
Improvement of the PROJECTION Motif Finding Algorithm

Mohammed Alam
University of British Columbia

Department of Computer Science
malam@cs.ubc.ca

Warren Cheung
University of British Columbia

Department of Computer Science
wcheung@cs.ubc.ca

Juan Gabriel Estrada
University of British Columbia

Department of Computer Science
estrada@cs.ubc.ca

James King
University of British Columbia

Department of Computer Science
king@cs.ubc.ca

March 16, 2004

Abstract

In 2001 Buhler and Tompa [1] introduced their PROJECTION algorithm for solving the
motif discovery problem for motifs of fixed length

�
. The algorithm finds good candidates

for local optimisation by projecting all
�
-mers present in the input onto a smaller subspace

and analysing dense points in that subspace. We have developed AGGREGATION, a modified
version of PROJECTION that analyses dense regions of the subspace rather than dense points.
Our subtle modification more than doubles the speed of the algorithm for many problem
spaces while maintaining the same level of accuracy.

1 Introduction

Given a number of DNA sequences, the motif finding problem is the task of discovering a partic-
ular base sequence that appears (perhaps in a slightly mutated form) in every given sequence. We
are considering the challenge problem as defined by Pevzner and Sze[8], and as stated by Buhler
and Tompa[1]:

Planted �������	� -Motif Problem: Let
 be a fixed but unknown nucleotide sequence
(the motif consensus) of length � . Suppose that
 occurs once in each of � back-
ground sequences of common length � , but that each occurrence of
 is corrupted
by exactly � point substitutions in positions chosen independently at random. Given
the � sequences, recover the motif occurrences and the consensus
 .

29

Much work has been done on the problem, but there are certain variations of the problem for
which satisfactory solutions have not yet been found. The problem becomes harder if, for example,
insertions/deletions are considered to be legal mutations or the motif does not occur in all of the �
background sequences.

2 Related Work

Pevzner and Sze [8] posed their challenge problem for motif discovery and introduced two new
algorithms that were more successful than previous attempts had been. WINNOWER treats every
occurring � -mer as a node in a graph, with nodes adjacent if and only if they differ in at most ��
positions and they occur in different sequences. It then finds cliques of size � and works from those
starting points. SP-STAR tries testing every occurring � -mer in turn and considers the possibility
that it is a mutated occurrence of the motif consensus. Using this technique it essentially does an
enumerative search, but only over the � -mers occurring within data rather than the entire space of��� � -mers.

More recently there have typically been two approaches used by motif discovery algorithms.
Profile-driven approaches make use of weight matrices to calculate the score of different can-
didate motifs, returning the highest scoring motif as an answer. Pattern-driven approaches search
for a motif of length � by assigning each of all possible

��� � -letter patterns a score based on its
number of occurrences in the sample (or another more sophisticated function). Clearly the lat-
ter is impractical for large � . Therefore a variation of the pattern approach — the sample-driven
approach — limits the set of possible candidates but may have difficulty detecting subtle motifs.
Sinha and Tompa [10] designed an enumerative search algorithm for yeast (YMF, Yeast Motif
Finder), which illustrates the reliability of the pattern-driven approach. However, this program
requires as input the specific characteristics of the motif that is being sought and is only intended
for finding short motifs.

More recently, Keich and Pevzner [4] designed MULTIPROFILER, a motif discovery algorithm
that balances the pattern-driven and sample-driven approaches to yield a better ability to detect
subtle motifs while avoiding the complexity of pure pattern-driven approaches. They also propose
an objective tool for analysing the performance of motif finding algorithms [5], with particular
focus on hard to detect, or ’subtle’ motifs. They suggest that in these cases even the most reliable
algorithms are more prone to picking up randomly occurring spurious motifs simply due to the
overwhelming presence of spurious motifs that, according to the scoring models used, are as good
or better than the planted motif.

Rocke [9] has proposed a modified version of the Gibbs sampling algorithm (GibbsDNA) of
Lawrence et al. [6] that uses suffix trees for the purpose of gapped motif discovery. Pevzner
and Sze also provide extensions to their SP-STAR algorithm to handle gapped and variable length
motifs.

GuhaThakurta and Stormo [3] have noted that many of the regulatory signals that appear in un-
aligned DNA sequences are composite patterns that are groups of monad (single motif) patterns
occurring near each other. Eskin and Pevzner [2] have noted that it is difficult to find composite

30

patterns using the current monad-based approaches, as such patterns are often composed of one
or more monad signals that are ’too weak’ (i.e. not statistically meaningful enough). They pro-
posed a monad pattern discovery algorithm, MITRA (MIsmatch TRee Algorithm), for discovering
composite patterns by first considering the problem as a larger monad pattern discovery problem
through preprocessing of the sample to be analysed.

3 The PROJECTION Algorithm

In 2002, Buhler and Tompa [1] introduced their PROJECTION algorithm. This algorithm ‘projects’
every � -mer from the given data onto a smaller space by hashing. The hash function is based on�

of the � positions that are selected at random when the algorithm begins. � -mers are hashed into
the same bucket if they have the same bases in those

�
positions. In this way, � -mers are hashed to�

-mers; these are the fingerprints that correspond to the buckets.

The idea behind PROJECTION is that background � -mers (essentially random noise) will be dis-
tributed fairly evenly between the buckets. Meanwhile, the ‘planted bucket’ (i.e. the bucket into
which the motif consensus would be hashed) will have additional � -mers because some occur-
rences of the planted motif will not be mutated in any of the

�
hashable positions. PROJECTION

performs this hashing, then performs refinement on each sufficiently full bucket to find the best
motif in the vicinity of the � -mers in that bucket; a ‘sufficiently full’ bucket is one that contains
a number of � -mers greater than a threshold, where the threshold depends on input parameters
����������� and � . The algorithm is likely to find the consensus motif if it ends up refining the planted
bucket. PROJECTION also sometimes finds the consensus motif by refining a bucket that is close
to the planted bucket. By running the algorithm for a sufficient number of iterations, PROJECTION

will refine the planted bucket in at least one run with high probability.

PROJECTION performs significantly better than many other motif finding algorithms, especially
for harder instances of the problem such as ��� � � � � , ����������� , and ����������� . For this reason, we have
decided to concentrate on improving PROJECTION, which has found great success in the � -mer
hashing technique.

4 Modification of PROJECTION

The majority of PROJECTION’s running time is taken up by the refinement stage that finds the best
motif in the neighbourhood of a given bucket. For this reason, it would be especially advantageous
to refine as few buckets as possible in our search for the planted bucket. The difficulty is that
refining more buckets is currently advantageous in that it increases the probability that we refine
the planted bucket at some point.

We have modified the projection process in a way that makes projection more complicated and
time consuming, but allows us to refine few enough buckets that the time gained in refinement
more than makes up for the time lost in projection. For the refinement stage of the algorithm,
Buhler and Tompa used the expectation maximisation (EM) algorithm developed by Lawrence

31

and Reilly [7]. We have left this stage of the algorithm completely unmodified.

A major problem with the projection method is that most planted occurrences of the motif con-
sensus will be hashed to buckets other than the planted bucket, essentially being thrown away and
considered as noise. The probability that many of these occurrences will be hashed to the planted
bucket is small. However, a significant number of motif occurrences will land near, but not in, the
planted bucket. Rather than simply refining any bucket that contains a sufficiently large number of
� -mers, we refine any bucket whose neighbourhood contains a sufficiently large number of � -mers,
where ‘sufficiently large’ means greater than some threshold. This threshold is chosen to give
a high probability of refining the planted bucket while keeping the probability of refining other
buckets low (see Figure 1). We define the neighbourhood of a bucket � to be the bucket itself,
plus all buckets whose corresponding fingerprints are at Hamming distance � from the fingerprint
corresponding to � . We could extend this neighbourhood to include buckets further from � ,
thereby further increasing the probability of a planted occurrence falling into the neighbourhood
of the planted bucket, but this would make our threshold tests prohibitively expensive.

We will refer to the number of � -mers hashed to a bucket’s neighbourhood as that bucket’s score.
Because this value is obtained by aggregating the scores of individual buckets, we will refer to our
modified method as AGGREGATION. By performing this score aggregation we essentially focus
the effect of the significant data (planted motif occurrences) in relation to the noise (randomly
occurring � -mers). By doing this, we improve the chances of sending the planted bucket to re-
finement. This means that fewer total refinements are required and the algorithm therefore runs
faster.

5 Analysis

Mathematical analysis of AGGREGATION (and PROJECTION, for that matter) is impractical unless
we make the assumption that background � -mers are independently distributed. This, of course,
is not true because some � -mers in the original data overlap each other. However, the overlap
is sufficiently short relative to the background sequence that analysis under our assumption is
applicable to the real case.

For any given set sequences, PROJECTION’s probability of discovering the consensus motif in an
iteration is fixed. That is, with some fixed probability the projection positions will be chosen in
such a way that the consensus motif is found in the refinement. Therefore, for a given set of input
sequences, we can consider one iteration of PROJECTION to be a Poisson trial. The expected
number of times the consensus is recovered in iterations follows a simple binomial distribution
(though the parameters for this distribution are extremely complex and can only be estimated).
Also, the probability that we do not recover the consensus decays exponentially as increases
(assuming that PROJECTION is capable of recovering said consensus at all). Naturally, the same
things can be said for AGGREGATION.

The probability of refining the planted bucket in a single iteration will vary depending on the
input data. In terms of performing meaningful analysis we can approximate the expectation of
this probability, which is particularly relevant to the challenge problem. It should be noted that

32

this probability is not exactly the same as the probability of recovering the consensus motif since
refinement of the planted bucket will not always yield the consensus and the consensus can be
refined from buckets other than the planted one.

Figure 1: Expected number of buckets refined and iterations required for AGGREGATION with
varying threshold. A good threshold keeps both of these values low; in this example 28, 29, and
30 would make good thresholds. These curves are based on approximations of tail probabilities of
the planted bucket (and other buckets) containing enough � -mers to be sent to refinement.

26 27 28 29 30 31 32
0

200

400

600

800

1000

1200

Expected total number of buckets to be refined

Refinement threshold (s)

Bu
ck

et
s

re
fin

ed

26 27 28 29 30 31 32
0

50

100

150

Number of iterations (m) required for 95% confidence

Refinement threshold (s)

Ite
ra

tio
ns

 re
qu

ire
d

(m
)

By determining the expected probability of refining the planted bucket and the expected probability
of refining any other bucket we can make some theoretical comparisons between PROJECTION

and AGGREGATION, as well as choose good threshold values for AGGREGATION. Choosing a
good threshold is a tradeoff — a threshold that is too low will send too many spurious buckets
to refinement whereas a threshold that is too high will cause the algorithm to require too many
iterations (see Figure 1). To compare PROJECTION and AGGREGATION we use our analysis to
determine how many iterations we need in order to refine the planted bucket with 95% probability
and how many buckets we should expect to refine during that process. We choose thresholds for
AGGREGATION that keep both of these values low. In terms of comparison our analysis suggests
that, in general, AGGREGATION can achieve 95% confidence after refining less than half as many
buckets as PROJECTION, given that we want to run both methods for the same number of iterations
(see Figure 2). The estimated number of buckets refined is equal to the estimated number of
iterations required to refine the planted bucket with 95% probability times the expected number
of buckets (planted or spurious) refined in each iteration. In terms of assumptions made, these
estimates only use the (false but fairly safe) assumption that background � -mers are independently
distributed and the assumption that the planted motif will be recovered if and only if the planted
bucket is sent to refinement.

33

Figure 2: Theoretical comparison of PROJECTION and AGGREGATION with varying thresholds.
The curves sweep down and to the right as the thresholds increase. This graph suggests that
AGGREGATION does not need to refine as many buckets as PROJECTION.

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of Iterations Required for 95% Confidence

Ex
pe

ct
ed

 N
um

be
r o

f B
uc

ke
ts

 S
en

t t
o

R
ef

in
em

en
t

Using PROJECTION
Using AGGREGATION

Because of the simplifications made in our analysis and the fact that AGGREGATION will be slower
per iteration than PROJECTION, we cannot consider this to be any kind of proof that AGGREGA-
TION is the superior method. Fortunately we see similar results in our experiments.

6 Experimentation

As stated before, for any fixed input we can consider one iteration of PROJECTION or AGGREGA-
TION to be a Poisson trial. Therefore, in comparing the performance of PROJECTION to that of
AGGREGATION for a fixed input, the only two things that need to be measured are the probabilities
of the Poisson trials and the average iteration runtimes. The probabilities can be approximated by
running the algorithms for a large value of and, for each algorithm, dividing the number of suc-
cessful iterations by . The average iteration times, of course, can be determined by dividing the
total runtimes of the two methods by . Combining these two values we can obtain the expected
number of successes per second.

Doing this in our experimentation gives us a fair, linear measurement of quality in terms of suc-
cesses per second. That is, for each method we can determine the expected number of times the
consensus motif will be recovered in one second of CPU time. Of course, this is all for a fixed set
of input sequences. To measure the quality over a number of different inputs we must do this for
each input and take the average of the measurements. For synthetic data this can be done quite

34

easily since we can sample our inputs uniformly at random from whatever problem space we want.

We should note that, since a single iteration is a Poisson trial, the length of time for which the algo-
rithm runs until the first success follows an exponential distribution. We simply want the Poisson
trials of AGGREGATION to have a greater success probability than those of PROJECTION. For a
given input we can analyse these running times and manually fit an exponential distribution curve
to our experimental data to approximate the success probabilities of our Poisson trials. Figure 3
gives a typical example of such data with the fitted cumulative exponential distribution curves.

Figure 3: The exponential distributions exhibited by the runtimes of AGGREGATION and PROJEC-
TION on the same fixed input (when we stop at the first success). Dashed lines are the manually
fitted curves of true exponential distributions. Distributions shown are cumulative and a log scale
is used on the ! -axis.

100 101 102
0

10

20

30

40

50

60

70

80

90

100

Number of seconds elapsed (on a logarithmic scale)

Pe
rc

en
ta

ge
 o

f s
uc

ce
ss

es
 fo

un
d

wi
th

in
 th

e
gi

ve
n

tim
e

Using AGGREGATION
Using PROJECTION

7 Benchmarking

To evaluate the efficacy of the AGGREGATION enhancement to the PROJECTION algorithm, both
algorithms were tested on randomly generated synthetic data. AGGREGATION was modified from
the original PROJECTION algorithm only to implement the hash-based random access data struc-
ture to allow for looking at all the neighbours of an arbitrary bucket. The parameters (

�#"%$ ��& "� ��) chosen for PROJECTION were the same as in [1], and the parameters for AGGREGATION

were set to (
�'"($ ��& ")�) (see Figure 1 to see why this threshold is reasonable). The number of

iterations for AGGREGATION was set to twice the value of selected for PROJECTION to en-
sure that the two methods were given comparable amounts of CPU time without AGGREGATION

35

being given an advantage (actual runtimes are shown in Table 1). For each of the �������	� combina-
tions, 100 randomly generated sets of input sequences (� " �*	��� " ��*)*) were generated (as in
[1]), and PROJECTION and AGGREGATION were both run once on each of these sequences. The
confidence intervals for the means are 95% intervals; this confidence is over all tested instances
from the respective test sets.

Table 1: Experimental setup
l d PROJECTION AGGREGATION PROJECTION AGGREGATION

m m Mean Runtime Mean Runtime
9 2 1483 2966 ���)+)�-,.��� � $�/ *0,1��*

11 3 2443 4886
/) / ,.���)��*)*0,1��*

13 4 4178 8356 �)�)��*0,1�* � � $ *0,.���*
14 4 647 1294

$ * � ,1 �)� � ,.� �
15 4 172 344 � $ +�2 +0,3*	2 $ ��� $, �
16 5 1292 2584 ���)� / ,1� � � �*0, / *
18 6 2217 4434 � / -,1� ��+ � *0, � *

Comparison of the mean performance coefficients obtained by PROJECTION and AGGREGATION

is given in Table 2. The performance coefficient is defined in [8] as follows. Let 4 be the set
of �65)� base positions in the � planted motif instances and let 7 be the set of �65)� base positions
in the motif instances predicted by the algorithm. The performance coefficient is equal to 8 4:9
7'8 ;�8 4=<>7'8 . AGGREGATION slightly beats out PROJECTION in terms of this metric, though a
more meaningful comparison can be seen in Table 3. As the actual motif becomes occluded by
equally well preserved spurious motifs in the harder problem instances, we compare the number
of times AGGREGATION and PROJECTION successfully find a motif, either correct or spurious,
that occurs in all 20 sequences, as done by Keich and Pevzner in [4].

Table 2: Mean performance coefficient comparison
l d PROJECTION AGGREGATION

Performance Performance
9 2 *	2 *��-,3*	2 * / *	2?���-,@*	2 *��

11 3 *	2 * � ,3*	2 *� *	2 *��-,@*	2 * /
13 4 *	2 *��-,3*	2 * / *	2 *��-,@*	2 *�
14 4 *	2 $ � ,3*	2 * � *	2 $ �-,@*	2 * /
15 4 *	2 + / � ,3*	2 *���� *	2 + / ,@*	2 *�
16 5 *	2 �)+-,3*	2 *�� *	2 $ -,@*	2 *��
18 6 *	2 �)�-,3*	2 * $ *	2 $ *0,@*	2 * $

As can be seen in Table 4, for all problem instances AGGREGATION discovers the consensus at at
least twice the rate of PROJECTION. Higher discovery rates imply that AGGREGATION is able to
determine a solution in less time than PROJECTION and is therefore more sensitive to the presence
of projected motif buckets.

We can also compare the quality of the AGGREGATION thresholding process by comparing the
number of refinements which yield the consensus to the total number of refinements. As can

36

Table 3: Proportion of runs in which the recovered consensus had planted instances in all 20
sequences.

l d PROJECTION Proportion AGGREGATION Proportion
9 2 *	2 � $,3*	2 *�� *	2 $ �A,3*	2 * �

11 3 *	2 ��*0,3*	2 * � *	2 �)�-,3*	2 * /
13 4 *	2 � / ,3*	2 * / *	2 �)+-,3*	2 * /
14 4 *	2 +�*0,3*	2 * / *	2 + $ *0,3*	2 *�� $
15 4 � �
16 5 *	2 �)�-,3*	2 *�� *	2 �)�-,3*	2 * �
18 6 *	2 $ � ,3*	2 * � *	2 $ +-,3*	2 * �

Table 4: Mean solution speed comparison
l d PROJECTION AGGREGATION Ratio of Rates

Successes per Successes per AGGREGATION :
�B*)C Seconds �B*�C Seconds PROJECTION

9 2
� / ,.��� �*)*0,1��* �D,1

11 3 ���D,1� �	�E,.��� �2 +D,.��2
13 4

/ 2 �D,.��2 � �B*-,1� / ,1
14 4 �B*-,1)�D,1� �2 $,3*	2 �
15 4 ���)-,.� / � *)*0, � * �2 �D,3*	2 /
16 5 �2 � ,3*	2 � �D,1 �2 �D,.��2
18 6 *	2 +D,3*	2 �2 D,3*	2 � �2 � ,3*	2 +

be seen in Table 5, the primary performance gain from AGGREGATION is due to the significant
reduction in unnecessary refinements. The ratios correspond directly to those in Table 4, as the
bulk of the computation time is spent performing refinement.

Table 5: Solutions per �B*GF refinements comparison
l d PROJECTION AGGREGATION Ratio of Rates

Rate Rate AGGREGATION : PROJECTION

9 2 ��*)*0,1�*)*)��*)*0,3��*)* �H, /
11 3)�*-, $ * � � *0,.��+�* �2 +D,.��2
13 4

� �D,.��+ � / *0, $ * �2 +D,.��2 +
14 4 �B*)*-,1�*)��*0,3��* �2 $,3*	2 �
15 4 ��� � *0,.� / * � �*)*0,3��*)* �2 �D,3*	2 �
16 5

/ �E,.�B* ��*-, / * �2 �D,.��2 /
18 6 �B*-, /)�-,3� �2 �D,3*	2 +

Our experiments show with a high level of confidence that our AGGREGATION method signifi-
cantly outperforms the original version of PROJECTION in the basic form of the challenge problem.
In the next section we show that AGGREGATION outperforms PROJECTION in different variations
of the challenge problem.

Unfortunately we have not yet acquired any biological data. Keich and Pevzner [5] tested their

37

MULTIPROFILER algorithm on a good assortment of biological data. We would like to test
AGGREGATION on the same data (and possibly more). It should be noted that AGGREGATION

should succeed in the biological tests in which PROJECTION succeeds.

8 Problem Variations

To ensure that AGGREGATION’s speed advantage translates to a wide range of motif finding prob-
lem spaces, we performed speed comparisons on different variations of the challenge problem.
For each of these tests, we ran AGGREGATION and PROJECTION on 50 random inputs from each
problem space. The input variations we consider are

I planted motif instances in background sequences that have non-uniform base distributions;
I planted motif instances in background sequences of increased length;
I motif instances that are not planted in all of the background sequences.

The first two variations were dealt with by Buhler and Tompa [1] for the original version of PRO-
JECTION. Buhler and Tompa did not explicitly handle the third variation in their paper. All tests
done in this section are for the ������� � � problem, with � " ��*)*	��� " �* unless otherwise stated.

8.1 Varying Background Sequence Length

It is natural to apply AGGREGATION to input sequences of length greater than � " ��*)* . As �
increases, the number of noisy � -mers increases. This not only means that the signal of the planted
motif is weaker relative to the noise, but also that spurious motifs are more likely to occur. Because
the increase in noise makes the signal harder to detect, both PROJECTION and AGGREGATION

recover motifs more slowly. However, as can be seen in Table 6, AGGREGATION maintains its
speed advantage as � increases.

Table 6: Solution speed comparison for increased background sequence length
n PROJECTION AGGREGATION Ratio of Rates

Successes per Successes per AGGREGATION :
�B*)C Seconds �B*�C Seconds PROJECTION

600 ���)-,1 / /�$)$, $ � �2 �D,3*	2 �
800

/�$,1� +)�D,.� $ �2 �D,3*	2 �
1000 ��D, � / �E,.�� �2 �D,.��2 /

8.2 Varying Number of Planted Instances

When analysing real biological data, the motif we are looking for may not be present in every
input sequence. Therefore we are interested in synthetic cases where the motif is not planted in

38

every input sequence. When the motif is not planted in every sequence its signal is weaker; this
makes it more difficult to detect. Also, since we do not need a motif that is present in every input
sequence, spurious motifs are more likely to occur. As when background sequences are increased
in length, both PROJECTION and AGGREGATION recover motifs more slowly when the motif is
planted in fewer input sequences. Again, AGGREGATION maintains its speed advantage (Table 7).

Table 7: Solution speed comparison when the motif is planted in fewer than � input sequences, for
� " �*

Plantings PROJECTION AGGREGATION Ratio of Rates
Successes per Successes per AGGREGATION :
�B*)C Seconds �B*�C Seconds PROJECTION

20 ���)�-,.� � / �	�A, � �2 / ,3*	2 �
18 + � ,.��� �*�-, � � �2?�E,3*	2 �
16

/ � , $ $ D,.��� �2?�E,3*	2 $
14 +H, / � ,1� �2 �D,.��2
12

$, / +H, � ��2 � ,3*	2 +

8.3 Varying G+C Fraction

Since the base distribution in real DNA sequences is frequently non-uniform, it is important that
motif finding algorithms perform well when the background sequences have non-uniform base
distributions. As in [1], we consider input sequences where the background J%K(L fraction is
below 50% (by symmetry, this is the same as considering sequences with JMK.L fraction above
50%). For each of our synthetic input sequences, each background base is chosen randomly, with

NPORQ J-S " NPOTQ L-S
NPOTQ U S " NPOTQ V SNPORQ J-S	K NPOTQ L-S " �XW NPOTQ U SYW NPORQ V S " JZKZL\[O�])^`_�acb�d 2

Moving the J.KeL fraction away from 50% skews the distribution of background � -mers. When
determining whether a bucket should be sent to refinement, AGGREGATION takes into account the
expected number of background � -mers in that bucket based on its fingerprint. Both PROJECTION

and AGGREGATION have always done this, though the expected number of background � -mers did
not previously depend on which bucket was being inspected.

Because PROJECTION uses such low refinement thresholds, no change in threshold is subtle.
Therefore PROJECTION cannot subtly set a threshold based on the fingerprint of the bucket be-
ing inspected. AGGREGATION can do this because it uses larger thresholds which can be more
finely tuned. Essentially, the ‘problem’ of having a non-uniform background distribution is not a
problem at all if AGGREGATION uses a higher threshold for buckets that expect more background
� -mers.

As the J'KfL fraction moves further away from 50%, spurious motifs (mostly made up of the more
common bases) are more likely to appear. If anything, AGGREGATION is less likely than PROJEC-
TION to recover spurious motifs because of its higher thresholds for ‘noisy’ buckets. Therefore

39

solution speed is still a fair metric with which to demonstrate AGGREGATION’s superiority. As
can be seen in Table 8, AGGREGATION’s speed advantage is maintained, and even increased, with
decreasing J\KZL fraction.

Table 8: Solution speed comparison for varying G+C fraction
G+C PROJECTION AGGREGATION Ratio of Rates

Fraction Successes per Successes per AGGREGATION :
�B*)C Seconds �B*�C Seconds PROJECTION

50% � $ �-, $ / ���D,.�B* ��2 �-,@*	2
45% ���*0,1� / ��D,.��� �2 �-,@*	2
40% +�*-, � 	��+D,.� � �2 � ,@*	2
35%

$ �D, / � / *-,1	� ��2 $ �-,3*	2 �
30% ��)�-,1� $ �*-,1 / ��2 �	�A,3*	2 /

The success rate of PROJECTION drops off significantly with decreased JMKML fraction; for the
������� � � problem, this dropoff occurs for J%K(L fraction below 35%. We suspect that AGGRE-
GATION’s flexible thresholding will protect it from this dropoff, though we have yet to prove this
experimentally.

9 Conclusion

We have developed a modification of Buhler and Tompa’s PROJECTION algorithm [1] for the motif
discovery problem. This modification, which we call AGGREGATION, typically runs twice as fast
as the original PROJECTION algorithm when solving the challenge problem posed by Pevzner and
Sze [8]. This increase in speed is obtained without sacrificing accuracy.

The AGGREGATION method maintains its speed advantage in more difficult variations of the chal-
lenge problem, such as when there are more background � -mers or when the background base
distribution is non-uniform. We intend to perform more experiments for these variations to de-
termine whether AGGREGATION can actually solve problems that PROJECTION cannot; this may
be the case for problems in which the background base distribution is far from uniform. We also
intend to apply AGGREGATION to problems arising in real biological data that were not solved by
PROJECTION.

Acknowledgements. We gratefully acknowledge Jeremy Buhler for making his PROJECTION

source code publicly available and Holger Hoos for his guidance regarding our research.

References

[1] Jeremy Buhler and Martin Tompa. Finding motifs using random projections. In Thomas
Lengauer, David Sankoff, Sorin Istrail, Pavel Pevzner, and Michael Waterman, editors, Pro-

40

ceedings of the Fith International Conference on Computational Biology (RECOMB-01),
pages 69–76, New York, April 22–25 2001. ACMPress.

[2] E. Eskin and P.A. Pevzner. Finding composite regulatory patterns in dna sequences. Bioin-
formatics, 18 Suppl 1:S354–63, Jul 2002.

[3] D. GuhaThakurta and G.D. Stormo. Identifying target sites for cooperatively binding factors.
Bioinformatics, 17(7):608–21, Jul 2001.

[4] U. Keich and P.A. Pevzner. Finding motifs in the twilight zone. Bioinformatics, 18(10):1374–
81, Oct 2002.

[5] U. Keich and P.A. Pevzner. Subtle motifs: defining the limits of motif finding algorithms.
Bioinformatics, 18(10):1382–90, Oct 2002.

[6] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C. Wootton.
Detecting subtle sequence signals: a gibbs sampling strategy for multiple alignment. Science,
262:208–214, October 1993.

[7] C. E. Lawrence and A. A. Reilly. An expectation maximization (EM) algorithm for the iden-
tification and characterization of common sites in unaligned biopolymer sequences. Proteins,
7:41–51, 1990.

[8] Pavel A. Pevzner and Sing-Hoi Sze. Combinatorial approaches to finding subtle signals in
DNA sequences. In Russ Altman, L. Bailey, Timothy, Philip Bourne, Michael Gribskov,
Thomas Lengauer, and Ilya N. Shindyalov, editors, Proceedings of the 8th International
Conference on Intelligent Systems for Molecular Biology (ISMB-00), pages 269–278, Menlo
Park, CA, August 16–23 2000. AAAI Press.

[9] E. Rocke. Using suffix trees for gapped motif discovery. In R. Giancarlo and D. Sankoff,
editors, Proceedings of the 11th Annual Symposium on Combinatorial Pattern Matching,
number 1848 in Lecture Notes in Computer Science, pages 335–349, Montréal, Canada,
2000. Springer-Verlag, Berlin.

[10] Saurabh Sinha and Martin Tompa. A statistical method for finding transcription factor bind-
ing sites. In Russ Altman, L. Bailey, Timothy, Philip Bourne, Michael Gribskov, Thomas
Lengauer, and Ilya N. Shindyalov, editors, Proceedings of the 8th International Confer-
ence on Intelligent Systems for Molecular (ISMB-00), pages 344–354, Menlo Park, CA,
August 16–23 2000. AAAI Press.

41

42

