
Applying, Improving and Analyzing Some Heuristics for
Binary Codes in Combinatorial DNA Design

Lyndon Hiew
University of British Columbia

Dept. of Computer Science

lyndonh@cs.ubc.ca

Siamak Tazari
University of British Columbia

Dept. of Computer Science

siamakt@cs.ubc.ca

January 19, 2005

Abstract

Combinatorial algorithms have long been used to design error correcting codes with various
constraints such as Hamming distance or weight. Such algorithms have been used to design
DNA codes, which parallel error correcting codes in many ways. We implemented two al-
gorithms from coding theory and adapted them for DNA. We tried several improvements and
combinations and we will discuss the empirical analysis andthe strengths and weaknesses of
each variant.

1 Introduction

Short strands of DNA can now be synthesized quickly and economically. This has enabled its
use in applications like DNA computing and nanostructures [12]. Given the ability to synthesize
strands, the problem is designing a set of DNA strands that satisfy certainrequirements. The com-
binatorial aspects of these requirements can be studied in the domain of coding theory, specifically
the theory of error-correcting codes. Thus, various methods from coding theory have been applied,
but the analysis of such algorithms is rarely mentioned in literature.

DNA consists of4 complementary base pairs,A, C, G andT , whereA pairs withT , andC

with G. One strand hybridizes with another perfectly, if its reverse is complementary to the other
(imperfect hybridization is also possible if the two strands do not match exactly). DNA design can
be simplified to the problem of designing codewords of lengthn, using a 4-letter alphabet. The
Hamming distance H(x, y) of two codewordsx andy is defined to be the number of positions in
which they differ. One would like to have a set of codewords with minimum Hammingdistance
d (for some sufficiently larged) to make undesired hybridizations unlikely, i.e. to achieve that
every codeword anneals to a distinct wordw [10]. Furthermore, in order to prevent codewords
from hybridizing between themselves, it is desirable to have codes, wherethe Hamming distance

1

between every wordx and the reverse complement of all the codewords - includingx - is at leastd
(again for some large enoughd) [10]. We will not consider this constraint in this work. Though, it
is possible to derive bounds for the case considering this constraint from the simpler case without
this constraint [11].

There are also some thermodynamic constraints in DNA design. The strands should ideally have a
similar melting point, allowing the hybridization of multiple strands to occur simultaneously [6].
One way to achieve this goal (i.e. to increase its probability) is to require that the strands have a
similar number ofG andC base pairs. In terms of coding theory, this is similar to the requirement
of having codes of constant weight. TheHamming Weight of a codeword is the number of its
non-zero positions. Codes with constant Hamming weight, constant-weight-codes, have been
extensively studied in the coding literature. But instead of considering the number of non-zero
(say, non-A) positions, we require the number of positions containingG or C to be constant. We
call this number theGC-content of a strand and denote it byw - the letter usually used to denote
the weight of codewords. In this terminology, we are now looking for sets of DNA words with
constantGC-contentw [11].

Finally, let us introduce some notation: we denote the maximum number of codes of lengthn over
a q-ary alphabet with minimum Hamming distanced by Aq(n, d). If we additionally require to
have a constant Hamming weightw, we use the notationAq(n, d, w). When considering codes
with minimum Hamming distanced to the reverse or reverse complement of all other words, we
use the notationsAR

q (n, d), AR
q (n, d, w), ARC

q (n, d) andARC
q (n, d, w), respectively. For DNA

codes with constantGC-contentw we useAGC
4 (n, d, w) andA

GC,RC
4 (n, d, w). In this work, we

focus on combinatorial algorithms that attempt to find good lower bounds onAGC
4 (n, d, w).

2 Related Work

Condon et al. [10] investigated various lower and upper bounds onAR
q (n, d) andARC

q (n, d), es-
pecially for the casesq = 2, 4. King [11] provided some bounds onAGC

4 (n, d, w) and constructed
new DNA codes using lexicographic codes. In both of these works, onecan realize the importance
of general coding theory and their use of its vast literature, especially onbinary codes.

Several combinatorial optimization algorithms have been applied to the constantweight code prob-
lem for binary codes, but few discuss their algorithm’s running time and behavior. We would like
to discuss three of these approaches here:

Dueck and Scheuer [2] introduced Threshold Accepting as a new general purpose stochastic local
search method and applied it to binary constant weight codes. There wassubstantial emphasis
on the results of Threshold Accepting compared to Simulated Annealing. The improved lower
bounds for constant weight codes when compared to Simulated Annealing are presented. They
did mention a CPU time of “very few seconds” for their algorithm, but only on thespecial case
to find a21-word code as a lower bound forA2(22, 10, 11). They also write that in order to find
good codes in hard cases, more computational effort and larger experiments are necessary.

Koschnick [3] proposed an algorithm based on stochastic forward search and backward search.

2

He briefly mentions a range of values to use for the number of iterations that generally seemed to
be working well in their experiments; but no running time estimates are given.

We looked at several related algorithms to find features and techniques that could be applied to
our algorithms. A stochastic local search algorithm for finding DNA codewords was published by
Tulpan et al. [9]. They successfully improved their initial, rather simple algorithm by randomly
replacing a fraction of codewords whenever the algorithm had stagnated. Schrimpf et al. [8]
proposed a similar idea, called “Ruin & Recreate” as a general-purpose optimization technique:
“ruining” a portion of the solution and “recreating” it at each iteration. They applied it successfully
to some vehicle routing problems but did not try it for codeword generation.

We also looked at Brouwer et al.’s work [1], which provides a comprehensive list of all then-known
best lower and upper bounds on binary constant-weight codes. Otheralgorithms we considered
were Dueck’s “Great Deluge” algorithm [5], which he proposes as another general purpose opti-
mization technique similar to Threshold Accepting, and Comellas et al.’s [4] genetic algorithm for
finding binary codewords. We did not further investigate either of these methods and decided to
focus on Threshold Accepting and Koschnick’s algorithm instead.

3 Two Algorithms for Binary Codes

To start with, we implemented the algorithms of Koschnick and Dueck et al. [2, 3]. Both algo-
rithms were originally designed for finding binary code words, but we adapted them to work on
DNA code words. We then tried several modifications and combinations. We will discuss these in
the next section. Here, we would like to describe the basic ideas behind these algorithms. Further
details can be found in the given references [2, 3].

Dueck et al. proposed a general-purpose optimization method, which they called Threshold Ac-
cepting (TA). It is a stochastic local search method with a parameterT , the current threshold. It
starts with some candidate solution and iterates on these steps: it looks at the current candidate
solution and creates another one in its local neighborhood by applying somesmall random pertur-
bation to it. If this new candidate solution is at mostT units worse in value than the current one,
it accepts it as the new candidate solution and iterates. After some time, it decreases the value of
T and continues.

In order to apply this to error-correcting codes, we have to define our problem as an optimization-
problem: Givenm, n, d, andw, we want to find a set of codewordsW , with |W | = m, length
n, weightw and minimum pairwise Hamming distanced. We can try to minimize the following
objective function1:

c(W) =
∑

H(x,y)<d

(d − H(x, y))

We can start with a random setW of sizem obeying the weight constraint and apply TA, trying
to minimizec(W) until it becomes0. When considering binary codes, we can choose a random
transposition of a0 and a1 in a random word as our perturbation step. If our goal is to find lower
bounds onA2(n, d, w), we can apply this method to increasing values ofm.

1Dueck et al. used the square of the distances of violating pairs instead.

3

Koschnick’s algorithm also tries to minimizec(W) but uses a different approach2. They have
two main functions,forward search andbackstep. In the forward search, they first create a list
of all words that would contribute anything toc(W). Then they process these words one by
one in a random order as follows: look at all possible transpositions of a0 and a1 in the given
word and choose the one that results in the largest decrease of the objective function. If no such
transposition improvesc(X), process the next word of the list. Otherwise accept this change and
restart the forward search. Their stopping criteria is based on a parameter called“limit 1”. When
this limit is reached, they do a backstep.

In the backstep, they choose a random error-valueδ using a geometric distribution. Then they
iteratively inspect the local neighbourhood of the current candidate solution until they find one
with the precise valuec(X) + δ. If they see none, they choose one with the smallest value more
thanc(X) + δ among the ones they have seen. In our implementation, we used a value “limit3”
to decide how many neighbours to look at in this step. The algorithm stops, when backstep is
performed more than “limit2” times - another parameter.

4 Adaption and Improvements

In this section, we first describe how we adapted Threshold Accepting and Koschnick’s algorithm
to work with DNA strands instead of binary codewords. Then we will describe various improve-
ments and combinations that we tried out and that eventually led to an algorithm witha satisfactory
performance. A detailed empirical analysis follows in the next section.

4.1 From Binary Codewords to DNA Strands

For both of the mentioned algorithms, we first needed to generate a setW of m words of lengthn
andGC-contentw at random. We generated each word as follows: randomly choose the positions
for theGC bases and assign them aG or aC with equal probability. Fill out the rest of the word
with A andT bases, also uniformly at random.

The perturbation step for the binary codes consisted of randomly choosing a codeword, created
by transposing a 0 and 1 in an existing binary codeword. If we applied the same method to DNA
codewords, and transposed two positions at random, then the number ofA, T , C andG letters
would remain constant. Another problem could be caused by the initialization step randomly
choosing a configuration with a disproportional number ofG andA bases, compared toC and
T bases. Only transposing positions would not ensure codewords to escape from being poorly
configured. To probabilistically achieve all possible codeword configurations, the perturbation
step in our adaption consists of the transposition of two positions or the random flipping of some
position. Obviously the random change must be done so as to preserve theGC-content, so aG
or C letter will be toggled to its other complementary base pair, and similarly anA or T will be
replaced with its complementary base pair. The objective function could be used as given and did
not need to be changed.

2This is only a rough description; for details see [3].

4

Implementing Koschnick’s algorithm with this adaption, resulted in a decent performance, as can
be seen in Section 5. Though, improvements were still desirable. In contrast, Threshold Accepting
turned out to perform pretty poorly. So, variations and improvements werenecessary.

4.2 Ruin & Recreate

We first considered Ruin and Recreate (R&R) [8], an optimization scheme that works by removing
(a somewhat larger) part of the current candidate solution and recreating it, hopefully improving
the value of the objective function. Our first attempt was to change the perturbation step to ran-
domly replace a fraction of codewords. This lead to even worse results than our original threshold
accepting algorithm. The comparison is discussed in Section 5.

Due to these poor results, we revised the algorithm so a fraction of codewords is replaced only
when the algorithm stagnates. This method was used by Tulpan et al. [9] to contract “fat” right
tails seen in the run-length distributions, which are caused by the stochastic search not finding any
improvements. The perturbation step was the same as in the original, interchanging or replacing
single bases in a codeword. This revision gave us slightly improved runs than the original threshold
accepting algorithm when comparing their RLDs.

4.3 Storing the Best Candidate Solution

A common technique in stochastic local search is to store the best candidate solution found so
far. This is a good idea, since it can happen that at one point we find a good candidate solution,
“perturb away” from it and never find back there or to any better solution. In our case, this simply
translates into stopping the TA algorithm when a solution with cost 0 is found, regardless of what
the current threshold is. Any other “best” candidate solution with a strictly positive value would
be of no use to us whatsoever.

Even though for the basic TA this is a very simple obvious thing to do, we actuallymade very
good use of this idea in a different manner in other variations of the algorithmthat we tried and
will explain next.

4.4 Increasing the Threshold3

Let us state an interesting observation made oftentimes in local search: whenwe reach a local
minimum and we are at the final steps of our algorithm (be it Threshold Accepting, Simulated
Annealing or something else), where we do not accept (much) worse candidate solutions anymore,
we will keep coming back to that local minimum and never escape that area. What is often done is
to restart the search. But we decided to make use of another idea: our current candidate solution is
probably not so bad, so we can slightly increase our threshold, thus moving away from this point -
but not get too far away (as we would do by restarting). If our threshold gets zero and we’re stuck

3Thanks to Frank Hutter for an interesting discussion about this idea used inSimulated Annealing.

5

again, then we increase again and iterate this process many times. This method turned out to be
often successful in escaping local minima!

In detail, we did the following: We used a counter to keep track of the number of iterations
we are spending at the current threshold value. We introduced a parameter called “stagnation”,
which specified how long to remain with a threshold value before decreasingit. We multiplied
the value of this parameter with a constant, every time we decreased the threshold (we used the
value1.73 ≈

√
3 for this constant, after trying out a few values between1.4 and2). The idea

was that when the threshold is large, the search is rather random-like and not so significant but
when it becomes small, we should spend more time in every stage. We also resetour counter
whenever an improvement was found. When the threshold reached0 and the current stagnation
value was reached, we reset the values of the threshold and stagnation.We found out that resetting
the threshold to4 was a good choice. We iterated this process until a solution was found.

We did not use R&R but we modified our perturbation steps: at each iteration we chose with equal
probability to do a transposition or to flip a base. Then we selected a word at random and looked
at all possible transpositions resp. flips in that word and chose the one which would give the best
benefit.

Also, we always carried the best candidate solution found so far. Whenever we wanted to reset the
threshold value, we checked if the current candidate solution is more than 3times as bad as the
best one and if so, we set the current candidate solution to be that best one with probability one
third and continued the search from there. This modification helped to get back to a “good” area
when we drifted too far away.

4.5 Combining TA with Forward Search

Even though our last version performed reasonably well, it was still too slow in making the last
moves - getting rid of that last 1 to 2 penalty points and reaching a solution. Thiswas of course
because of its random nature. A more structured search could possibly help out of this. We decided
to make use of Koschnick’s [3] forward search that we described in Section 3. This search looks
more systematically into violating pairs and looks for a possible improvement. The key is that
this function continues its search after finding an improvement and iterates until it finds a valid
solution (as long as its iteration-limit is not reached). We inserted a call to this function just before
resetting the threshold value - that is, at the point where we would normally give up. This turned
out to be a huge improvement leading to finding solutions much faster!

Some other small changes that we made compared to the previous version were these: we refrained
from multiplying the stagnation value every time, since there was no need to do it anymore; the
forward search in the end would accomplish the thorough searching for us. Instead, we used
slightly larger stagnation values to begin with. Also we decided to get back to thebest-so-far
candidate solution with a small probability (about2%) even if the current candidate solution was
not at least 3 times worse; this is because in harder cases, the best candidate solution found so far
is often still large and even getting there is already hard enough - the algorithm would get away
from it and not find its way back easily. We did this probabilistic resetting step whenever we reset
the threshold, i.e. not after every small iteration but only when we decided torestart.

6

This version was indeed powerful and fast, as we will discuss in section 5- especially for cases that
were not very hard. But in very hard cases it still had trouble getting away from a local minimum
if it got stuck in a large basin of attraction. This lead us to our next (final) version.

4.6 Combining Them All

We decided to incorporate R&R to attack these harder cases. The idea was that if we keep com-
ing back to that same candidate solution value many times, we should perform a somewhat larger
perturbation. We decided to destroy2% of the current candidate solution and recreate those code-
words from scratch. The recreation step was not completely random: we randomly decided about
the GC-positions but when we had the choice between aG or C, resp. between aA or T , we
chose the one that occured less often in that column in other words (if this really helped, we do not
know). But we do know that using R&R occasionally did help to escape localminima and made
it possible for us to attack harder problem instances.

The scheme that we used was as follows: Whenever we came to the point where we wanted
to increase the threshold again and start a new round, we compared the current best candidate
solution value with the best candidate solution value of the last round. If it was the same, we
would increment a counter, otherwise reset that counter. When this counter hit 10, we would do
an R&R step (and reset the counter). The reason we did it this way, i.e. notvery frequently, is
that we saw that R&R disturbs the current candidate solution rather heavily,moving it often much
away from its previous value - and that, in spite of the fact that we are ruining only 2 percent. So,
it was only useful for doing what we intended it to do: effectively getting away from an area of
the solution space, without loosing too much of the good structure found so far.

Also, we again slightly changed the rule for getting back to the best-so-far candidate solution: in
the case where the current candidate solution was not at least 3 times as bad as the best one, we
would get back to the best one with a6% chance but only if its value was more than some constant
(we used6). We decided to do this because when the best-so-far candidate solution value is small,
then the first condition (being at least 3 times as bad in addition to a one-third chance) is sufficient
but when it is large, we would like to get back to it more frequently.

Note that this version does not differ with the previous version if the problem instance is not hard.
This is because the condition for doing a R&R step is never met in these cases.But in hard cases,
this variant is clearly more powerful as we will see in the analysis.

5 Empirical Analysis Results

To analyze the algorithms, we followed the methodology of Hoos et al. [7] forobtaining run-length
distributions (RLDs). We obtained the RLDs of several problem instancesfor comparison. Each
distribution consists of 1000 successful runs on a particular instance ofa problem. The run-length
was measured as the number of iterations of the algorithms. But we have to elaborate on that: first,
note that an iteration of the basic TA is much more light-weight than an iteration in thelater ver-
sions where we looked at the best possible flip/swap in a word. Also, whenevaluating Koschnick’s

7

(a) Run-length distribution (RLD) (b) cost improvement distributions

Figure 1:(a) Run-length distributions for the threshold accepting algorithm forAGC
4 (8, 4, 4) and codeword set sizes

m of 70, 80 and 90.(b) A distribution of cost improvements versus algorithm steps for 1000 runsof threshold accepting
on AGC

4 (8, 4, 4), threshold = 30, and set size ofm = 70. Each data point represents the cost and iteration number
when the algorithm found a better solution.

algorithm and his forward search in the combined methods, we counted every investigation of a
word as one “iteration”. The amount of work that the forward search does when investigating one
word is very similar to the amount of work done in an iteration of the more sophisticated TAs, so
we think this is a fair way of comparing them. Notice that running forward search only once can
thus cause many such iterations.

For our evaluation, we investigated the problem instanceAGC
4 (8, 4, 4). The best currently known

lower bound given in [11] ism = 224. This bound is achieved by constructing a code of size
112 for A

GC,RC
4 (8, 4, 4) and then using a theoretical result (known as the halving bound) to get a

solution forAGC
4 (8, 4, 4) with twice as many codewords. It turns out that finding a code of this

size using only local search is very hard. In fact, even much smaller values of m seem to be hard
enough to make this instance interesting for investigation.

For RLDs of the basic threshold accepting, in order to gain some preliminary understanding of
it, we decided to try much smaller values first. The sizesm of the set of DNA codewords we
used were 70, 80, and 90. We avoided the use of larger values, due to the large amount of time
required to obtain 1000 successful runs - we decided to work on algorithmic improvements instead.
The initial threshold was set to 30, a value sufficiently large to allow the algorithm to find a
solution. Values determining the number of iterations before deciding the algorithm stagnation or
termination were also set to above optimal values, to ensure a solution is found. The RLDs and
the distribution of cost improvements can be seen in Fig. 1.

8

Threshold Median Mean
10 8637 8628
20 13778 13799
30 18886 18915

Table 1: Median and mean number of iterations forAGC
4 (8, 4, 4) andm = 70, using different threshold values.

The choice of the initial threshold value does have an effect on the average number of iterations
needed to find a solution. Form = 70, we obtained1000 successful runs for threshold values10,
20 and30. In Table 1, we see that increasing the threshold value increases the number of iterations
the algorithm must make to find a solution. The distribution of cost improvements in Figure 1(b)
for a threshold value of30, shows the cost stays fairly constant for many steps, until the threshold
decreases to some optimal value, causing the cost to steadily decrease to 0.By using an optimal
threshold value, one can avoid the cost improvement plateau and immediately obtain a steadily
improving cost. The authors of threshold accepting mention that one of the advantages of it over
simulated annealing is its relative indifference to threshold values. Having larger than optimal
values will not significantly change the likelihood of success.

(a) Run-length distributions for Koschnick’s al-
gorithm

(b) Cost improvement distribution for
Koschnick’s algorithm

Figure 2:(a) Run-length distributions for Koschnick’s algorithm forAGC
4 (8, 4, 4) and codeword set sizesm of 100,

120 and 140.(b) A distribution of cost improvements versus algorithm steps for 100 runs of Koschnick’s algorithm on
AGC

4 (8, 4, 4), and set size ofm = 70.

We also did some brief testing of Koschnick’s [3] method. It seems much fasterand much more
successful than our basic threshold accepting! For many different values, it is able to come close
to and sometimes reach the best known lower bounds presented in [11]. A sample run-length
distribution analysis for findingAGC

4 (8, 4, 4) is shown in Figure 2(a). Note that here we were
able to use much larger values form and the program is considerably faster than our threshold
accepting. But we also see that form = 140, in about20% of cases it gets stuck and suddenly
needs considerably more time. This shows that its backstep is not particularlygood in escaping
local minima. The cost improvement distribution in Figure 2(b) shows a rapid cost decrease when

9

compared to the distribution in Figure 1(b).

0 0.5 1 1.5 2

x 10
4

0

50

100

150

steps

co
st

Figure 3: A distribution of cost improvements versus algorithm steps for 100 runs of our first attempt at Ruin &
Recreate onAGC

4 (8, 4, 4) and set size ofm = 70.

In our first attempt at R&R, we found the performance to be far worse thanour original algorithm.
It required nearly two orders of magnitude more computation time to obtain the samenumber of
solutions as the original. The cost improvement distribution is displayed in Figure3. For 100
runs, the cost is never able to approach zero. Doubling the cutoff parameters for the algorithm’s
maximum number of iterations made no noticeable difference in the distribution. Itwas very
evident this modification was not productive.

In Fig. 4(a), we see an RLD-comparison between the original TA vs. the version which uses R&R
when it stagnates. We see that this version gives slightly improved results. We also tried ruining
different fractions and see which value is better. The results are shownin Fig. 4(b). Using a
fraction ofr = 20%, we were able to obtain 1000 successful runs in the casesm = 100 and110,
which we were not able to obtain using our original threshold accepting algorithm.

In Fig. 5(a), we see the RLDs for the variant presented in section 4.4, where we increased the
threshold whenever it hit 0 along with some other modifications. We see that thisversion is
powerful enough to be tested against the valuesm = 100, 120 and140 and is faster on these
instances than the original TA was on the smaller instances! We used an initial threshold value
of 8 in all cases and set the stagnation parameter to20, 30 and60, respectively. An interesting
observation is the step-like structure of the RLDs. We think that this is due to thenumber of times
where the threshold is reset: if an instance goes through without resetting,it will land below the
first “step”, if it resets once, it will be between the first and second “step” and so on. We can see
that for smaller instances, we have fewer steps.

Fig. 5(b) shows the RLDs of the combination of our improved TA with Koschnick’s forward
search, as was described in section 4.5. We see that the RLDs of this caseare much smoother and
this algorithm is much faster than any other we have seen so far. So, this seems to be indeed a
good version! We used the same values for the threshold and stagnation asin the previous case,
except form = 140, where we chose a threshold of10 instead. Still, this variant is not very good

10

(a) RLDs for the original TA vs. the version us-
ing R&R on stagnation

(b) RLDs for different percentages of ruining

Figure 4: (a) Run-length distributions for the original threshold accepting algorithm and the adapted R&R version
with ruin-fractions1% and20%. All were run on the problem instanceAGC

4 (8, 4, 4) with m = 70 and threshold30.
(b) Run-length distributions of 1000 successful runs onAGC

4 (8, 4, 4), threshold= 10 and set size ofm = 70. The
ruin-fraction had values of1%, 10%, 40% and100%.

for really hard instances; already in the upper15% instances of the casem = 140, we can observe
some difficulties; and obtaining successful runs form = 160 was so slow that we decided to leave
this test-case for our final version.

Finally in Fig. 6, we see the RLDs of our most sophisticated version, presented in section 4.6.
Notice that here we used valuesm = 120, 140 and160! The thresholds were set to8, 10, 10
and the stagnation parameters to20, 60, and200, respectively. The algorithm is generally more
successful in escaping local minima and thus is better suited for these harder cases. Form = 120,
no R&R step happened, i.e. the performance was about the same as the last version - the condition
of being stuck a long time never occurred. Form = 140, it occurred only25 times in total during
the whole1000 runs that were tested. But form = 160 it was used more frequently,1127 times
for 1000 runs. It is interesting to note that the distribution was not about one R&R step per run;
many instances didn’t need it at all, whereas others used it several times.We were also able to find
a solution form = 180, using about 7 million iterations and 192 R&R steps. When trying this
value with the previous versions, the algorithms stopped without a solution. These results suggest
that this version is especially well suited for hard problem instances.

We also shortly tried some other values form, n, d andw and compared them against the bounds
given in [11]. In some cases, such asAGC

4 (6, 3, 3), we were able to hit the lower bounds in
relatively short tests. It seems that in order to achieve some of these bounds (or maybe break them),
a lot of computational effort is required when using stochastic local search methods. Since our
aim was not to break these bounds (but to gain some understanding on the empirical performance
of these algorithms), we did not invest the time to perform these tests.

11

(a) Increasing the Threshold (b) Combining TA with Forward Search

Figure 5:(a) RLDs for the variant presented in section 4.4, where the threshold is increased when it hits 0. Problem
instances areAGC

4 (8, 4, 4) with m = 100, 120 and140. (b) RLDs for the variant combining the improved TA with
Koschnick’s forward search as presented in section 4.5. Problem instance same as in (a).

On CPU Times. We measured the CPU time of our implementations on an Intel Pentium 4
processor, 2GHz, 512KB L2-cache and 256MB RAM running WindowsXP. Our programs were
compiled and run using the Cygwin dll version 1.5.10. We used the test casesn = 8, w = 4, d =
4 andm = 100, 120, 140. The time needed for one iteration of the basic TA was on average
3.5 · 10−5s. This is very low since one iteration of this basic version only performs one random
transposition or flip and updates the cost-matrix. In the more sophisticated versions, where we
scanned a word for its best improvement, the time per iteration increased to an average of2·10−4s.
This value stayed the same for all subsequent versions, since the operations done in each iteration
did not change significantly - it was the search-strategy of the algorithm that changed. This is
also true for our final version that included ruin & recreate steps. Sincean R & R operation was
performed very rarely (as discussed above), its impact on the averageper-iteration runtime turned
out to be negligible - even on very hard cases: we ran our final versionfor the test casem = 180.
The total runtime was11 minutes and42.279 seconds, the number of iterations3462784 and the
number of R & R steps51; this results in2.02 · 10−4s per iteration on average.

6 Conclusions and Future Work

Threshold accepting was presented by Dueck et al. [2] as a simpler algorithm with better perfor-
mance than simulated annealing, but their results on error-correcting codes were an initial trial,
still pending a more comprehensive evaluation. Based on the empirical results, this basic technique
does not appear to perform well for DNA design.

We attributed this weak result to the effect of randomly replacing any codeword with a new one.
Koschnick’s and Tulpan et al.’s algorithms do not randomly replace codewords but search for vi-
olating codewords to replace. The likelihood of randomly finding a violating codeword decreases

12

Figure 6:RLDs for the final variant given in section 4.6. Instances areAGC
4 (8, 4, 4) with m = 120, 140 and160.

as the solution gets better, so it is more advantageous to search for codewords that violate the
distance constraint. Thus, searching for a good candidate codeword toreplace ensures a higher
probability of minimizing the objective function than replacing one at random.

Koschnick’s algorithm [3] performs much better already in its basic version. It’s main weakness
seems to be its backstep, which is not good in escaping local minima.

We tried several modifications and combinations of these algorithms including Ruin & Recre-
ate [8], storing and restoring the best known value of the search, and resetting the threshold,
iterating many times. Our final result seems to perform reasonably well as can be seen in our
thorough empirical analysis.

We conclude that combining Koschnick’s forward search with the improvedversion of TA utilizes
the strengths of both algorithms and discards most of their weaknesses. Also, R&R seems not to
be a good idea on its own in this problem domain, but it appears to be a powerful tool to get out of
local minima and can be used to attack harder problem instances.

Although not extensively discussed in this work, we also noticed that tweaking the various pa-
rameters of these algorithms does have some impact on their average runtime. In some cases,
this impact is very small, in some other cases rather noticeable. For example, theinitial threshold
value did not influence the runtime significantly; but the value of the stagnationparameter did.
Specifically, in hard cases it was necessary to set its value to a large number (compared to the
values used for the easier cases) in order for the algorithm to succeed.See Section 5 for some
values that we used in our tests. We believe that if one is interested in solving aparticular problem
instance, one should try to find suitable values for these parameters. Whatwe did for this work
was to experiment with some values and use the best ones for our empirical analysis. It is possible
to do further, more thorough analysis about determining their optimal values as a future work step.

One more general observation that we made is that it seems like these stochastic local search
methods that we considered perform very well when the number of solutions is relatively high.
But as the optimal configurations become sparser and sparser in the solution space, these methods
become less and less likely to succeed. For example, the theoretically achieved lower bound on

13

AGC
4 (8, 4, 4) is 224 and it seems almost impossible to be achieved by our methods; also Tulpan et

al. [9] considered much smaller values form in this case. We believe that this solution must have
a very specific structured configuration which is unlikely to be achieved byrandom steps.

Still, a possible direction for future research is to use our results to furtherimprove the algorithms
for DNA code generation. As we can see in this work, combining the strengths of different meth-
ods seems to be promising and one could focus on designing stochastic localsearch methods based
on this idea with the aim to break the current known bounds on DNA code sets. A first step could
be to test our algorithm more exhaustively on difficult test cases.

We did not consider other common constraints in DNA design, such as the RC constraint. It should
not be very difficult to adapt our algorithm to obey some additional constraints, especially the RC
constraint, since it basically comes down to changing the objective function that we are trying to
minimize. We think that applying our methods to those cases could also yield interesting results.

References

[1] A.E. Brouwer, J.B. Shearer, N.J.A. Sloane, W.D. Smith: A New Table ofConstant Weight
Codes. IEEE Transactions on Information Theory, 36, 1334-1380, 1990.

[2] G. Dueck and T. Scheuer: Threshold Accepting: A General Purpose Optimization Algo-
rithm Appearing Superior to Simulated Annealing. Journal of Computational Physics, 90,
161-175, 1990.

[3] K.U. Koschnick: Some New Constant Weight Codes. IEEE Transactions on Information
Theory, 37, 370-371, 1991.

[4] F. Comellas and R. Roca: Using Genetic Algorithms to Design Constant Weight
Codes. Proceedings of the International Workshop on Applications of Neural Networks
to Telecommunication, Lawrence Erlbaum, Hillsdale, NJ, 119-124, 1993.

[5] G. Dueck: New Optimization Heuristics: The Great Deluge Algorithm and theRecord-to-
Record Travel. Journal of Computational Physics, 104, 86-92, 1993.

[6] A.G. Frutos, Q. Liu, A.J. Thiel, A.M.W. Sanner, A.E. Condon, L.M. Smith,R.M. Corn:
Demonstration of a Word Design Strategy for DNA Computing on Surfaces. Nucleic Acids
Research, vol. 25, 4748-4757, 1997.

[7] H.H. Hoos and T. Stuetzle: Evaluating Las Vegas Algorithms - Pitfalls and Remedies.
Proceedings of UAI-98, 1998.

[8] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, G. Dueck: Record Breaking Optimization
Results Using the Ruin and Recreate Principle. Journal of Computational Physics, Vol. 159
(2), 139-171, 2000.

[9] D. Tulpan, H.H. Hoos, A. Condon: Stochastic Local Search Algorithms for DNA Word De-
sign. DNA Computing, 8th International Workshop on DNA-Based Computers, Springer
LNCS vol. 2568, 229-241, 2002.

14

[10] A. Condon, R.M. Corn, A. Marathe: On Combinatorial DNA Word Design. Journal of
Computational Biology, 8:3, 201-220, 2001.

[11] O.D. King: Bounds for DNA Codes with Constant GC-Content. The Electronic Journal of
Combinatorics, vol. 10, R33, 1-13, 2003.

[12] T.H. LaBean: Introduction to Self-Assembling DNA Nanostructures for Computation and
Nanofabrication in Computational Biology and Genome Informatics. (eds. J.T.L. Wang,
C.H. Wu, P.P. Wang), ISBN 981-238-257-7, World Scientific Publishing, Singapore, 2003.

15

