek-sphere and substitution,

φx,y ≤ φx,p + φy,p < 2 arcsin
√

α

and so

R
2

x,y = cos2 φx,y > 1 − 4α(1 − α)

4.1.2 Example
In thebubble_sort example,trend-prof breaks the loca-

tions in this code into threeclusterswe callCOMPARES, SWAPS, and
SIZE.

• COMPARES’s representative is line 4; it contains lines
{4, 5, 7}.

• SWAPS’s representative and only location is line 6.

• SIZE’s representative is line 2; it contains lines{2, 3, 8}.

If we specify the size of the input array,n, as a feature of the work-
loads, thentrend-prof uses the featuren as the representative
for the clusterSIZE.

Notice that although lines 5 and 7 execute0.5n2 − 0.5n times
and line 4 executes0.5n2 + 0.5n times, these lines are all in the
same cluster. This behavior is desirable since for the values ofn

in our workloads, the quadratic term is the only important one for
describing scalability.

4.2 Powerlaw Fits Measure Scalability
We define thecostof a cluster as the sum of the costs of all the

locations in the cluster.Trend-prof measures the scalability of
each cluster with respect to each feature,f , by powerlaw-fitting the
cost of the cluster,C, to f ; that is,trend-prof finds a andb

to fit C = afb. The expression,afb gives a concise, quantitative
model of how the cost of the cluster increases asf increases. The
summary output oftrend-prof also includes the following for
each feature/cluster pair.

• TheR2 goodness-of-fit statistic for the fit.

• The best-fit plot: a scatter plot of feature values versus cluster
costs (fi, Ci) on log-log axes with the line of best fitafb.
Recall that a true powerlaw looks like a line on log-log axes.



• The residuals plot: a scatter plot off (x axis, log scale) ver-
sus the residualslog afb − log C (y axis, linear scale). The
residuals plot is random if the powerlaw explains the data.
Extra variation that the powerlaw does not account for, like a
logarithmic factor or a lower order term, are often clearer in
the residuals plot than the best-fit plot.

• Predicted cost at values off larger than any actually mea-
sured. Definef95 as the 95th percentile value forf ; that is
if we have 1000 workloads and we sort the values forf , f95
is the 950th largest value. Currently, we show the model’s
predictions for2f95 and10f95 with a 95% confidence in-
terval for each.

• A 95% confidence interval fora, the coefficient.

• A 95% confidence interval forb, the exponent.

We compute the confidence intervals mentioned above by means
of a general statistical technique called thebootstrap percentile
method[13]. A detailed discussion of the bootstrap is beyond the
scope of this paper. In outline the bootstrap estimates the stability
(such as the standard deviation or, in our case, confidence inter-
val) of a function of the distribution of a random variable (such
as median or mean or, in our case, the regression coefficients or
other predictions of our model). Bootstrap does this by 1) generat-
ing many “example” data sets, not from the distribution (which we
do not know) but from the actual data set by repeatedly sampling
with replacement, 2) then computing the function in question on
each example data set and collecting those results into a “function
value” set then 3) simply measuring the stability of function value
set (such as by throwing out the top and bottom 2.5% and calling
the result the 95% confidence interval). The strength of the boot-
strap method is that it makes no assumptions about any underlying
distribution of the random variable (in our case, the regression co-
efficients). Intrend-prof we use one thousand iterations of the
bootstrap.

A cluster that scales super-linearly (that is, has an exponent
greater than one) has the potential to overtake higher ranked clus-
ters on larger workloads. Thus,trend-prof predicts situations
where a cluster accounting for a modest portion of the cost of a
program on medium sized workloads comes to dominate the per-
formance cost on larger workloads.

The primary output oftrend-prof shows a list of clusters
ranked by the maximum (over all workloads) cost of the cluster.
This ranking draws attention to the clusters that cost the most on
trend-prof’s workloads. Code that does not scale well and may
cause performance problems is likely to be high on this list.

Since the logarithm of zero is not defined,trend-prof ig-
nores points where the observed execution count is zero when fit-
ting to a powerlaw (the number of ignored points is reported). Thus,
the models produced predict how many times a location is exe-
cuted if it is executed at all.Trend-prof may be configured to
suppress the display of models constructed with few data points as
such models are unlikely to make accurate predictions.

4.2.1 Example
In thebubble_sort example we have only one feature,n, but

it powerlaw-fits all cluster totals well. Figure 1 shows the scatter
plot and lines of best fit for these powerlaws.

5. RESULTS
We rantrend-prof on the programs listed in Figure 2 with

workloads as described in Figure 3. Figure 3 also mentions the av-
erage (geometric mean) overhead of running a workload with edge

Program Description Workloads
bzip2 1.0.3 [6] Compresses files Tarballs of

preprocessed
source code

banshee
2005.10.07 [10]

Computes Andersen’s alias
analysis [3] on a C program

Preprocessed C
programs

elsa [11] Parses, type-checks, and
elaborates C and C++ pro-
grams

Preprocessed
C++ programs

maximus Ukkonen’s suffix tree algo-
rithm [18] for finding com-
mon substrings

C source code

Figure 2: We rantrend-prof on these programs with work-
loads as described above.

Program Workloads Min – Max Overhead Time (h)
bzip 1000 3 e7 – 2 e11 22% 19 + 0.1
banshee 277 4 e6 – 1 e10 18% 0.7 + 1.1
maximus 910 3 e4 – 8 e09 10% 3.7 + 0.1
elsa 785 9 e5 – 4 e09 103% 3.3 + 7.4

Figure 3: Number of workloads, costs of the cheapest (Min) and
most expensive (Max) workload (measured in number of basic
block executions), geometric mean of overhead of edge profiling
(Overhead), andtrend-prof’s time in hours to run workloads
post-process data (Time).

profiling enabled versus having it disabled (Overhead) and the to-
tal time in hours that our straightforward Perl implementation of
trend-prof takes to create a report on each program (Time).
The Time column is broken down into two components: the first
(left) time includes running the instrumented workloads and some
minimal per-workload post-processing; the second (right) time in-
cludes the rest oftrend-prof’s post-processing including clus-
tering, model-fitting, and generation of plots and results pages.
Oncetrend-prof generates its results, they are browseable in-
teractively.

5.1 Programs Have Few Clusters
For each of our benchmark programs, Figure 4 shows the num-

ber of basic blocks in the benchmarked program (Basic Blocks),
the number of basic blocks whose standard deviation is greater than
ten (Varying Basic Blocks), the number of clusterstrend-prof
finds (Clusters), the number of clusters whose cost on any work-
load is more than2% of the workload’s total cost (Costly Clusters),
and the ratio of basic blocks to costly clusters (Reduction Factor).
These numbers illustrate a fundamental empirical fact about pro-
grams: that there are orders of magnitude fewer costly clusters than
locations.

Program Basic
Blocks

Varying
Basic
Blocks

Clusters Costly
Clusters

Reduction
Factor

bzip 1,032 721 23 10 103
maximus 1,220 496 13 9 136
elsa 33,647 22,382 1489 30 1122
banshee 13,308 11,891 859 26 512

Figure 4: For each benchmark we list number of basic blocks,
number of basic blocks withσ > 10, number of clusters, number
of clusters whose cost is ever more than2% of the workload’s total
cost, and the ratio of Basic Blocks to Costly Clusters.



Cluster Rep Max Fit R
2 Prediction

BYTES 35 77 BYTES1.01 1.00 (470, 480)
blocksort.c 459 22 50 BYTES1.03 0.95 (420, 580)
blocksort.c 416 16 34 BYTES1.01 0.99 (210, 240)
blocksort.c 492 13 24 BYTES1.04 0.94 (230, 340)
compress.c 241 3 4.0 BYTES1.01 0.98 (23, 28)

Figure 5: The cluster representatives for the top clusters forbzip,
the maximum observed cost of the cluster (in billions of basic block
executions), the powerlaw fit of the cost of the cluster toBYTES, R2

of this fit, a95% confidence interval for predicted cluster cost (in
billions of basic block executions) for a 5 GB workload.

5.2 Simple Programs Have Simple Profiles
Runningtrend-prof on bzip reveals that it scales linearly

in the size of its input and that most of the locations vary together.
Figure 5 shows the top several clusters of locations forbzip. The
first cluster contains those basic blocks that linearly fitBYTES, the
number of bytes in the input, very well. The next several clus-
ters all powerlaw-fitBYTES very well with exponents very close to
1.0. Together these clusters account for86% of the basic blocks in
the program and (taking the geometric mean across all the work-
loads) more than99% of the total number of basic block execu-
tions. Taken together, this output shows the number of bytes in
the input is an excellent predictor of performance, thatbzip scales
nearly linearly in the size of its input, and that none of the code
scales particularly worse than the rest. Withtrend-prof a pro-
gram with simple performance has a simple profile.

5.3 Confirming Expected Performance of the
Implementation of a Complex Algorithm

Measuring the empirical computational complexity of a program
usingtrend-prof can verify that it scales as expected. Ukko-
nen’s algorithm [18] finds common substrings in a string by con-
structing a data structure called asuffix tree. When implemented
correctly, Ukkonen’s algorithm creates a linear number of suffix
tree nodes and edges. Faulty implementations of this tricky algo-
rithm can cause performance with quadratic or worse scalability.

We rantrend-prof on an implementation of Ukkonen’s algo-
rithm in a tool calledmaximus. A workload formaximus consists
of a string. For each workload we specified three features:CHARS,
the number of characters in the input string;NODES, the number
of nodes in the suffix tree; andEDGES, the number of edges in the
suffix tree. FeatureCHARS is an easily measurable property of an
input to maximus; after execution,maximus outputsNODES and
EDGES andtrend-prof incorporates these features into its cal-
culations. As expected,NODES andEDGES both linearly fitCHARS

and thus wind up in its cluster. Figure 6 shows the relevant scat-
ter plots and lines of best fit;CHARS is on thex axis and the two
different styles of points and lines showNODESandEDGES.

The suffix tree representation of common substrings in a string
is too compact to be comprehensible to a human, somaximus ex-
pands it to produce output. Operationally, for certain nodes in the
suffix tree, the output routine must print something for each of the
node’s leaves and then recursively do the same thing for each of its
children. This super-linearity is obvious intrend-prof’s out-
put. The top ranked cluster scales as11CHARS

1.29(R2 = 0.99) and
includes the output routines; Figure 7 shows the relevant fit.

The author ofmaximus was happy at the confirmation that the
core of his implementation of this complex algorithm was in fact
linear. Not being the object of his attention he was surprised at
the super-linearity of the output routine; though obvious to him in
retrospect, the use oftrend-prof was still required to find it.
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Figure 6: These two linear best-fit plots formaximus show that the
number of suffix tree nodes and edges (y axis) grows linearly with
the number of characters (x axis) in the workload.
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Figure 7: The crisp powerlaw fit in this best-fit plot formaximus’s
output routines shows that their cost grows super-linearly in the
number of characters in the input (ŷ = 11CHARS

1.29).

5.4 Quantifying the Improvement of
Heuristic Optimizations

At the core of ourbanshee benchmark is an implementation of
Andersen’s points-to analysis. Although this algorithm is cubic in
the worst case, the workloads we measured scaled much better than
that: no cluster scaled worse thann2; Figure 8 shows the top sev-
eral clusters. Realistic inputs often need not result in worst-case be-
havior; our measurements quantify the extent to whichbanshee’s
optimizations take advantage of this fact.

5.5 This List Traversal is a Bug
As mentioned in Section 1, we found a scalability bug in the

C parser used bybanshee. Trend-prof predicts that the
last_node function (see Section 1) is called roughly linearly in
BYTES, the number of bytes in the input, and that the cost of the
loop body scales asBYTES

1.2. These predictions suggest the av-
erage size of these lists grows asBYTES

0.2 and also that the three
locations in this cluster account for more than10% of the program’s
cost for inputs of 128 MB. Clearly, a pointer to the last node in the
list is called for. Figure 9 shows the scatter plot of and powerlaw fit
for this cluster together with the powerlaw fits for other top clusters
(dotted lines) shown for comparison.

5.6 Focusing on Scalability-Critical Code
We look now at the results of runningtrend-prof on another

large, well optimized program with complex inputs. Theelsa
benchmark is a parser, type-checker, and elaborator for C and C++
code. Runningtrend-prof on elsa with C++ programs as in-
put divides the roughly 33,000 basic blocks ofelsa into fewer than



Cluster Rep Max Fit R
2 Prediction

AST.c 34 800 0.9 BYTES1.21 0.95 (400, 700)
regions.c 94 600 140BYTES1.01 0.99 (1900, 2100)
dhash.c 74 500 4 BYTES1.05 0.98 (100, 200)
ufind.c 101 500 0.6 BYTES1.18 0.88 (200, 300)
BYTES 200 50 BYTES1.01 1.00 (700, 700)
AST.c 147 200 40 BYTES1.02 1.00 (600, 700)
setif-sort.c 256 100 0.02BYTES1.25 0.86 (20, 40)
dhash.c 118 40 0.2 BYTES1.03 0.95 (4, 7)
dhash.c 151 40 6 BYTES1.03 0.99 (100, 100)
types.c 452 40 3 BYTES1.05 0.98 (100, 100)
hashset.c 113 20 10−6 BYTES1.72 0.87 (20, 60)
hashset.c 98 6 10−7 BYTES1.91 0.77 (20, 50)

Figure 8: The top clusters forbanshee with powerlaw fits and
R2. The maximum observed cost of each cluster and the95% con-
fidence interval for the model’s prediction on a 128 MB workload
are given in tens of millions of basic block executions.
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Figure 9: Powerlaw best-fit plot for the loop body of the perfor-
mance bug inbanshee (ŷ = 0.87 BYTES

1.21). We show lines of
best fit for other cluster costs for reference.

1500 clusters. Figure 10 shows the top several clusters and a few
farther down the list with higher exponents along with their power-
law fits to AST, the number of nodes in the abstract syntax tree for
the workload, and95% confidence intervals for our extrapolations
whenAST is 10 times larger than the 95th percentile value ofAST

for the workloads. Other features, notablyBYTES, the number of
bytes in an input, fit the cluster costs about as well asAST.

5.6.1 An Empirical Measure of GLR Performance
The top several clusters contain code that is critical to the per-

formance and scalability ofelsa for large workloads. Figure 11
shows the powerlaw fit and residuals plot for one such cluster
whose representative is elkhound/glr.cc line 362. Based on the
scatter plot and residuals plot, the powerlaw fit withAST is a rea-
sonable model for this cluster’s cost. The95% confidence interval
for the exponent is (1.11, 1.15), and so it appears that the code in
this cluster scales super-linearly with the number of AST nodes in
the input. This cluster is largely concerned with GLR parsing and
tracking and resolving ambiguous parse trees. As we would expect
from a mostly unambiguous grammar and a well optimized parser
generator [11], the measured empirical computational complexity
is substantially better than the cubic worst case complexity of GLR
parsing. Nonetheless, the slight super-linearity and the large coef-
ficient suggest that this code is crucial to performance.

5.6.2 This List Traversal Is Not a Bug
The cost of the cluster whose representative is line 154 of

elsa/lookupset.cc fits AST with the notably high exponent of
1.35. Figure 12 shows the scatter plot and powerlaw fit for this
cluster’s cost; it also shows the powerlaw fit for another top cluster

Cluster Rep Max Fit R
2 Prediction

hashtbl.cc 44 100 6500(AST)0.76 0.93 (40, 50)
ARGEXPR 70 260(AST)1.11 0.97 (300, 300)
glr.cc 362 70 200(AST)1.13 0.95 (300, 300)
cc_flags.h 139 70 490(AST)0.865 0.84 (10, 20)
sobjset.h 28 60 65 (AST)0.997 0.84 (10, 20)
STMT 20 260(AST)1.02 0.99 (70, 80)
hashtbl.cc 67 20 280(AST)0.833 0.90 (4, 6)
lookupset.cc 154 4 0.008(AST)1.35 0.65 (0.2, 0.5)

Figure 10: The top clusters forelsa with power law fits andR2.
We show the maximum observed cost of each cluster and a95%
confidence interval for the model’s prediction on a two hundred
thousand AST-node workload in tens of millions of basic block ex-
ecutions. The cluster representativesARGEXPR and STMT are fea-
tures that count particular kinds of AST nodes.
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less, comparing to the powerlaw fit from Figure 11 (dotted line)
suggests that this cluster is not a scalability problem.



whose representative iselkhound/glr.cc line 362 (also shown
in Figure 11) for comparison. There is a lot of variance in the data
and thus the fit is somewhat dubious, but two things are clear. For
at least some kinds of inputs, this cluster’s cost increases sharply as
input size gets large. However, even if we follow the upper edge of
the points, this cluster’s cost will not overtake the cost of the other
cluster for any reasonably sized input (recall that they axis is on
a logarithmic scale and that a factor of 100 is not particularly tall).
We conclude that the code in this cluster is not crucial to perfor-
mance.

The code in the aforementioned cluster consists of a function to
add an object to a list in time linear in the length of the list.

void LookupSet::add(Variable *v) {
for each w in this {

if (sameEntity(v, w)) return; }
prepend(v); }

This pattern is exactly the sort of code that was a performance
bug in thebanshee benchmark, but heretrend-prof provided
us with enough information to conclude that it is not a serious scal-
ability problem.

6. THREATS TO VALIDITY
There are situations wheretrend-prof’s models do not

adequately describe the program’s performance on novel work-
loads. Choosing atypical or insufficiently many workloads to
train trend-prof causes its models to over-fit patterns in the
data (Section 6.1). There are cases where the powerlaw fit
trend-prof uses to model cluster cost does not adequately cap-
ture important performance variations (Section 6.2).

6.1 The Importance of Workloads
The empirical aspect oftrend-prof’s models of empirical

computational complexity is both an advantage and a disadvantage.

6.1.1 When Workloads Reveal Empirical Truth
Usingtrend-prof we do not distinguish correlations among

the costs of various locations that are due to the structure of the
program from those due to the distribution of workloads. This
empiricism allows us to conclude that on typical C programs, an
optimized implementation of Andersen’s analysis scales much bet-
ter than its worst-case bound ofO(n3) in the size of the program
(Section 5.4) and that a linked list append function that runs in lin-
ear time in the length of the listis a performance bug inbanshee’s
parser (Section 5.5), but the same idiom isnot a bug in the context
of elsa’s data structures for resolving name lookup (Section 5.6).

6.1.2 When Workloads Oversimplify
On the other hand, the user oftrend-profmust choose work-

loads carefully or risk generating results that do not generalize. We
illustrate this point further by considering four different kinds of
workloads for our bubble sort example. Recall that the workloads
we considered earlier (Section 3) were arrays of integers generated
uniformly at random and that the locations break into 3 distinct
clusters: COMPARES, SWAPS, and SIZE (Figure 1). Depending on
the distribution of inputs,trend-prof’s classification of line 6
(SWAPS) changes: if our inputs consist respectively of arrays of in-
tegers a) randomly permuted, b) sorted from least to greatest, c)
sorted greatest to least, or d) sorted from least to greatest but with
O(n) swaps of neighbors, then we observe respectively that line 6
a) scales asn1.93 and forms its own cluster (SWAPS), b) never ex-
ecutes and thus does not appear in the output, c) executes about

O(n2) and thus falls into clusterCOMPARES, or d) executes about
O(n) times and falls into clusterSIZE.

In fact, line 6 may powerlaw-fitn quite poorly: any convex com-
bination of these extremes is realizable for line 6 by picking suit-
able workloads. In contrast the cost of the other lines varies only
with the size of the array, so their classification does not change.

6.2 Limitations of the Powerlaw Fit
In our experience the simple, two-parameter powerlaw fit works

amazingly well. However, there are situations where a power-
law fit does not precisely capture the variation of a cluster’s cost
across workloads. These situations are quite clear when we exam-
ine the scatter plots and residuals plots thattrend-prof gener-
ates. Wide confidence intervals for the coefficient and exponent or
a lowR2 are also warnings that the powerlaw may not be a suitable
model. The converse does not hold: these statistics may still be
quite good for data that a powerlaw does not adequately describe.

6.2.1 The Logarithmic Factor
Although a powerlaw cannot fit functions such asn log n, such

logarithmic factors are not a major problem in practice. For ex-
ample, the number of compares that quicksort performs grows as
O(n log n) wheren is the size of the array being sorted. The left
part of Figure 13 shows a scatter plot of the number of compares a
Quicksort performs (y axis) versus the number of elements in the
array to be sorted (x axis). The line is a powerlaw fit to the dia-
mond shaped points (ŷ = 1.5x1.16). The fit closely tracks the data,
but it is clear from the residuals plot that there is more going on.
The hump shaped residuals plots suggests that the data grows more
slowly than the powerlaw; such a curve suggests a logarithmic fac-
tor.

The circular points show further observations of compares versus
array size. Even for arrays 60 times larger than anytrend-prof
used to fit the initial powerlaw, the fit’s prediction (68 million com-
pares) is less than a factor of two from the observed value (43 mil-
lion compares).

6.2.2 The Lower Order Term
Our bubble sort example illustrates the effect of a lower order

term on a powerlaw fit. Line 4 executes exactly0.5n2 + 0.5n

times while lines 5 and 7 execute exactly0.5n2 − 0.5n times each;
the cluster as a whole costs1.5n2 − 0.5n basic block executions.
The powerlaw fit converges to the highest order term: given large
enough workloads,trend-prof predicts the cost of this cluster
as1.5n2. That is, for smaller workloads the lower order terms dis-
tort the powerlaw fit; however, for large enoughn, the quadratic
term dominates the linear one. To the extent that one term domi-
nates the others,trend-prof’s powerlaw fit is a reasonable, low-
dimensional approximation.

6.2.3 The Missing Feature
There are clusters whose cost is not well approximated by a pow-

erlaw of any feature. Depending on the distribution of inputs to the
bubble sort example,SIZE may be a reasonable powerlaw predictor
of SWAPS, but (as we discussed above) it may not be. There is no
function that predictsSWAPS in terms ofSIZE in general.

Similarly, AST does not adequately predict the points in Fig-
ure 12 nor the cost of the top cluster forelsa (not shown). It
may be that some function of some readily available features of
elsa workloads fit this data well, but we do not know. The per-
formance curve for some programs may not even increase mono-
tonically with workload size. In these situations, it is clear from
the best-fit plot and residuals plot, whichtrend-prof provides,
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Figure 13: On the left is a log-log plot of number of comparisons done in a call toqsort (y axis) versus the size of the array (x axis). On
the same plot, we show the best powerlaw fit to the diamond shaped points (ŷ = 1.5n1.16, R2 > 0.99). On the right is the residuals plot for
the powerlaw fit. Note that the residuals are clearly not randomly distributed.

thattrend-prof’s powerlaw model is inadequate for the situa-
tion and that its predictions are not to be trusted.

For situations like these,trend-prof allows the user to define
features that depend on the runtime behavior of the program. One
can designate the number of times a particular line of code executes
as a feature. Also,trend-prof does not require workloads to be
annotated with features until after they have run; the programmer
may, for instance, modify the program to print the size of a data
structure or the value of a counter and then use these as features.

7. RELATED WORK
The main branches of related work are other profilers and other

techniques that construct models of program performance based on
simulation, measurement, or reasoning about source code.

7.1 Profilers
Gprof [8] and many profilers like it periodically sample the pro-

gram counter during a single run of a program. A post-processing
step propagates these samples through the call graph to estimate
how much of the program’s running time was spent in each func-
tion. Such profilers are the standard way to find opportunities to
improve a program’s performance.

Jinsight EX [17] exhaustively traces the execution of a program,
recording the number of objects of a particular type that are allo-
cated, the number a times a method is called, etc. The user may
browse this data to explore the performance of the program.

Ammons et al. [2] describe a profiler for finding expensive paths
through a program and for computing how the cost of a path differs
between two similar runs of a program. The essence of their tech-
nique computes the cost of a sequence of nested function calls from
a call-tree profile. In our terms, they compute performance data for
a more general notion of location. In this regard, their work is com-
plementary to ours; their system computes the cost of a path for one
workload, whiletrend-prof builds models to describe how the
cost of a location increases with workload features.

We built trend-prof to answer questions that these tradi-
tional profilers do not address: traditional profilers present informa-
tion about one run of the program, whereastrend-prof presents
a view across many runs with an eye toward finding trends and pre-
dicting performance on workloads that have not been run.

7.2 Empirical Performance Models
Kluge et al. [9] focus specifically on how the time a parallel pro-

gram spends communicating scales with the number of processors
on which it is run. In our terms, they construct an empirical model
of computational complexity where their measure of performance,
y, is MPI communication time and their measure of workload size,

x, is number of processors. They fit these observations to a degree-
two polynomial, findinga, b, andc to fit (ŷ = a+ bx+ cx2). Their
goal is to find programs that do not parallelize well; that is, pro-
grams whose amount of communication scales super-linearly with
the number of processors. Any part of the program with a large
value forc is said to parallelize badly. The goal oftrend-prof
is more general; we aim to characterize the scalability of a program
in terms of a user-specified notion of input size.

Brewer [5] constructs models that predict the performance of a
library routine as a function of problem parameters; for instance
the performance of a radix sort might be modelled by the number
of keys per node, radix width in bits, and key width in bits. Given
a problem instance and settings of the parameters, the model pre-
dicts how several implementations of the same algorithm perform.
Based on the prediction, the library chooses an implementation of
the algorithm to run for an instance of the problem. The user must
choose the terms for a model; powers of the terms are not consid-
ered in building the model, but cross terms are. For instance, for
problem parametersl, w, andh, the model is in terms of

ŷ = c0 + c1l + c2w + c3h + c4lw + c5lh + c6wh + c7lwh

The requirement that the user provide the terms for the model, par-
ticularly the powers of those terms, assumes a deeper level of un-
derstanding of the code’s performance thantrend-prof does:
while the resulting models can be more descriptive and precise,
each implementation of each algorithm must be considered sepa-
rately and terms chosen carefully. However, in the larger context of
the program, the parameters on which a basic block’s performance
depends may not be readily apparent; therefore,trend-prof
seeks to describe the performance of each of the many locations in
a large program and focus the user’s attention on those with unan-
ticipated performance or scalability problems. Our goal of making
interpretable models that predict scalability drive us towards sim-
pler, lower-dimensional models that are more appropriate for our
goals.

Sarkar [16] predicts the mean and variance of loop execution
times using counter-based profiles. In contrast,trend-prof
models performance as a function of workload features.

7.3 Performance Models by Simulation
Rugina and Schauser [15] simulate the computation and com-

munication of parallel programs to predict their worst-case running
time. Their simulation takes as input a) a parallel program whose
communication does not depend on its data, b) parameters for the
program such as size of data blocks and a communication pattern,
and c) LogGP [1] parameters for the target machine; their simula-
tion outputs a time. Their focus is on tuning a program with a fixed



workload size by choosing the best data block size and communi-
cation pattern from among those they simulated. Their work solves
a substantially different problem thantrend-prof.

7.4 Static Performance Models
Wegbreit [19] describes a static analysis for computing closed

form expressions that describe the minimum, maximum, and “av-
erage” performance cost of simple LISP programs in terms of the
size of their input. Le Métayer [12] focuses on statically analyz-
ing maximum performance cost for FP (a functional programming
language) programs. Rosendahl [14] describes an abstract inter-
pretation transforms a LISP program into code that computes the
worst case running time of the program. Such systems produce
precise models of performance, but it is unclear how to adapt such
approaches to large imperative programs.

8. CONCLUSION
We advocate the use of empirical computational complexity for

understanding program performance and scalability. We have pre-
sented our tool,trend-prof, that, given a program and work-
loads for it, 1) builds models of basic block execution frequency in
terms of user-specified workload features and 2) provides means to
assess the plausibility and applicability of these models. By group-
ing related locations into clusters and modelling the performance of
these clusters,trend-prof summarizes the performance of tens
of thousands of lines of code with a few dozen of these models.

We cluster locations (and features) that vary together linearly;
conversely, locations that vary somewhat independently end up
in different clusters. For several programs and associated sets
of workloads, we have empirically measured that there are many
fewer clusters than locations; that is, empirically there is much lin-
ear correlation between execution counts of locations. Clustering
dramatically reduces the number of degrees of freedom of the over-
all performance model; that is, clustering simplifies our presenta-
tion of program performance by dramatically reducing the number
of program components whose costs we model.

Ranking these clusters based on their cost and predicting their
scalability by powerlaw-fitting their cost to user-specified features
focuses attention on scalability-critical code. Although these mod-
els are not always accurate, we may assess their plausibility using
the scatter plots and residuals plots thattrend-prof provides.
These models allow us to predict the performance of programs on
novel workloads, including workloads bigger than any measured.

Our technique is useful for understanding program performance:
trend-prof’s models allow us to compare the empirical compu-
tational complexity on typical workloads to our expectations. Such
comparisons can either confirm the expected performance or reveal
a difference from it: even on our few examples, we have discov-
ered several surprises which the usual testing process could easily
miss. By modelling the performance of the program on workloads
that we have not actually measured we add a new dimension of
generality to traditional profilers. Further, the complexity of algo-
rithms on realistic workloads can easily differ from their theoretical
worst-case behavior. Ourbanshee andelsa experiments illus-
trate both of these points: that is, no current profiler would have
discovered that Andersen’s analysis actually scales quadratically in
practice, in contrast to its cubic theoretical worst-case bound. Our
analysis therefore gives engineers a more accurate working perfor-
mance model.

While anyone could attempt a performance-trend analysis of
their program most engineers do not; a generic and convenient tool
for automatically computing a comprehensive performance-trend
analysis belongs in every programmer’s toolbox.
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