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Abstract

In this paper we consider the use of stochastic local search algorithms on the problem of
obtaining upper bounds on rectilinear crossing numbers in complete graphs. For an integer

�
and a graph �������	��
� , where � ��� = n, the problem of answering whether or not ��� (

���
) ���

is known to be combinatorially difficult problem. [1, 4]. In response to this, we present
two new algorithms that reduce the number of edge crossings in an initial drawing of � by
employing local search heuristics. Furthermore, we provide analysis of both algorithms and
offer insights into their performance. We conclude by providing upper bounds for

� �
for� =39, 41, 42, 43, 44, 45, and ����� � ��� � � .

1 Introduction and Background

Stochastic Local Search (SLS) algorithms have demonstrated success in providing reasonable so-
lutions to a variety of hard combinatorial problems [8]. SAT and Traveling Salesman Problem
(TSP) are but two of the NP-complete problems to which stochastic local search algorithms have
been successfully applied [8]. While SLS algorithms offer several high performance techniques
for solving seemingly intractable problems, choosing the appropriate SLS techniques is dependent
upon a thorough understanding of the properties of the problem and the characteristics of candidate
SLS algorithms. The problem that we will be examining has presented a challenge to researchers
for over the past four decades and it is our intent to ascertain whether or not certain SLS techniques
can provide a viable method to meet this challenge. Let ! =( " , # ) be a graph drawn in the plane
with vertex set " and edge set # . The crossing number of ! , $&%(')!+* , is the minimum number
of edge crossings attainable over all such possible drawings of ! . A closely related geometric
problem involves adding the constraint that the edges of ! be straight-line segments and that no
three vertices are collinear. Such a drawing of ! is called a rectilinear drawing and the rectilinear
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crossing number, denoted $&% (G) is the fewest number of edge crossings that can be achieved over
all such drawings [4,5].

Garey and Johnson have shown the problem of ascertaining the crossing number of an arbitrary
graph to be NP-complete [7]. For rectilinear graphs, the problem of determining whether $ % (

���
) ��

is not known to be NP-hard; however, it problem has shown significant resistance to various
attempts at solving it. The search for rectilinear crossing numbers of the complete graph

���
began in the 1960s with the work of R. Guy. To date, the values for rectilinear crossing numbers
of
� �

are known only for ���
	�� . Many of the techniques used to enumerate the values for
$&% (
��

) require the use of computationally expensive combinatorial methods and such methods
are insufficient in the face of larger values of � [16].

The problem of finding crossing numbers has found application in the area of Very Large Scale
Integration (VLSI) circuit technology [5,9]. This technology is concerned with the construction of
chips carrying large numbers of transistors. Reducing chip layout area and minimization of chip
size is desirable because it allows for cheaper production costs and more reliable performance
than larger chips [9]. However, another consideration is finding circuit layouts that minimize the
number of circuit crossings and, hence, decrease the interference from capacitive coupling [9].
Striking this balance between chip size and circuit crossings is a crucial aspect of chip design and
bears obvious economical importance in today’s technology industry.

Our work on this problem has been aimed at applying the tools of a relatively new field of computer
science, stochastic local search methods, to a relatively old mathematical problem. Below we
provide some insight into the details of the problem domain with respect to gauging success and
judging the value of new results.

In many instances of empirical assessment, there are many problem instances per problem size that
can be examined. This aspect of a problem offers rich testing possibilities and, in this case, many
established avenues of evaluation exist can be utilized. Unfortunately, in the context of crossing
numbers for complete rectilinear graphs, there is precisely one problem instance per problem size.
The uniqueness of this particular problem compel us to be flexible in our methods of evaluation.
Many of the standard evaluation techniques are inadequate and unable to provide a meaningful
measure of algorithm performance. To deal with this situation, we employ graphs of solution
quality over time (SQTs) to give a graphical representation of how our algorithms are behaving.
Another issue to address is the lack of prior work done in this area. Little work has been done on
applying SLS techniques to the rectilinear crossing number problem. There have been attempts at
using genetic algorithms to minimize crossing numbers, but these attempts have been somewhat
limited in the size of � tackled [14,16]. Furthermore, to our knowledge, nobody has employed the
type of SLS algorithms we propose in this paper. As a result, no data exists to which we might
fairly compare the performance of our algorithms. While it would be beneficial to have some
knowledge of prior results, the absence of such results is not an obstacle to the aims of this paper.

As is the always the case with employing SLS algorithms, our goal is to present algorithms that
both perform quickly and find close-to-optimal, or even optimal, solutions. It is worth stressing
that these two factors, solution quality and speed, are the two measures by which we can gauge the
performance of our algorithms. Attaining ’good’ upper bounds on the number of edge crossings
for both known and unknown graphs constitutess, in itself, a certain amount of success. Addition-
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ally, the ability to achieve high quality, yet perhaps non-optimal, solutions is yet another indication
of success. Ideally, one would like to be able to achieve both of these, often conflicting, goals; the
two algorithms presented in this chapter go a long way to meeting these two challenges.

As previously mentioned, little relevant prior work involving similar SLS algorithms could be
found. Furthermore, very little is known about optimal crossing numbers themselves. In fact,
the optimal crossing numbers are known only for � � 	�� . Luckily, theoretical results exist for
obtaining a lower bound on the crossing number. This formula is:

$&% (
��

)
� $ % ' ������ *��

����	�

Even more valuable are the results obtained by Aichholzer et al [1] who searched for crossing
number values up to � =45; these were obtained by enumerating large numbers of inequivalent
point sets of size � . Therefore, we have some information to which we can compare our candidate
solutions. Finally, a number of papers have presented upper bounds for

��
��
. This graph, con-

sidered as a benchmark test, provides a useful measure by which to judge the performance of our
algorithms.

2 Algorithm Description

In this section we present two stochastic local search algorithms that act to reduce the number of
edge crossings in a graph !� ')"�� # * . In Section 2.1, an introduction is provided that illustrates
the intricacies of implementing a program to solve the rectilinear edge crossing problem and some
of the rationale behind the search heuristics of which both of our algorithms take advantage. The
first algorithm, named Trio, consists of three different iterative local search algorithms acting
in combination while the second implements a constructiive approach combined with random
iterative improvement (RII). With Section 2.2 and 2.3, we offer a detailed outline of how both
algorithms operate, respectively.

2.1 Implementation Issues

The most intuitive objective, and evaluation, function to employ is a measure of the number of edge
crossings in a drawing of G. Clearly, by minimizing the evaluation function value, we improve our
candidate solution. Enumerating the number of crossings in a graph requires an � ' ��� * calculation.
While this cost becomes prohibitive as n grows in size, there are a few techniques that can be used
to reduce the time of this calculation; the specifics of which are presented when we provide our
implementation details. As is discussed later on, this cost actually grows to a � ' �

�
* computation

when used in one of our algorithms.

Another issue that deserves some attention is the method in which we represent the graph G. The
most straightforward approach, and the one we utilize, is a grid system in which each vertex is
assigned a unique point in the two-dimensional plane ��� . In adopting this representation, there are
potentially two concerns that need to be addressed. The first pertains to the question of whether
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or not any bounds need to be set on the size of the x and y coordinates for the vertices. If we
decide against setting such bounds, then we are faced with the possibility that the drawings of
our graphs may be arbitrarily large. From a theoretical standpoint, this raises concerns regarding
search stagnation. On the other hand, if we decide to place bounds on the size of the grid, then the
values of these bounds must be chosen with some care. So far as we know, identifying the grid
size that allows for the best chance of finding an optimal solution is an open problem and one with
which we are not too concerned.

2.1.1 Vertex Responsibility

We will refer to the concept of vertex responsibility repeatedly in this paper. Consider a complete
rectilinear graph

� �
and a vertex of the graph � . As the name suggests, the vertex responsibility

value of � is a measure of how the edges of � contribute to the overall number of edge crossings
in the graph

� �
. The responsibility value of � , resp( � ), is calculated by examining each of the

� -1 edges of � and summing up the number of edge crossings for each edge. Note that summing
the responsibility values for all vertices in the graph

� �
will usually not result in the total number

of edge crossings but instead provide an overestimate since we are counting some crossings more
than once.

2.1.2 Evaluation Function Cost

In the context of our problem, the evaluation function and objective function are identical and
correspond to the number of edge crossings in the current candidate solution. Given the graph� �

, the computational cost of verifying the crossing number is � ' � � * [15]. Even for moderate
values of � , this cost is still prohibitive. Similarly, checking for collinearity in the graph

���
is also

computationally expensive. We deal with both of these topics in more detail when we present the
implementations of our algorithms. In any event, there is some encouraging evidence to show that
this complexity is not necessarily fatal. For example, a previous experiment by Thorpe and Harris
demonstrated that, in practice, the cost of the evaluation function is less costly than the worst case
cost indicated by theory [15].

2.1.3 Heuristics

It is an open question as to whether or not the convex hull of any optimal drawing of a complete
rectilinear graph is a triangle. Certainly, all drawings from � =3 to 12 (which has been proved
optimal) display this characteristic. Furthermore, the best known drawings for values of n=13
to 45 (and n=81) follow this trend. This information is useful both in evaluating the solutions
our algorithms discover and in the designing of an algorithm to provide optimal drawings of a
complete rectilinear graph. Another attribute exhibited by optimal drawings is the tendency to
spread out the total crossings evenly over all the vertices. All optimal and best known drawings
of complete rectilinear graphs display approximately homogenous responsibility values for all �
vertices. For example, with

�����
, the responsibility values for an optimal drawing are: 27, 27, 27,

84



27, 25, 25, 25, 23, 23, 23. This lack of extreme variability in responsibility values seems to hint
that distributing the number of crossings over all vertices leads towards better drawings of ! .

2.1.4 Solution Density

The number of optimal drawings of
� �

seem to vary depending on the value of � [1,4]. Results
obtained by Aichholzer et al [1] suggest that odd values of � give rise to a greater number of
possible optimal drawings relative to the number of optimal drawings that can be obtained for� � ���

or
� �����

when n is even. Given two optimal drwaings of
� �

, one way to determine whether
they differ is to compare the responsibilities for each vertex of each graph against one another. For
instance,

� ���
has two non-isomorphic drawings as can be seen by comparing the responsibility

values (where these values have been ordered from greates to least): 27, 27, 27, 27, 25, 25, 25, 23,
23, 23 versus 27, 27, 25, 25, 25, 25, 25, 25, 25, 23. Note that both sets of responsibility values add
up to the same value (252) as should be expected.

The problem of determining the number of non-isomorphic drawings for
� �

given an arbitrary
� appears to be non-trivial [1,4]. While we have implemented a function to test for different
drawings, we do not focus on this particular aspect of the rectilinear crossing number problem.

2.2 Implementation of Trio

As the name suggests, this algorithm employs three iterative local search algorithms with differ-
ing probability and conditions. Each of these three algorithms is significantly different from the
others; however, there are some important similarities that require only a brief discussion. As
mentioned previously, collinear vertices and degenerate vertex positions (vertices that share the
same coordinates) should not be allowed by our algorithms. However, the cost of checking for
collinearity and degenerate points after each search step in the algorithm is intolerably expensive.
Fortunately, such checking is not required since by selecting a large enough grid, the chances
that collinear or degenerate vertices arise is small. Only when each of the following three algo-
rithms terminate is the candidate solution checked. If collinear or degenerate vertices exist then
the solution is rejected and an error message is returned; otherwise, the candidate solution is kept.

One more point to keep in mind is that all of the algorithms presented in this paper are restricted
to a 1-exchange neighbourhood. For any given search step, only one vertex is moved; clearly, an
optimal solution can be attained by a sequence of such 1-exchange moves. Finally, it is interesting
to point out that none of these three algorithms perform as well individually as they do in combi-
nation. The reasons for this and the details of how these three algorithms function are presented
below.

2.2.1 Algorithm 1 - Greedy First Improvement Iterative Local Search (GFI)

As the name suggests, this algorithm takes a greedy approach to obtain good drawings of
� �

. The
vertex to be moved is selected on the basis of highest responsibility. This vertex is continually
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procedure Greedy-First-Improvement-Iterative-Local-Search
input: problem instance � (ie. a complete rectilinear graph on n vertices), objective function

�
,

optimal crossings ����� , maximum number of tries maxTries
output: solution � (ie. a complete rectilinear graph on n vertices with optimal number of edge crossings)
� := initialize( � );
current=

�	� ��
 ;
numTries :=0;
while current ������ numTries ���������������� do

��� := move-worst-vertex( � );
temp � �	� ����
 ;
if(temp � current)

� := � � ;
current=temp;
calculateResponsibilities( � );
numTries++;

end while
if(degeneratePoints( � ) == false collinearity( � ) == false)

return � ;
else

errorMessage();
end procedure Greedy-First-Improvement-Iterative-Local-Search.

Figure 1: Pseudocode for the Greedy First Improvement Iterative Local Search Algorithm (GFI).

tested in different positions in the plane at random until either a better graph is achieved or the set
number of run steps is reached.

In terms of speed and the optimality of the obtained solution, this particular algorithm has demon-
strated fairly good results for many of the smaller test cases. Intuitively, one of the reasons for its
encouraging performance is that the algorithm, via its vertex selection process, tends to spread the
number of crossings approximately evenly over all vertices. As discussed above, this is precisely
one of the heuristics we would like our algorithm to employ.

Despite its encouraging performance, there are two drawbacks to GFI. The first is its tendency
to get caught in local minima and stagnate for long periods of time. Ironically, this behaviour
is the result of GFI’s vertex selection method; a method which we have claimed performs well
while the current candidate solution is still relatively far from the global optimum. However,
upon closely approaching the global optimum, this method renders less promising results. At
this point, it appears that the vertex with the highest responsibility is no longer the vertex that
needs to be moved in order to achieve a better evaluation function value (this behaviour change
of the problem provides the motivation our next algorithm). The second drawback of GFI is the
high computational cost of running a search step. The cost of enumerating all the crossings in
the graph

� �
is O( � � ) due to the fact that not all vertices have to be examined in this procedure

(described previously). However, in order to select the next vertex to move, the responsibilities
of all the vertices have to be known. Unfortunately, this does seems to require the examination
of all � vertices and so the total cost for each search step is O( �

�
); other, more efficient methods,

may exist and would certainly help improve the performance of this algorithm. Provided with a
solution that is far from the global optimum, this cost is not very noticable since GFI operates on
the basis of first improvement and, at this point, improvements are easy to find. This cost becomes
highly prohibitive both when the algorithm nears the global optimum and begins to stagnate and
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when we test with large values of � . The pseudo-code for this algorithm is presented in Figure 1.

procedure Random-First-Improvement-Iterative-Local-Search
input: problem instance � (ie. a complete rectilinear graph on n vertices),
objective function

�
, optimal crossings �����

output: solution � (ie. a complete rectilinear graph on n vertices with optimal number of edge crossings)
� := initialize( � );
current=

�	� ��
 ;
numTries :=0;
while current ������ numTries ���������������� do

� � := move-random-vertex( � );
temp � �	� � � 
 ;
if(temp ������� � ��� � )

� := � � ;
current=temp;
numTries++;

end while
if(degeneratePoints( � ) == false collinearity( � ) == false)

return � ;
else

errorMessage();
end procedure Random-First-Improvement-Iterative-Local-Search.

Figure 2: Pseudocode for the Random First Improvement Iterative Local Search Algorithm (RFI).

2.2.2 Algorithm 2 - Random First Improvement Iterative Local Search (RFI)

This algorithm takes a more balanced approach to the vertex selection process. Rather than choos-
ing the vertex with the greatest responsibility value, a vertex is selected at random. Again, this
vertex is continually tested in different positions in the plane at random until either a better graph
is achieved or the set number of run steps is reached.

In general, it does not achieve a reduction in the number of edge crossings with the same speed
that algorithm 1 does. One of the reasons for this performance might be a result of the algorithm’s
tendency to sometimes attempt to move a vertex with a relatively low responsibility value. This
runs counter to the observation that the best drawings of rectilinear graphs possess the quality that
the responsibility values are spread almost evenly over all the vertices. Nevertheless, this algorithm
possesses two very useful properties. First, the cost for a single search step is O( ��� ), not O( �

�
),

since recalculating the responsibility values is not longer required. This results in a noticeable
speedup in performance. Second, because RFI does not restrict itself to moving the vertex with
highest responsibility, it demonstrates resistance to the problem of stagnation exhibited by GFI
and allows the greedy algorithm to break out of local optima. The pseudo-code for this algorithm
is presented in Figure 2.

Finally, another significant difference between GFI and RFI is the ability of latter algorithm to
permit sideways moves. In the event that a vertex move results in neither a increase nor a decrease
in the number of edge crossings, the new position is kept. This allows for potential rearrangement
of all the vertices. It may be the case that the number of favourable positions to which a vertex can
be moved is relatively small with respect the entire 1-exchange neighbourhood. Intuitively, this

87



can occur when the favourable position to which to move a vertex lies is a very small face cut by
the edges of the graph

� �
. If none of the vertices are rearranged, this position can be consistently

difficult to reach. By allowing RFI to shift the vertices around the plane, even in the absence of a
resulting improvement, the chance of this undesirable possibility occurring is reduced.

procedure Bounded-Perturbation
input: problem instance � (ie. a complete rectilinear graph on n vertices), objective function

�
,

number of worsening steps � , bound �
output: solution � (i.e.a complete rectilinear graph on n vertices with either more or less edge crossings)
� := initialize( � );
iterations :=0;
� � ��� � ��� ����� ��� � := count( � );
while iterations ��� do

� � := move-random-vertex( � );
temp � �	� � � 
 ;
if(temp � current ��� )

� := � � ;
current=temp;

end while
if(degeneratePoints( � ) == false collinearity( � ) == false)

return � ;
else

errorMessage();
end procedure Bounded-Perturbation.

Figure 3: Pseudocode for the Bounded Perturbation Algorithm (BP).

2.2.3 Algorithm 3 - Bounded Perturbation

This algorithm was not designed to be used in isolation from the two former algorithms; the
reasons for this will become obvious in a moment. First, we start with a graph ! which has

�
edge

crossings and we specify a constant 	 and a constant 
 . Like RFI, a vertex is selected at random
and placed at another position in the plane. If the resulting graph ! ’ has less than 	 edge crossings
we accept ! ’ as our new current solution. Otherwise, we shift the vertex to another position and
re-evaluate in the same fashion. This process continues until we find an acceptable position or
the set number of steps, 
 , is reached. Note that this algorithm does not forbid improving steps;
however, as the global optimum is approached, it becomes more and more likely that the random
vertex move implemented by BP will result in an increased number of crossings.

Out of all three, this algorithm, when operating by itself, displays the worst performance. How-
ever, it is very useful in allowing the two former algorithms to break out of local optima; this was
its intended purpose and it seems to perform this task well. In general, this algorithm functions
as a peturbing action and has provided good results when used in combination with the other two
algoritms above as we shall see. The pseudo-code for this algorithm is presented in Figure 3.
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Figure 4: GLSM for Trio

2.3 Trio

As discussed above, each of the three algorithms GFI, RFI, and BP have strengths and weaknesses.
Trio is an attempt at using these three algorithms at different stages of problem solving process in
order to capitilize on the successful behaviour of each and reduce any unfavourable performance.

Provided with a graph ! , Trio begins by employing GFI to reduce the number of edge crossings.
A positive constant value

�������
is provided that provides an upper bound on the number of non-

improving steps that are allowed before GFI is no longer allowed to be executed. At any point,
based on a probability value

���	���
, Trio can switch from GFI to RFI. Again, a stagnation constant�
�	���

is used to determine whether or not to keep utilizing RFI. With a probability of
�������

,
Trio can stop executing RFI and switch to GFI. This feature of being able to trade back and
forth between GFI and RFI makes sense in the context of what was discussed above. By starting
with GFI, Trio can very quickly approach the global optimum. Additionally, when GFI displays
indications of stagnation, Trio can switch to RFI in order to further reduce the number of edge
crossings in ! . The final option available to Trio is the use of BP; there are two circumstances
under which this occurs. First, when both GFI and RFI have reached their allotted stagnation
values

�������
and
�
�	���

, respectively, BP is executed. Second, if it is not the case that both GFI
and RFI have reached their respective stagnation values, BP can still be executed with a probability
����

(an emprical analysis of how
����

affects the performance of Trio is provided later on in this
paper). Regardless of how this transition occurs, BP is only run a prespecified number of times
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 before Trio switches back to either GFI or RFI. Importantly, whenever BP is run, the recorded
number of stagnating runs for both GFI and RFI are reset to zero. A GLSM for Trio is provided
in Figure 4.

procedure Construction-with-RII( � ,� ,max tries,
�

)
input: graph size � , probability p, maximum number of moves max tries, objective function

�
output: candidate solution � (ie. a complete rectilinear graph on n vertices)
� = create graph(3)
while size( � ) � � do

� := add one vertex( � )
num iterations := 0
while num iterations � max tries do

��� = move newest vertex( � )
if
�	� � � 
 � �	� ��

��� � � �

end
num iterations := num iterations + 1

end while
end while
while not terminate( � , � ) do

u := rand(0,1)
if � ��� then

s := Bounded-Perturb-Step( � ,max tries,
�

)
else

s := Random-First-Improvement-Step( � ,max tries,
�

)
end

end while
if(degeneratePoints( � ) == false and collinearity( � ) == false)
return � ;

else
errorMessage();

end procedure Construction-with-RII.

Figure 5: Pseudocode for Construction with RII

2.4 Construction with Random Iterative Improvement (CRII)

This algorithm employs a different method in order to obtain good drawings of
� �

. It is motivated
by the widely believed hypothesis [1,4] that an optimal drawing of

� �
can be attained by adding

an extra vertex to the graph
� �����

and positioning it appropriately. A near optimal drawing of
� �

can be created from a sequence of near optimal drawings of
���

, with
�  	��	� � . This near optimal

drawing can provide a good starting point for a SLS algorithm to obtain an optimal drawing of� �
.

From the preceeding discusion, it is reasonable to believe that a constructive approach, which
achieves a near optimal solution by adding only one vertex, can benefit from employing a random
iterative first improvement strategy (RII). Indeed, the best results were obtained by combining RFI
with BP to achieve a version of RII which could then be used to improve the solution achieved by
the construction step.
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Figure 6: GLSM for Construction with RII

The construction algorithm starts with a drawing of
�
� (by providing the algorithm with three

random non-colinear, non-degenerate, points). At each step, a vertex is added to
� �

to obtain� � ���
.The new vertex added is randomly positioned in the plane and tested for

�
positions. The

final position of the vertex used is the position that adds the minimum number of edge crossings.
The pseudo-code for this algorithm, abbreviated by CRII, is provided in Figure 5.

Calculating the crossings number for each vertex placement costs O( � � ). The only computation
required for each position is calculating the number of edge crossings that are added by adding the
new vertex. Once the position of the new vertex has been determined, the next step is performed
and a new vertex is added. The construction phase terminates when

� �
is reach for the specified

� .

Once the desired graph size is reached, a local search phase is executed. The local seach step
used is RII. A greedy improvement strategy, such as GFI, did not yield good results in testing.
The constructed graph is close to optimal thus it is unlikely that any large improvements can be
made. Consequently, the extra cost of computing the vertex with largest responsibility does not
seem likely to offer any benefits over simply rearranging the added vertex. In Figure 6, a GLSM
is also presented in order to provide an overview of CRII.
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This algorithm provides a fast and efficient way to obtain relatively good upper bounds for the
number of edge crossings in

� �
for large values of � . Intuitively, this speed increase is traded for

reduced solution quality since CRII does not search over all vertices in the graph but only on the
added vertex. It was expected, and verified emprically later, that the solutions produced by this
algorithm would be inferior to those produced by Trio. However, the speed increase is impressive
and the results themselves provide a good starting place for more exhaustive algorithms.

3 Results

In this section we emprically analyze the perfomance of the two algorithms Trio and CRII. Sec-
tion 3.1 provides the details of the tuning process for Trio with respect to the probability

� ��

value for BP. Section 3.2 provides a small comparison between the behaviour of Trio versus RFI
with respect to a moderately difficult problem instance. Section 3.3 is dedicated to analyzing the
performance of Trio on complete rectilinear graphs for which previous good upper bounds are
known. Completely new upper bounds for 39, 41, 42, 43, 44, 45, ��� � � ����� , for � =81, and
� =102 are given in Section 3.4 along with some new results involving previously undiscovered
non-isomorphic drawings of

� �
for � =25 and 26. CRII’s performance on known graphs is pro-

vided in Section 3.5 and its results, including upper bounds for the number of edge crossings in� �
for values � � � � ����� , are presented in Section 3.6.

3.1 Tuning Trio

Trio has a few important parameters. Most of the values for these are easily established by simply
doing a test run and viewing the results. For instance, by observing a few runs of Trio on a graph� �

, it is fairly easy to set the stagnation value
� �����

. One of the parameters that does require
some tuning by more thorough emprical means is the probability,

� ��
, of running BP.

3.1.1 The Effect of
� ��

In order to illustrate the effect of
� ��

on performance, Trio was run 100 times with four different
values for

� ��
(and with all other parameters held constant) on relatively easy problem instance

of
� �	�

. The mean run-ties for each parameter value are presented down below in Table 1. The
trend provided by the data was fairly obvious. The best values appear to have been obtained by
setting

� ��
to 0.001 whereas larger values resulted in extended run-times. This result follows

the trend often displayed exhibited by SLS algorithms; a small perturbative or random walk step
provides better performance. Using relatively large

� ��
values leads to the algorithm performing

perturbative steps long before reaching the the global optimum. Obviously, this is undesirable
since progress made before the BP step is lost without any apparent compensation. By utilizing
BP only infrequently, the algorithm has the opportunity to get closer to the global optima and
take advantage of the occasional chance to escape from local minima. Although Table 1 does
not provide definitive evidence, it supports the hypothesis that a relatively small value for

� ��
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Figure 7: SQT of RFI and Trio running on problem instance
�
� �

provides the best results. Therefore, in our test runs, the probability for running PB was set to
0.003.

�����
Mean Run-Time [CPU sec]

15% 32.63
10% 30.58
5% 26.445
1% 28.82

Table 1: Mean Run-Times for Trio on
� �	�

Using Different
� ��

Settings

3.2 Performance of Trio over RFI

As an example of how much better Trio performs over any one of the single algorithms of GFI,
RFI, and BP, we have provided the SQT in Figure 7 on the next page. This was obtained by taking
100 runs of Trio and 100 runs of RFI on the moderately difficult problem instance of

�
� � . There

is a signicant difference between the two algorithms and it is quite obvious that Trio outperforms
GFI. This type of comparison provides some measure of assurance that the motivation behind Trio
is correct.
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3.3 Performance of Trio on Problem Instances for which Upper Bounds Exist

Figures 8 to 12 are SQTs obtained from running Trio on the problem instance
� �	�

,
� ���

,
�
� � ,�

� � , and
�
�
�
, respectively.

Due to the large amount of time required to run these experiments (a little over 27 CPU hours for�
� � ), only Figures 8 to 10 are based on data gathered on 300 runs. The SQTs for

�
� � and

�
�
�

are based on data gathered over 150 runs.

The behaviour of Trio is nicely illustrated by the above graphs. In each case, the initial graph was
generated by randomly placing the appropriate number of vertices in the plane; not surprisingly,
these initial graphs were consistently far from optimal. Starting from this initial placement of
vertices, the SQTs of in Figures 8 to 12 demonstrate how the algorithm rapidly approaches the
optimal value. The behaviour of Trio also changes as the value of � increases; a pronounced
’hump’ can be observed at the beginning of the algorithms run which then transforms into a step
descent towards the optimal value. Intuitively, we might expect to see such a trend which is most
likely a consequence of the fact that the difficulty of the problem increases with the size of � . It
should be noted that Trio confirmed many of the values found by Aichholzer et al [1] for values as
high as � =30. In particular, it was able to verify the upper bound values for � =10, 11, 12, 13, 14,
15, 17, 20, 25, and 30 (other values were not attempted). Furthermore, Trio was able to improve
upon the values given by Aichholzer et al [1] for � =39, 41, 42, 43, 44, 45,and 81.
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Figure 8: SQT for Trio running on
���	�
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Figure 9: SQT for Trio running on
�����
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Figure 10: SQT for Trio running on
�
� �
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Figure 11: SQT for Trio running on
�
� �
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Figure 12: SQT for Trio running on
�
�
�
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For each value of � , the algorithm found at least one optimal drawing. However, as � increased,
the ratio of successful runs (where an optimal drawing was obtained) to total number of runs
decreased dramatically; this is reflected in Table 2.

Value of � Number of
Successful Runs Total Number of Runs Success Percentage

17 246 300 82%
19 56 300 18.6%
22 31 300 10.3%
25 5 150 3.3%
30 3 150 2%

Table 2: Performance of Trio on Various Problem Instances

3.4 Trio: New Upper Bounds and Non-Isomorphic Drawings

# � Upper Bound Lower Bound Run-Time [CPU hours]

46 59611 50825 0.87
47 65153 55553 0.75
48 71166 60604 0.73
49 77576 65992 0.99
50 84421 71731 0.85
51 916684 77836 1.71
52 99322 84323 1.68
53 107573 91207 1.93
54 116278 98504 1.58
55 125515 106230 2.09
56 135332 110165 1.76
57 145806 118480 2.31
58 156470 127257 1.66
59 167984 136513 2.21
60 180048 146264 1.8
61 192831 156529 2.51
62 206112 167325 2.01
63 220101 178670 2.67
64 235198 190582 4.30
65 250688 203080 2.99
102 1594242 not calculated 2.81

Table 3: New Upper Bounds for ��� � � ����� and � =102

Above we presented upper bounds for $&% (
� �

) where ��� � � ����� and for � =102 along with the
corresponding run-times required to achieve this solution.

The parameter settings were
����

=0.03, 
 =1, 	 =5 � , and the stagnation steps were provided by
observing 2-3 runs; the grid size used was 1000000 � 1000000. These experiments were carried
out on a 1 GHz PIII processor under Linux.
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Without prior results, it is hard to ascertain the quality of the results provided in Table 3. These
lower bound values were calculated using the recursive formula provided at the beginning of this
paper. It is important to keep in mind that the lower bound values are, with high probability,
unatttainable; this is certainly true for the work done by Aichholzer et al [1] who found upper
bounds for 	 	 � � � ��� . A plot has been provided in Figure 13 that demonstrates how well our
values correspond with the trend set by Aichholzer et al [1]. There is a clear discrepancy, which
increases as � increases, between the values obtained by Aichholzer et al and the theoretical
lower bounds. The rate by which this discrepancy increases is relatively steady between both
those values by Aichholzer et al and the values obtained by Trio for ��� � � ����� . Based on the
performance of Trio for values 	 	 � � � ��� and the agreement between our results and those
obtained by Aichholzer et al [1] (with respect to the theoretical lower bounds), we hypothesize
that these results for ��� � � ����� are within 5% of the actual crossing number $&% (

� �
) for each

respective � .
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Figure 13: A plot of the theoretical lower bounds, the upper bounds set by Aichholzer, Aurenham-
mer, and Krasser, and the upper bounds found by Trio.

The last problem instance attempted by Trio is
� 
��

. Historically, this particular problem instance
has been used as a benchmark test. Hayward obtains a value of 659178, Jensen obtains a value of
630786 edge crossings, Singer’s construction method provides a value of 625320 edge crossings,
and the construction method of Brodsky et al obtains 623916 edge crossings [4]. Over the period
of approximately 8.55 CPU hours, Trio managed to find a drawing with 619422 edge crossings;
this is better than the previously mentioned values. Furthermore, after running the algorithm (a
new run) for approximately 52.7 CPU hours, we achieved a drawing of

� 
��
with only 618572 edge

crossings which is better than the drawing obtained by Aichholzer et al [1] which had 618616 edge
crossings via their construction method.

As a more recent development, Trio was run on the problem instances for � =39,41,42,43,44,and
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45. This resulted in some new upper bounds which are presented below:

# vertices Edge Crossings
Previous Upper

Bound [1]
Time Required
(CPU hours)

39 29729 29737 7.4
41 36730 36736 19.1
42 40633 40641 21.1
43 44862 44872 13.2
44 49389 49397 11.8
45 54261 54285 6.0

Table 4: New Upper Bounds with Trio

Finally, as one further new result, we present two non-isomorphic drawings of
�
� � . Previous to

this work, only one non-isomorphic drawing for this problem instance was known. Unfortunately,
the time constraints placed on this project limited the amount of work we could do on the problem
of enumerating the number of non-isomorphic

� �
for various values of � . Additionally, we also

found an additional non-isomorphic drawing of
�
� � for which only three such drawings were

previously known [1].

3.5 Performance of CRII on Known Problem Instances

The parameters for the RII algorithm and construction are given in Table 5. The cutoff is the
maximum number of iterations performed by the RII algorithm. For every instance of

� �
, the

probability of executing a bounded perturbation step is 0.02. Furthermore, the bound on number
of edge crossings added by a perturbation step is infinity.

# vertices Grid Size Cutoff
17 1000 � 1000 2000
19 3000 � 3000 3000
22 5000 � 5000 3000
25 7000 � 7000 3000

Table 5: Parameters for construction with RII
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Figure 14: An Optimal Drawing of
�
� �
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Figure 15: Another Optimal Drawing of
�
� � , non-isomorphic to the one in Figure 14.
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The construction method provides a good starting point for the SLS algorithms. However, the
simple RII algorithm has difficulty improving the crossing number of the constructed graph. The
construction method might be building solutions that lie close to local minima and yet still be
many steps away from the optimal solution. The initial results seem to verify this fact; however,
more testing needs to be done. The simple RII algorithm may not be effective enough to improve
the crossing number of the constructed graph. Better results may be obtained by using another
SLS algorithm on the constructed graphs.

The construction algorithm yields crossing numbers that are close to optimal in a very short time.
The resulting edge crossings can be used as upper bounds for the crossing numbers of

� �
for very

large graphs which have no known upper bounds. From our experiments, the relative solution
quality from using only construction is less than 0.21% (for each instance of

� ���
to
� � � ). The

median solution quality of contruction is less than 0.06% (for each instance of
� ���

to
� � � ). The

time to achieve these results using construction is much smaller than using the SLS algorithms.

It is interesting to note that the construction method was able to reach the known upper bound
for
� �	�

yet was unable to reach the known upper bound for
� �

� . This means that no run of the
algorithm reached the lower bound of

� �
� but at least one run was able to create a drawing of

� �	�
with crossing number equal to the lower bound from

� �
� with crossing number greater than the

lower bound. This might imply that a good drawing of
� �

is not needed to get a good drawing of� �����
by adding a single vertex to

� �
.

Figures 16 to 19 provide SQTs of CRII’s performance on the problem instances
� �	�

,
� ���

,
�
� � ,

and
�
� � , respectively. These SQTs were obtained from the same data that was used to provide

Table 5. Like Trio, CRII exhibits some of the same rapid descent towards the optimal value;
however, this behaviour is far less pronounced as is evidenced by the lower quality of the solutions
it provides.
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Figure 16: SQT for Construction with RII for
� �	�
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Figure 17: SQT for Construction with RII for
� ���
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Figure 18: SQT for Construction with RII for
�
� �
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Figure 19: SQT for Construction with RII for
�
� �
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3.6 CRII: New Upper Bounds

Table 6 contains statistics for the construction method. In each case, 300 runs of the construction
method were performed by constructing a graph from 3 vertices to 81 vertices. At each construc-
tion step, the new vertex is tried at 300 positions.

Table 6: Construction Statistics

Number of
vertices

Upper
Bound

�

Minimum
constructed

Median of
constructed

Maximum
constructed

Standard
deviation

Average
time [CPU
seconds]

4 0 0 0 0 0 � 0.001
5 1 1 1 1 0 � 0.001
6 3 3 3 4 0.237 � 0.001
7 9 9 9 11 0.199 0.010
8 19 19 19 24 0.550 0.020
9 36 36 36 44 0.944 0.04

10 62 62 63 75 1.465 0.060
11 102 102 102 122 1.969 0.099
12 153 153 157 180 3.173 0.141
13 229 229 231 263 4.352 0.208
14 324 324 330 379 5.776 0.289
15 447 447 457 521 7.927 0.391
16 603 605 616 700 10.608 0.519
17 798 798 814 922 13.585 0.679
18 1030 1033 1055 1175 17.852 0.869
19 1318 1322 1348 1520 23.191 1.099
20 1658 1664 1696 1919 29.249 1.368
21 2057 2073 2110 2373 36.177 1.686
22 2530 2550 2593 2921 43.691 2.057
23 3079 3101 3153 3529 51.712 2.488
24 3704 3731 3802 4256 62.306 2.980
25 4434 4466 4545 5110 74.550 3.544
26 5256 5300 5396 6016 87.216 4.179
27 6186 6230 6359 7068 103.547 4.902
28 7244 7309 7444 8326 121.410 5.710
29 8427 8497 8664 9761 142.704 6.616
30 9745 9852 10026 11213 161.046 7.623
31 11221 11353 11535 12891 187.498 8.748
32 12846 12976 13217 14772 217.333 9.986
33 14642 14816 15074 16872 246.500 11.357
34 16632 16842 17124 19193 279.197 12.859
35 18820 19046 19371 21516 311.688 14.506
36 21191 21477 21828 24052 346.734 16.299
37 23817 24129 24519 26901 394.785 18.263
38 26660 26986 27441 30199 446.600 20.397
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Table 6: Construction Statistics

39 29737 30197 30637 33697 493.483 22.721
40 33093 33557 34096 37455 545.294 25.221
41 36736 37274 37856 41620 604.742 27.939
42 40641 41232 41884 46107 663.879 30.857
43 44872 45530 46245 50954 738.776 34.010
44 49397 50179 50922 55986 811.864 37.381
45 54285 55143 55984 61695 903.932 41.012
46 - 60424 61402 67531 995.045 44.891
47 - 66183 67183 73983 1087.331 49.064
48 - 72289 73364 80863 1191.392 53.485
49 - 78756 80011 87810 1297.189 58.217
50 - 85757 87034 95272 1401.879 63.241
51 - 93182 94533 103540 1520.458 68.620
52 - 101024 102500 111948 1627.455 74.293
53 - 109307 111002 121299 1768.597 80.333
54 - 118161 119992 130947 1883.350 86.730
55 - 127553 129515 141069 2022.124 93.521
56 - 137421 139558 152148 2182.838 100.658
57 - 147950 150197 163814 2350.276 108.248
58 - 159096 161487 176132 2536.895 116.217
59 - 170814 173394 189340 2747.645 124.651
60 - 183245 185968 203117 2932.244 133.506
61 - 196053 199081 218307 3160.374 142.854
62 - 209758 212920 233491 3398.250 152.669
63 - 224117 227501 250109 3631.435 163.022
64 - 239259 242894 267939 3891.513 173.831
65 - 255034 258927 286264 4155.529 185.208
66 - 271681 275848 305145 4448.870 197.098
67 - 289040 293550 326482 4792.995 209.608
68 - 307220 312054 344823 5047.793 222.616
69 - 326477 331363 366589 5329.289 236.312
70 - 346129 351702 389060 5666.287 250.564
71 - 367043 372856 411833 6015.190 265.530
72 - 388922 394902 436057 6368.238 281.061
73 - 411456 418054 462094 6710.115 297.339
74 - 435383 442158 488642 7040.832 314.256
75 - 460134 467267 517234 7417.673 331.978
76 - 485914 493539 547778 7895.387 350.328
77 - 512865 520678 577881 8279.141 369.501
78 - 540832 549126 607109 8691.741 389.384
79 - 569713 578482 640391 9123.466 410.149
80 - 600289 609022 675090 9655.961 431.621
81 618616 631304 640908 713076 10247.956 454.039
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For the values obatined for � � 81, four runs were performed by constructing a graph from 3
vertices to 200 vertices. The best values are given in Table 7.

# vertices
Best crossing

number # vertices
Best crossing

number # vertices
Best crossing

number
82 670865 122 3401273 162 10762812
83 705068 123 3515302 163 11037850
84 741202 124 3632070 164 11316009
85 777765 125 3753597 165 11600913
86 816013 126 3876778 166 11888322
87 855943 127 4004537 167 12172961
88 896815 128 4133111 168 12468500
89 940026 129 4266236 169 12767378
90 985315 130 4402602 170 13073323
91 1029828 131 4542686 171 13382490
92 1077491 132 4686747 172 13704484
93 1126803 133 4831919 173 14028723
94 1176528 134 4980441 174 14356709
95 1228557 135 5136597 175 14693853
96 1281911 136 5294937 176 15037795
97 1337186 137 5455826 177 15385068
98 1395561 138 5619583 178 15741130
99 1455432 139 5783660 179 16101320
100 1517363 140 5955041 180 16469293
101 1581197 141 6130759 181 16843241
102 1645699 142 6309342 182 17221348
103 1712941 143 6492899 183 17609355
104 1781323 144 6681468 184 18003575
105 1850824 145 6873504 185 18407920
106 1922745 146 7067191 186 18812087
107 1996658 147 7261392 187 19221690
108 2073209 148 7461474 188 19644043
109 2152361 149 7666035 189 20069373
110 2233540 150 7877120 190 20504571
111 2317617 151 8092305 191 20943235
112 2401173 152 8308386 192 21382504
113 2489646 153 8534430 193 21836608
114 2581183 154 8760349 194 22304522
115 2674178 155 8994790 195 22779910
116 2769897 156 9232963 196 23251943
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# vertices
Best crossing

number # vertices
Best crossing

number # vertices
Best crossing

number
117 2867979 157 9477577 197 23738649
118 2970345 158 9726120 198 24237351
119 3073165 159 9977175 199 24731019
120 3179186 160 10234110 200 25235896
121 3288862 161 10493346

Table 7: Construction Statistics for Large Rectilinear Graphs

The above experiments with CRII were run using a 1 GHz PIII processor under Linux.

4 Conclusions and Future Work

Historically, providing ’good’ drawings of complete rectilinear graphs has allowed for much of
the progress towards obtaining values for $&% (

� �
) [4]. Determining whether or not a particular

drawing is ’good’ is a difficult and qualitative task; however, a comparison with previous results
and theoretical lower bounds can usually provide enough information with which to judge the
quality of a particular drawing. Our work here has provided a number of new upper bounds
which, in the light of all available evidence, seem to be of high quality. That being said, we do
not doubt that, as the quest for new rectilinear crossings number proceeds, these upper bounds
will be replaced by better (and perhaps even optimal) values. In particular, the methods used
by Aichholzer et al [1] promise to uncover better upper bounds if such an endeavour is ever
undertaken.

One of the most encouraging results of our work on this problem is the success with which our
two rudimentary SLS algorithms achieved both in terms of speed and solution quality. Trio was
remarkably successful in providing high quality drawings. The main drawback to Trio’s imple-
mentation is the slowdown in speed that results when larger and larger values of � are used.
Conversely, CRII was able to output solutions of relatively good quality (although, not as good as
those provided by Trio) at very high speeds.

In summary, the application of stochastic local search techniques to rectilinear crossing number
problem seems very promising as is demonstrated through the analysis above. Indeed, future
research opportunities exist with respect to this problem. In terms of the work done in this paper,
there are a couple of ideas that deserve some attention:

1) Combining Trio with CRII might produce an algorithm that inherits both Trio’s ability to find
high quality solutions and some of CRII’s performance speed.

2) CRII’s ability to provide high quality solutions might be improved by allowing it to move more
than just the added vertex at any given construction step.

A more advanced method that might deserve future attention is based on the idea of using the
points of intersection to find optimal vertex placements. A few of these ideas that have been
developed by the authors of this paper are:
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1) Perturbation around the neighborhood of an intersection point:
In case of an intersection, one could move one of the vertices of the graph closer to the intersection
point incident on its edge. By perturbing around the intersection point, the orientation of this vertex
in regards to other vertices changes and consequently affects the total number of crossings in the
graph. It seems logical and promising to choose the worst vertex of the graph, the vertex with the
highest number of edge crossings, to be perturbed around the cluster of intersections of edges.

2) Displacement of the worst vertex closer to the cluster of intersections:
In this technique, one would move the worst vertex of the graph as defined above closer to the
intersection cluster of the graph. In particular, one could sample the intersection cluster for inter-
section points and then move the worst vertex to either the mean of the sampled intersection points
or to their median.

3) A Combination technique:
As preliminary testing shows, a combination of the above two techniques for minimizing the
crossing number of a rectilinear complete graph is, indeed, very successful. One could randomly
choose between the above two proposed methods in order to minimize the number of crossings.
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