Applying, Improving and Analyzing Some Heuristics for
Binary Codes in Combinatorial DNA Design

Lyndon Hiew Siamak Tazari
University of British Columbia University of British Columbia
Dept. of Computer Science Dept. of Computer Science

lyndonh@cs.ubc.ca siamakt@cs.ubc.ca

January 19, 2005

Abstract

Combinatorial algorithms have long been used to designm emwecting codes with various
constraints such as Hamming distance or weight. Such #igasihave been used to design
DNA codes, which parallel error correcting codes in many svaye implemented two al-
gorithms from coding theory and adapted them for DNA. Wedtgeveral improvements and
combinations and we will discuss the empirical analysistaedstrengths and weaknesses of
each variant.

1 Introduction

Short strands of DNA can now be synthesized quickly and economicallis las enabled its
use in applications like DNA computing and nanostructures [12]. Givenlitigyao synthesize
strands, the problem is designing a set of DNA strands that satisfy cextpimements. The com-
binatorial aspects of these requirements can be studied in the domain g toetimy, specifically
the theory of error-correcting codes. Thus, various methods fratimgaheory have been applied,
but the analysis of such algorithms is rarely mentioned in literature.

DNA consists of4 complementary base paird, C, G andT', where A pairs withT", andC
with G. One strand hybridizes with another perfectly, if its reverse is complenyetatéine other
(imperfect hybridization is also possible if the two strands do not match exabiNA design can

be simplified to the problem of designing codewords of lengtlising a 4-letter alphabet. The
Hamming distance H (x, y) of two codewords: andy is defined to be the number of positions in
which they differ. One would like to have a set of codewords with minimum Hamrdisigance

d (for some sulfficiently largel) to make undesired hybridizations unlikely, i.e. to achieve that
every codeword anneals to a distinct ward10]. Furthermore, in order to prevent codewords
from hybridizing between themselves, it is desirable to have codes, wieamming distance

between every word and the reverse complement of all the codewords - includinig at least!
(again for some large enough[10]. We will not consider this constraint in this work. Though, it
is possible to derive bounds for the case considering this constramntfr® simpler case without
this constraint [11].

There are also some thermodynamic constraints in DNA design. The sttamdd &leally have a
similar melting point, allowing the hybridization of multiple strands to occur simultarig§él
One way to achieve this goal (i.e. to increase its probability) is to require teattAnds have a
similar number of7 andC' base pairs. In terms of coding theory, this is similar to the requirement
of having codes of constant weight. Thiamming Weight of a codeword is the number of its
non-zero positions. Codes with constant Hamming weight, constant-weidgbtc have been
extensively studied in the coding literature. But instead of consideringuh#ar of non-zero
(say, nonA) positions, we require the number of positions contairtthgr C to be constant. We
call this number th&C-content of a strand and denote it by- the letter usually used to denote
the weight of codewords. In this terminology, we are now looking for sEBNA words with
constantzC-contentw [11].

Finally, let us introduce some notation: we denote the maximum number of cbidegjthn over

a g-ary alphabet with minimum Hamming distanééy A,(n, d). If we additionally require to
have a constant Hamming weight we use the notatior,(n, d, w). When considering codes
with minimum Hamming distancé to the reverse or reverse complement of all other words, we
use the notationsl¥(n,d), A%(n,d, w), AF°(n,d) and AR (n,d,w), respectively. For DNA
codes with constar®C-contentw we useA$ (n, d, w) and ASFC (n, d, w). In this work, we
focus on combinatorial algorithms that attempt to find good lower bound&6i(n, d, w).

2 Redated Work

Condon et al. [10] investigated various lower and upper boundAt’I%(m, d) andAfC(n, d), es-
pecially for the caseg = 2, 4. King [11] provided some bounds otf?“ (n, d, w) and constructed
new DNA codes using lexicographic codes. In both of these workscameealize the importance
of general coding theory and their use of its vast literature, especialtynamy codes.

Several combinatorial optimization algorithms have been applied to the cowstigihit code prob-
lem for binary codes, but few discuss their algorithm'’s running time and\wieh We would like
to discuss three of these approaches here:

Dueck and Scheuer [2] introduced Threshold Accepting as a newajgn&pose stochastic local
search method and applied it to binary constant weight codes. Thersulvatantial emphasis
on the results of Threshold Accepting compared to Simulated Annealing. Thevatplower
bounds for constant weight codes when compared to Simulated Anneadipyesented. They
did mention a CPU time of “very few seconds” for their algorithm, but only ongibecial case
to find a21-word code as a lower bound fat» (22,10, 11). They also write that in order to find
good codes in hard cases, more computational effort and largeliregmds are necessary.

Koschnick [3] proposed an algorithm based on stochastic forwamtts@ad backward search.

He briefly mentions a range of values to use for the number of iterationsehataly seemed to
be working well in their experiments; but no running time estimates are given.

We looked at several related algorithms to find features and techniquesotiid be applied to
our algorithms. A stochastic local search algorithm for finding DNA codd&@vas published by
Tulpan et al. [9]. They successfully improved their initial, rather simple #lgorby randomly

replacing a fraction of codewords whenever the algorithm had stagn&edrimpf et al. [8]

proposed a similar idea, called “Ruin & Recreate” as a general-purgaiseization technique:
“ruining” a portion of the solution and “recreating” it at each iteration. yrapplied it successfully
to some vehicle routing problems but did not try it for codeword generation.

We also looked at Brouwer et al.’s work [1], which provides a comensive list of all then-known
best lower and upper bounds on binary constant-weight codes. @lwithms we considered
were Dueck’s “Great Deluge” algorithm [5], which he proposes agteser general purpose opti-
mization technique similar to Threshold Accepting, and Comellas et al.’s [4tgesigorithm for
finding binary codewords. We did not further investigate either of theghods and decided to
focus on Threshold Accepting and Koschnick’s algorithm instead.

3 Two Algorithmsfor Binary Codes

To start with, we implemented the algorithms of Koschnick and Dueck et al][ZB®&th algo-
rithms were originally designed for finding binary code words, but weptsththem to work on
DNA code words. We then tried several modifications and combinations. ilMdiscuss these in
the next section. Here, we would like to describe the basic ideas behirdalyesithms. Further
details can be found in the given references [2, 3].

Dueck et al. proposed a general-purpose optimization method, which alieg €hreshold Ac-
cepting (TA). It is a stochastic local search method with a paraniteghe current threshold. It
starts with some candidate solution and iterates on these steps: it looks atrérd candidate
solution and creates another one in its local neighborhood by applyingsoaierandom pertur-
bation to it. If this new candidate solution is at m@stnits worse in value than the current one,
it accepts it as the new candidate solution and iterates. After some time, iadestde value of
T and continues.

In order to apply this to error-correcting codes, we have to defineralbigm as an optimization-
problem: Givenm,n,d, andw, we want to find a set of codeword¥, with |IW| = m, length
n, weightw and minimum pairwise Hamming distande We can try to minimize the following
objective function:

(W)= Y (d—H(z,y))

H(zy)<d

We can start with a random sBf of sizem obeying the weight constraint and apply TA, trying
to minimizec(1W) until it becomes). When considering binary codes, we can choose a random
transposition of & and al in a random word as our perturbation step. If our goal is to find lower
bounds oz (n, d, w), we can apply this method to increasing valuesof

!Dueck et al. used the square of the distances of violating pairs instead.

Koschnick’s algorithm also tries to minimiz€1V) but uses a different approachThey have

two main functionsforward_search andbackstep. In the forward search, they first create a list
of all words that would contribute anything t@WW). Then they process these words one by
one in a random order as follows: look at all possible transpositionsadrad al in the given
word and choose the one that results in the largest decrease of thévelfesction. If no such
transposition improves(X), process the next word of the list. Otherwise accept this change and
restart the forward search. Their stopping criteria is based on a parameter Gatigd1”. When

this limit is reached, they do a backstep.

In the backstep, they choose a random error-valusing a geometric distribution. Then they
iteratively inspect the local neighbourhood of the current candiddtgico until they find one
with the precise value(X) + 4. If they see none, they choose one with the smallest value more
thanc(X) + 6 among the ones they have seen. In our implementation, we used a value31imit
to decide how many neighbours to look at in this step. The algorithm stops) lbdekstep is
performed more than “limiR” times - another parameter.

4 Adaption and | mprovements

In this section, we first describe how we adapted Threshold Acceptohéaschnick’s algorithm
to work with DNA strands instead of binary codewords. Then we will dbscrarious improve-
ments and combinations that we tried out and that eventually led to an algorithra sdttsfactory
performance. A detailed empirical analysis follows in the next section.

4.1 From Binary Codewordsto DNA Strands

For both of the mentioned algorithms, we first needed to generatd® sétn words of lengthm
andGC-contentw at random. We generated each word as follows: randomly choose tiep®s
for the GC bases and assign thentzaor aC' with equal probability. Fill out the rest of the word
with A andT bases, also uniformly at random.

The perturbation step for the binary codes consisted of randomly clgpasiodeword, created
by transposing a 0 and 1 in an existing binary codeword. If we appliecatine snethod to DNA
codewords, and transposed two positions at random, then the numHerIofC and G letters
would remain constant. Another problem could be caused by the initializatipnratelomly
choosing a configuration with a disproportional humberzodnd A bases, compared 0 and
T bases. Only transposing positions would not ensure codewords tpeeoan being poorly
configured. To probabilistically achieve all possible codeword configurs, the perturbation
step in our adaption consists of the transposition of two positions or themafligping of some
position. Obviously the random change must be done so as to preseré€’teentent, so &
or C' letter will be toggled to its other complementary base pair, and similarlyt an7" will be
replaced with its complementary base pair. The objective function coulddekassgiven and did
not need to be changed.

2This is only a rough description; for details see [3].

Implementing Koschnick’s algorithm with this adaption, resulted in a deceftnpeance, as can
be seenin Section 5. Though, improvements were still desirable. In coftinasshold Accepting
turned out to perform pretty poorly. So, variations and improvements mezressary.

4.2 Ruin & Recreate

We first considered Ruin and Recreate (R&R) [8], an optimization scherhedinias by removing
(a somewhat larger) part of the current candidate solution and tewéa hopefully improving
the value of the objective function. Our first attempt was to change therpation step to ran-
domly replace a fraction of codewords. This lead to even worse resutt®thiariginal threshold
accepting algorithm. The comparison is discussed in Section 5.

Due to these poor results, we revised the algorithm so a fraction of codevwgoreplaced only
when the algorithm stagnates. This method was used by Tulpan et al. [9ft@cto fat” right
tails seen in the run-length distributions, which are caused by the stoctesstiti ot finding any
improvements. The perturbation step was the same as in the original, intérchangeplacing
single bases in a codeword. This revision gave us slightly improved rum#itbariginal threshold
accepting algorithm when comparing their RLDs.

4.3 Storing the Best Candidate Solution

A common technique in stochastic local search is to store the best canditlatenstound so

far. This is a good idea, since it can happen that at one point we findaapgndidate solution,
“perturb away” from it and never find back there or to any better solutioour case, this simply
translates into stopping the TA algorithm when a solution with cost 0 is fougdrdéess of what
the current threshold is. Any other “best” candidate solution with a strictyjtipe value would

be of no use to us whatsoever.

Even though for the basic TA this is a very simple obvious thing to do, we actoellje very
good use of this idea in a different manner in other variations of the algothhinve tried and
will explain next.

4.4 Increasingthe Threshold?®

Let us state an interesting observation made oftentimes in local search:wehegach a local
minimum and we are at the final steps of our algorithm (be it Threshold AiccgBimulated
Annealing or something else), where we do not accept (much) worsi@eaa solutions anymore,
we will keep coming back to that local minimum and never escape that area. i$\ften done is
to restart the search. But we decided to make use of another idea:roemtazandidate solution is
probably not so bad, so we can slightly increase our threshold, thus gnawiy from this point -
but not get too far away (as we would do by restarting). If our thriekgets zero and we're stuck

Thanks to Frank Hutter for an interesting discussion about this idea uSithinated Annealing.

again, then we increase again and iterate this process many times. This metieodowt to be
often successful in escaping local minima!

In detail, we did the following: We used a counter to keep track of the numbgerations
we are spending at the current threshold value. We introduced a parazaéied “stagnation”,
which specified how long to remain with a threshold value before decredsiiige multiplied
the value of this parameter with a constant, every time we decreased theottirgsl used the
value1.73 ~ /3 for this constant, after trying out a few values betwéehand?2). The idea
was that when the threshold is large, the search is rather random-likeotusd significant but
when it becomes small, we should spend more time in every stage. We alsoueseiunter
whenever an improvement was found. When the threshold redchad the current stagnation
value was reached, we reset the values of the threshold and stagkétiéound out that resetting
the threshold td was a good choice. We iterated this process until a solution was found.

We did not use R&R but we modified our perturbation steps: at each itera@hase with equal
probability to do a transposition or to flip a base. Then we selected a woad@bm and looked
at all possible transpositions resp. flips in that word and chose the dok whuld give the best
benefit.

Also, we always carried the best candidate solution found so far. ¥jeemwe wanted to reset the
threshold value, we checked if the current candidate solution is more thiare8 as bad as the
best one and if so, we set the current candidate solution to be thatrizestith probability one
third and continued the search from there. This modification helped to gkttba “good” area
when we drifted too far away.

4.5 Combining TA with Forward Search

Even though our last version performed reasonably well, it was still to isionaking the last
moves - getting rid of that last 1 to 2 penalty points and reaching a solution.wHsif course
because of its random nature. A more structured search could possliplgut of this. We decided
to make use of Koschnick’s [3] forward search that we described atid®®e3. This search looks
more systematically into violating pairs and looks for a possible improvement. @hékhat
this function continues its search after finding an improvement and iteratéd @inds a valid
solution (as long as its iteration-limit is not reached). We inserted a call to thésiéuwn just before
resetting the threshold value - that is, at the point where we would normaéyugi. This turned
out to be a huge improvement leading to finding solutions much faster!

Some other small changes that we made compared to the previous verssdheger. we refrained
from multiplying the stagnation value every time, since there was no need to dgnitagie; the
forward search in the end would accomplish the thorough searchingsfoinstead, we used
slightly larger stagnation values to begin with. Also we decided to get back tbasteso-far
candidate solution with a small probability (ab@jt) even if the current candidate solution was
not at least 3 times worse; this is because in harder cases, the badatasdlution found so far
is often still large and even getting there is already hard enough - the aftgasittuld get away
from it and not find its way back easily. We did this probabilistic resetting stegrever we reset
the threshold, i.e. not after every small iteration but only when we decidexstart.

This version was indeed powerful and fast, as we will discuss in sectiesfiecially for cases that
were not very hard. But in very hard cases it still had trouble gettingy dwan a local minimum
if it got stuck in a large basin of attraction. This lead us to our next (finabiga.

4.6 Combining Them All

We decided to incorporate R&R to attack these harder cases. The ideaalvdsmé keep com-

ing back to that same candidate solution value many times, we should perfomesvhat larger
perturbation. We decided to destr2¥ of the current candidate solution and recreate those code-
words from scratch. The recreation step was not completely randormangemly decided about
the GC-positions but when we had the choice betweet ar C, resp. between a or T, we
chose the one that occured less often in that column in other words (if #tlig helped, we do not
know). But we do know that using R&R occasionally did help to escape logdima and made

it possible for us to attack harder problem instances.

The scheme that we used was as follows: Whenever we came to the poirgt wbaevanted

to increase the threshold again and start a new round, we comparedrithiet diest candidate
solution value with the best candidate solution value of the last round. Ifstthe same, we
would increment a counter, otherwise reset that counter. When thiserchin10, we would do

an R&R step (and reset the counter). The reason we did it this way, i.ezcenofrequently, is

that we saw that R&R disturbs the current candidate solution rather heaa¥yng it often much

away from its previous value - and that, in spite of the fact that we are gionity 2 percent. So,
it was only useful for doing what we intended it to do: effectively gettinguafrom an area of
the solution space, without loosing too much of the good structure fourat.so f

Also, we again slightly changed the rule for getting back to the best-s@fatidate solution: in
the case where the current candidate solution was not at least 3 timed as thee best one, we
would get back to the best one witl% chance but only if its value was more than some constant
(we useds). We decided to do this because when the best-so-far candidate sokltierisssmall,
then the first condition (being at least 3 times as bad in addition to a one-tlindgehis sufficient

but when it is large, we would like to get back to it more frequently.

Note that this version does not differ with the previous version if the prolistance is not hard.
This is because the condition for doing a R&R step is never met in these 8ages.hard cases,
this variant is clearly more powerful as we will see in the analysis.

5 Empirical Analysis Results

To analyze the algorithms, we followed the methodology of Hoos et al. [didtaining run-length
distributions (RLDs). We obtained the RLDs of several problem instafecesomparison. Each
distribution consists of 1000 successful runs on a particular instarecprablem. The run-length
was measured as the number of iterations of the algorithms. But we havedcedtabn that: first,
note that an iteration of the basic TA is much more light-weight than an iteration latdrever-

sions where we looked at the best possible flip/swap in a word. Also, edaunating Koschnick’s

09k

08F

07F

cost

06

05

04

m =70
——m=80
em.m=90

03F

02F

01F

0 0.5 1 15 2 25

. . .
23 24 25 28

steps 4

x10° P x 10

(a) Run-length distribution (RLD) (b) cost improvement distributions

Figure 1:(a) Run-length distributions for the threshold accepting algorithmA4Bf’ (8, 4, 4) and codeword set sizes

m of 70, 80 and 90(b) A distribution of cost improvements versus algorithm steps for 1000atiseshold accepting

on A$9(8,4,4), threshold = 30, and set size ofr = 70. Each data point represents the cost and iteration number
when the algorithm found a better solution.

algorithm and his forward search in the combined methods, we countegdiavestigation of a
word as one “iteration”. The amount of work that the forward seara@sdehen investigating one
word is very similar to the amount of work done in an iteration of the more sopdiisticTAs, so
we think this is a fair way of comparing them. Notice that running forwardcdeanly once can
thus cause many such iterations.

For our evaluation, we investigated the problem insta#ig€ (8, 4,4). The best currently known
lower bound given in [11] isn = 224. This bound is achieved by constructing a code of size
112 for AS“%€ (8, 4,4) and then using a theoretical result (known as the halving bound) to get a
solution for AYC (8, 4, 4) with twice as many codewords. It turns out that finding a code of this
size using only local search is very hard. In fact, even much smallersvafue seem to be hard
enough to make this instance interesting for investigation.

For RLDs of the basic threshold accepting, in order to gain some prelimimatgrstanding of
it, we decided to try much smaller values first. The size®f the set of DNA codewords we
used were 70, 80, and 90. We avoided the use of larger values, duelerdge amount of time
required to obtain 1000 successful runs - we decided to work on algociimprovements instead.
The initial threshold was set to 30, a value sufficiently large to allow the algortthfind a
solution. Values determining the number of iterations before deciding thathlgastagnation or
termination were also set to above optimal values, to ensure a solution is fdbedRLDs and
the distribution of cost improvements can be seen in Fig. 1.

Threshold| Median | Mean
10 8637 | 8628
20 13778 | 13799
30 18886 | 18915

Table 1: Median and mean number of iterationsA§i° (8, 4, 4) andm = 70, using different threshold values.

The choice of the initial threshold value does have an effect on thegevaranmber of iterations
needed to find a solution. Fat = 70, we obtained 000 successful runs for threshold valuds

20 and30. In Table 1, we see that increasing the threshold value increases themnaiitbrations

the algorithm must make to find a solution. The distribution of cost improvements umeFigb)

for a threshold value d§0, shows the cost stays fairly constant for many steps, until the threshold
decreases to some optimal value, causing the cost to steadily decreasgytaging an optimal
threshold value, one can avoid the cost improvement plateau and immediatgily alsteadily
improving cost. The authors of threshold accepting mention that one of Yamt@des of it over
simulated annealing is its relative indifference to threshold values. Haviggrl#inan optimal

values will not significantly change the likelihood of success.

1 - —
[L 150
J — -
0.8f ! _rf
If
06} roo
L
L
04} ! ;
|I ; — m=100
i Lo - =m=120
0.2 Pt .= m=140
P
0 i 4
10F 10° 10* 16° steps

(b) Cost improvement distribution for

(a) Run-length distributions for Koschnick’s al-
Koschnick’s algorithm

gorithm

Figure 2:(a) Run-length distributions for Koschnick’s algorithm fdif’“ (8, 4, 4) and codeword set sizes of 100,
120 and 140(b) A distribution of cost improvements versus algorithm steps for 100 riiKeschnick’s algorithm on

A$€(8,4,4), and set size ofr = 70.

We also did some brief testing of Koschnick’s [3] method. It seems much fastemuch more
successful than our basic threshold accepting! For many differdusat is able to come close

to and sometimes reach the best known lower bounds presented in [1lgmplesrun-length
distribution analysis for findingi{“ (8, 4,4) is shown in Figure 2(a). Note that here we were
able to use much larger values faer and the program is considerably faster than our threshold
accepting. But we also see that far = 140, in about20% of cases it gets stuck and suddenly
needs considerably more time. This shows that its backstep is not partiqyderdyin escaping
local minima. The cost improvement distribution in Figure 2(b) shows a ragitiderease when

compared to the distribution in Figure 1(b).

150

100

cost

0 0.5 1 15 2

Figure 3: A distribution of cost improvements versus algorithm steps for 100 rémaiofirst attempt at Ruin &
Recreate om§ (8, 4, 4) and set size ofn = 70.

In our first attempt at R&R, we found the performance to be far worsedbanoriginal algorithm.

It required nearly two orders of magnitude more computation time to obtain thersamiger of

solutions as the original. The cost improvement distribution is displayed in Fjufeor 100

runs, the cost is never able to approach zero. Doubling the cutoffnedeas for the algorithm’s
maximum number of iterations made no noticeable difference in the distributiowadtvery

evident this modification was not productive.

In Fig. 4(a), we see an RLD-comparison between the original TA vs.dlsgan which uses R&R
when it stagnates. We see that this version gives slightly improved resutslsé/tried ruining
different fractions and see which value is better. The results are showiy. 4(b). Using a
fraction ofr = 20%, we were able to obtain 1000 successful runs in the cases100 and110,
which we were not able to obtain using our original threshold acceptingitigo

In Fig. 5(a), we see the RLDs for the variant presented in section 4.drenhie increased the
threshold whenever it hit 0 along with some other modifications. We see thatdtrgion is
powerful enough to be tested against the values= 100, 120 and 140 and is faster on these
instances than the original TA was on the smaller instances! We used an imgighaihd value
of 8 in all cases and set the stagnation paramet@0t80 and 60, respectively. An interesting
observation is the step-like structure of the RLDs. We think that this is due tautnber of times
where the threshold is reset: if an instance goes through without resdttivith Jand below the
first “step”, if it resets once, it will be between the first and secondo™sééd so on. We can see
that for smaller instances, we have fewer steps.

Fig. 5(b) shows the RLDs of the combination of our improved TA with Kosdkisiéorward

search, as was described in section 4.5. We see that the RLDs of thareasach smoother and
this algorithm is much faster than any other we have seen so far. So, thns sede indeed a
good version! We used the same values for the threshold and stagnaiiothagprevious case,
except form = 140, where we chose a threshold f instead. Still, this variant is not very good

10

DEer

Dé&r

L !
0.4 ruin 1%
; — — ruin 10%

La TUin 40%

= ruin 60%

—ruin 1%
= =ruin 20%
... orig TA 0.2y

22 24 : - . - .
% 10° 6000 7000 800D 0000 10000 11000 12000

(a) RLDs for the original TA vs. the version us- (b) RLDs for different percentages of ruining
ing R&R on stagnation

Figure 4: (a) Run-length distributions for the original threshold accepting algorithm aedttapted R&R version
with ruin-fractions1% and20%. All were run on the problem instanc&’“ (8, 4, 4) with m = 70 and threshold0.
(b) Run-length distributions of 1000 successful runs4fi© (8, 4,4), threshold= 10 and set size ofn = 70. The
ruin-fraction had values of%, 10%, 40% and100%.

for really hard instances; already in the upp&¥: instances of the case = 140, we can observe
some difficulties; and obtaining successful runsifo= 160 was so slow that we decided to leave
this test-case for our final version.

Finally in Fig. 6, we see the RLDs of our most sophisticated version, peesém section 4.6.
Notice that here we used values = 120,140 and 160! The thresholds were set & 10, 10
and the stagnation parameter2th 60, and200, respectively. The algorithm is generally more
successful in escaping local minima and thus is better suited for these bas#s. Form = 120,

no R&R step happened, i.e. the performance was about the same as tleedimst vthe condition
of being stuck a long time never occurred. kRor= 140, it occurred only25 times in total during
the whole1000 runs that were tested. But fat = 160 it was used more frequently127 times
for 1000 runs. It is interesting to note that the distribution was not about one R&R stepup;
many instances didn’t need it at all, whereas others used it several tiveasere also able to find
a solution form = 180, using about 7 million iterations and 192 R&R steps. When trying this
value with the previous versions, the algorithms stopped without a soluti@seTiesults suggest
that this version is especially well suited for hard problem instances.

We also shortly tried some other values forn, d andw and compared them against the bounds
given in [11]. In some cases, such 4§ (6,3,3), we were able to hit the lower bounds in
relatively short tests. It seems that in order to achieve some of thesddmrmaybe break them),

a lot of computational effort is required when using stochastic locacheaethods. Since our
aim was not to break these bounds (but to gain some understanding anghical performance

of these algorithms), we did not invest the time to perform these tests.

11

1 -
Fa ! y;
i ! o
08} S { o8} ! ;
|r |
0.6t 0.6t | I
| |
| [
D4t D4t | !
—_ m =100 I ! — m =100
I -
I -—-m=120 | I f - —m=120
02 ‘—- m=140 02 f' ! —- m=140
;
D = I5 & D = jI .(3 I4 S
10 10 10 10 10 10

(a) Increasing the Threshold (b) Combining TA with Forward Search

Figure 5:(a) RLDs for the variant presented in section 4.4, where the threshold iased when it hits 0. Problem
instances arel§¢ (8, 4, 4) with m = 100,120 and140. (b) RLDs for the variant combining the improved TA with

Koschnick’s forward search as presented in section 4.5. Probléangessame as in (a).

On CPU Times. We measured the CPU time of our implementations on an Intel Pentium 4
processor, 2GHz, 512KB L2-cache and 256MB RAM running Wind®iRsOur programs were
compiled and run using the Cygwin dll version 1.5.10. We used the testeases w = 4,d =

4 andm = 100,120,140. The time needed for one iteration of the basic TA was on average
3.5 -107%s. This is very low since one iteration of this basic version only performs andam
transposition or flip and updates the cost-matrix. In the more sophisticatsidngrwhere we
scanned a word for its best improvement, the time per iteration increasedverag@o®-10*s.

This value stayed the same for all subsequent versions, since théi@pedone in each iteration
did not change significantly - it was the search-strategy of the algorithhchizanged. This is
also true for our final version that included ruin & recreate steps. Sind® & R operation was
performed very rarely (as discussed above), its impact on the aveeaggeration runtime turned
out to be negligible - even on very hard cases: we ran our final vefsidhe test case:» = 180.

The total runtime wad1 minutes andi2.279 seconds, the number of iteratiod#62784 and the

number of R & R step§1; this results ir2.02 - 10~*s per iteration on average.

6 Conclusionsand Future Work

Threshold accepting was presented by Dueck et al. [2] as a simpleitlgavith better perfor-
mance than simulated annealing, but their results on error-correcting eagte an initial trial,
still pending a more comprehensive evaluation. Based on the empiriclsréisis basic technique

does not appear to perform well for DNA design.

We attributed this weak result to the effect of randomly replacing any codewith a new one.
Koschnick’s and Tulpan et al.’s algorithms do not randomly replacewonts but search for vi-
olating codewords to replace. The likelihood of randomly finding a violatirbpemrd decreases

12

1 =T Fd
// !
’ IJ’
L ‘
0.8 /)
f '
0.6 / !
! f
1 _“
'
0.4¢ |' ;
| k
i ;f —_—m=120
0.2r] ;= —m=140
) g —. m=160
I -
D Z MS Id I5 -]
10 10 10 10 10

Figure 6:RLDs for the final variant given in section 4.6. Instances@fg(& 4,4) with m = 120, 140 and160.

as the solution gets better, so it is more advantageous to search for cddeahat violate the
distance constraint. Thus, searching for a good candidate codewcggdl&me ensures a higher
probability of minimizing the objective function than replacing one at random.

Koschnick’s algorithm [3] performs much better already in its basic verdksmmain weakness
seems to be its backstep, which is not good in escaping local minima.

We tried several modifications and combinations of these algorithms including&RRecre-
ate [8], storing and restoring the best known value of the search, eswdting the threshold,
iterating many times. Our final result seems to perform reasonably wellrabecgeen in our
thorough empirical analysis.

We conclude that combining Koschnick’s forward search with the impreeesion of TA utilizes
the strengths of both algorithms and discards most of their weaknesses R&R seems not to
be a good idea on its own in this problem domain, but it appears to be a pbtesifto get out of
local minima and can be used to attack harder problem instances.

Although not extensively discussed in this work, we also noticed that iwgdke various pa-
rameters of these algorithms does have some impact on their average rumis@me cases,
this impact is very small, in some other cases rather noticeable. For examptetigthéhreshold
value did not influence the runtime significantly; but the value of the stagnpticemeter did.
Specifically, in hard cases it was necessary to set its value to a large n(cobgared to the
values used for the easier cases) in order for the algorithm to suc8sedSection 5 for some
values that we used in our tests. We believe that if one is interested in solparg@ular problem
instance, one should try to find suitable values for these parameters. W&'did for this work
was to experiment with some values and use the best ones for our empiabalia. It is possible
to do further, more thorough analysis about determining their optimal vatugféure work step.

One more general observation that we made is that it seems like these stoldwad search
methods that we considered perform very well when the number of sadusarelatively high.
But as the optimal configurations become sparser and sparser in thersshdie, these methods
become less and less likely to succeed. For example, the theoretically acluess bound on

13

A (8,4,4) is 224 and it seems almost impossible to be achieved by our methods; also Tulpan et
al. [9] considered much smaller values farin this case. We believe that this solution must have
a very specific structured configuration which is unlikely to be achievedibgom steps.

Still, a possible direction for future research is to use our results to furtipgove the algorithms
for DNA code generation. As we can see in this work, combining the stremgttifferent meth-
ods seems to be promising and one could focus on designing stochastselaicdi methods based
on this idea with the aim to break the current known bounds on DNA codeA#éitst step could
be to test our algorithm more exhaustively on difficult test cases.

We did not consider other common constraints in DNA design, such as thef@aint. It should
not be very difficult to adapt our algorithm to obey some additional coingtraespecially the RC
constraint, since it basically comes down to changing the objective functinvihare trying to
minimize. We think that applying our methods to those cases could also yield tiignesults.

References

[1] A.E. Brouwer, J.B. Shearer, N.J.A. Sloane, W.D. Smith: A New Tabl€afstant Weight
Codes. IEEE Transactions on Information Theory, 36, 1334-13810).19

[2] G. Dueck and T. Scheuer: Threshold Accepting: A General saptimization Algo-
rithm Appearing Superior to Simulated Annealing. Journal of Computatidmgies, 90,
161-175, 1990.

[3] K.U. Koschnick: Some New Constant Weight Codes. IEEE Transaetim Information
Theory, 37, 370-371, 1991.

[4] F. Comellas and R. Roca: Using Genetic Algorithms to Design Constant hiVeig
Codes. Proceedings of the International Workshop on Applicationseafall Networks
to Telecommunication, Lawrence Erlbaum, Hillsdale, NJ, 119-124, 1993.

[5] G. Dueck: New Optimization Heuristics: The Great Deluge Algorithm andRéeord-to-
Record Travel. Journal of Computational Physics, 104, 86-92,.1993

[6] A.G. Frutos, Q. Liu, A.J. Thiel, AM.W. Sanner, A.E. Condon, L.M. SmighM. Corn:
Demonstration of a Word Design Strategy for DNA Computing on Surfaceslelit Acids
Research, vol. 25, 4748-4757, 1997.

[7] H.H. Hoos and T. Stuetzle: Evaluating Las Vegas Algorithms - Pitfalls aech&ties.
Proceedings of UAI-98, 1998.

[8] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, G. Dueck: RecoedlBng Optimization
Results Using the Ruin and Recreate Principle. Journal of ComputatioysitBhVol. 159
(2), 139-171, 2000.

[9] D. Tulpan, H.H. Hoos, A. Condon: Stochastic Local Search Algargtior DNA Word De-
sign. DNA Computing, 8th International Workshop on DNA-Based Compu@pringer
LNCS vol. 2568, 229-241, 2002.

14

[10] A. Condon, R.M. Corn, A. Marathe: On Combinatorial DNA Word @s Journal of
Computational Biology, 8:3, 201-220, 2001.

[11] O.D. King: Bounds for DNA Codes with Constant GC-Content. Thettmic Journal of
Combinatorics, vol. 10, R33, 1-13, 2003.

[12] T.H. LaBean: Introduction to Self-Assembling DNA NanostructusGomputation and
Nanofabrication in Computational Biology and Genome Informatics. (edd..JMang,
C.H. Wu, P.P. Wang), ISBN 981-238-257-7, World Scientific Publishimgg&oore, 2003.

15

