
Automatic Bounding Volume Hierarchy Generation Using
Stochastic Search Methods

Kelvin Ng
University of British Columbia

Department of Computer Science

kng@cs.ubc.ca

Borislav Trifonov
University of British Columbia

Department of Computer Science

trifonov@cs.ubc.ca

Abstract

A bounding volume hierarchy is a common method for making ray tracing based rendering
more efficient. Constructing good hierarchies, however, is a difficult problem as the num-
ber of hierarchies grows exponentially with the number of scene objects. In this paper, we
attempted to apply stochastic search to techniques to solve the problem of automatic genera-
tion of bounding volume hierarchy. We have investigated the use of randomized constructive
search method and the evolutionary algorithm to enhance two prominent heuristics for build-
ing bounding volume hierarchies.

1 Introduction and Background

Ray casting is a rendering method whereby primary rays are cast backwards from the camera into
a 3D scene; after the nearest intersection with an object is found shadow rays are cast to each
light source to determine lighting. Whitted [13] extended this idea into ray tracing. Rather than
just having primary and shadow rays, there can be multiple bounces of a ray (due to reflection,
refraction, transmission, etc.). Since at each intersection several rays can be spawned, one gets
a tree-like structure and the number of intersection tests that have to be performed increases sig-
nificantly. With further extensions like distributed ray tracing [5] (where many rays are cast in a
Monte Carlo sampling scheme) rendering becomes very computationally demanding. There is a
large volume of work dealing with improving the performance of ray tracers. [12] Since most of
the computation is spent on performing intersection tests, this has been the main target for opti-
mization. The biggest speedups come from methods that reduce the number of intersection tests
that need to be performed for each ray. The two main approaches are space subdivision (such as
binary space partitioning, octrees, and regular grids) and bounding volume hierarchies. [3] The
latter is the subject of this project.

The intersection computation with a geometric primitive is often an expensive operation. Enclos-
ing the primitive in a bounding volume, most commonly a tight-fitting box or sphere, can improve
the situation; intersection with a box or sphere can be computed faster, and a ray needs to be

147

intersected with the contained object only if it hits the bounding volume. The simplest bound-
ing volume is an axis-aligned bounding box (AABB), which is the choice for this project. The
main advantage of bounding volumes is that a tree-like hierarchy can be created, where bounding
volumes contain not only objects but also other bounding volumes. A properly constructed bound-
ing volume hierarchy changes the complexity of finding the intersections per ray from linear to
logarithmic in the number of objects in the scene. Smits [12] discusses efficient traversal and op-
timizations such as differentiating between shadow rays (where the check is for any intersection)
versus other rays (where the nearest intersection is needed).

One of the earliest ideas for automatically constructing the bounding volume hierarchy comes
from Kay and Kajiya [9]. Their idea is to build the hierarchy as follows: sort the bottom level BVs
along one coordinate axis, then partition them at the median; repeat by alternating the process over
all three axes. This method is quite simple and fast. However, there is justification for spending
more effort on optimizing a bounding volume hierarchy. A more sophisticated pre-processing step
generating the hierarchy pays off in the end because practically millions of rays will traverse the
tree during rendering. Goldsmith and Salmon [8] proposed an alternative method of building the
BVH which takes O(n log n) time in the number of objects. Unlike the median cut algorithm,
Goldsmith and Salmon’s algorithm minimizes a cost heuristic based on the surface area, rather
than the volume, of each bounding volume and its parents. The tree is constructed by adding
objects one by one to the hierarchy: for each object, the tree is searched for a location that tries
to minimize the increase in cost. The resulting hierarchy is not restricted to being a binary tree
and is not balanced so that some parts of the tree are deeper than others For example, large objects
tend to be higher up in the hierarchy. The overall cost of the bounding volume hierarchy can be
evaluated as follows: the probability of a random ray hitting a bounding volume is proportional
to its surface area; the cost of the node representing this bounding volume is the product of this
number and the number of its children; the overall cost is the sum of the costs at all nodes. The
cost can be computed incrementally during hierarchy construction, taking logarithmic time for the
addition of one node.

More recently, M̈uller and Fellner [10] proposed a hybrid approach. Similarly to the Kay and
Kajiya algorithm the scene is recursively subdivided; however, instead of choosing the median
of sorted objects, the subdivision that optimizes a cost function similar to that of Goldsmith and
Salmon is chosen at each iteration (the approach is hybrid because some nodes with uniform object
distribution are not further subdivided with bounding volumes, but with regular grids).

2 Theory

To the best of our knowledge, no theoretical analysis of the problem complexity has been published
or referenced. However, as shown in the following paragraph, the number of hierarchies that can
be built for any scene is exponential in the number of scene objects. Furthermore, we cannot find
any reference to a polynomial-time complete algorithm for this problem. In fact, all algorithms
proposed in the literature are heuristic methods rather than complete ones. It is doubtful that
this problem can be solved in polynomial time. The existing algorithms often claim to be near-
optimal w.r.t.their own objective function, but this has to be a pure conjecture as no effort has
been made to determine the optimal value. Practically, it is unlikely that a universal definition

148

of optimality exists, as the actual time spent on ray-tracing varies depending on the type of ray
tracing, the type of primitives used to represent scene object, and various other implementation
specific components.

To see that the number of hierarchies is exponential in the number of object. let us consider that
hierarchies are constructed by recursively partitioning objects into subscenes. Without loss of
generality, in each step objects divided into halves along one axis only. Assume that there aren
objects in the scene. Therefore, there aren − 1 subdivision points. It is always possible to divide
the scene such that there is only a single object on one side and the remainingn − 1 objects on
the other side. Furthermore, there are two cases of this, with the single-object subscene formed at
either end of the sorted object list. Of course, there are more ways to split the objects, but what
will be shown here is that the number of hierarchies is already exponential in the number of objects
without taking them into account. It is not necessary to divide the single-object subscene, so we
consider on the other one. There aren − 1 objects in it and thereforen − 2 splitting points. This
is exactly the same scenario as the one we encountered at the top level, except that the number of
object has decreased by one. Remember that there are two cases of this. Therefore, the number
of hierarchies for a scene ofn objects must be greater than or equal to two times the number of
hierarchies for a scene ofn − 1 objects, forn > 2. In other words, iff(n) represents the number
of hierarchies as a function of number of objects, n, then

f(n) ≥ 2 · f(n − 1)

Equivalently, the number of hierarchies grows exponentially with the number of objects.

3 Building Bounding Volume Hierarchy by Scene Object Division

3.1 The Original Heuristic Method

In a paper that presents an algorithm that builds a hybrid data structure combining bounding vol-
ume hierarchies and uniform spatial subdivisions for a given scene, Müller and Fellner described a
heuristic method to automatically generate high-quality bounded volume hierarchies. The method
builds a bounding volume hierarchy recursively in a top-down fashion [10]. The hierarchies pro-
duced are virtually binary trees, with two children in each inner node. At the start of this algorithm,
scene objects are sorted along all three axes by the centre position of their immediate bounding
box. All the possible subdivision points are then evaluated according to an evaluation function,
which is based on the surface area of their resulting children bounding volumes and the intersec-
tion costs of scene objects contained inside. The best subdivision point is then selected, and two
children nodes are constructed. Each node has a bounding volume that contains objects on its
side of the subdivision point along the axis. Recursively, the same method is applied to both chil-
dren nodes until some stopping criteria has been met. In their paper, the stopping criteria is that
the cost of intersecting the objects inside the node falls below a certain threshold value. Without
the knowledge of such a good value, and for the sake of simplicity, we have decided to continue
dividing objects in subscenes until all leaf nodes contain a single object.

149

procedurebuildBVH()

1. Sort boxes along all three axes.

2. Evaluate each subdivision points on all three axes.

3. Divide the objects at the best subdivision point encountered.

4. Make the new bounding boxes of the sublists the children of the current node

5. Recursively repeat steps 2-5 on the two sublists of objects, using the same
ordered obtained in step 1, until there is only one object in the sublist.

end procedure

Table 1: Pseudo-code of the Müller and Fellner Heuristic

On the average, as in any tree structure, the number of levels is O(logn), where N is the number of
leaf nodes. In this method, the evaluation of the subdivision points can be computed incrementally
in O(n) time. Overall time complexity of this algorithm is thus O(nlogn). The evaluation function
is defined to be

CH(j, axis) =
SB(Lj)
SB(H)

·
∑
i∈Lj

Cobj(oi) +
SB(Rj)
SB(H)

·
∑
i∈Rj

Cobj(oi),

where

• Cobj(o) is the average ray/object intersection costs intersecting a random ray with elemen-
tary objecto

• SB(X) is the surface area of the bounding box associated to subsceneX

• axis ∈ {X, Y, Z}

• H is a scene hierarchy, withLj andRj as its direct children created by dividing the objects
along theaxis, such that|H| = n, |Lj | = j, |Rj | = n − j, j ∈ {1, 2, . . . , n − 1}. |H| is
the number of objects stored in the leaves of hierarchyH.

If it can be assumed that there is a uniform distribution of random rays, the probability of a ray
intersecting a bounding volumeB given that is it intersects a surrounding bounding volumeA is
S(B)
S(A) . This explains the appearance of the surface area in the evaluation function. The cost of
intersecting a ray with the subscene surrounded by the bounding volumeB is then estimated to be
the sum of the intersection costs of individual objects of the subscene. The cost of intersecting a ray
with an elementary scene object can be predetermined empirically, as explained in an electronic
correspondence from one of the authors, Gordon Müller.

As a side note, although popular, binary subdivision does not always produce the best possible
hierarchy. For example, if there is a large object surrounded by clusters of much small objects,

150

it is desirable to have its bounding box near the top level in the hierarchy. However, any binary
subdivision algorithm is forced to group the large object with one of the smaller clusters in the
beginning. Multi-way subdivision methods, however, is outside the scope of this project.

3.2 Implementation of the Heuristic Method

In our implementation of all bounding volume algorithms, immediate bounding boxes are built
for every scene object. Operations on the objects described below are actually performed on those
bounding boxes. Using immediate bounding boxes not only simplifies the implementation and
reduces the computation time, it is also beneficial to the actual ray tracing, especially if intersection
costs of the scene objects are high.

To efficiently compute the evaluation function values or costs for all the subdivision points along
an axis, one can scan the objects (or immediate bounding volume of the objects) from one end to
another, extending the bounding box along the way by adding objects one by one and recording
their costs. Then, repeat the same procedure but reverse the order of scanning. In addition, to find
the total cost of a subdivision point, one has to add the costs found in the two passes. As expanding
a bounding volume to include another one is a constant time operation, the overall time needed to
determine the best subdivision point along an axis is O(n). Also, the sorting of the objects has to
be performed once only in the beginning to preserve the O(n log n) time complexity of the overall
method.

As mentioned previously, we allow subdivision to continue until all the leaf nodes contain a single
object. As a result, we have noticed room for optimization on the evaluation function without
sacrificing the quality of hierarchies generated by this method. Since the parent node is the same
for all subdivision points, and the only purpose of the cost function is to compare the quality of
those different subdivision points, it is not necessary to divide the surface areas of the children
bounding volumes by that of the parent one. This alters the actual value of the cost function but
preserves the relative ordering of hierarchies, which is all we need to know. By the same token,
when computing the surface area of the bounding volumes, it is not necessary to multiply the area
of the surfaces of the three different orientations by two. Both optimizations remove unnecessary
operations that are repeated frequently.

Furthermore, even though there are three different axes, it is possible that the ordering is the same
along two or more axes. To checking for same ordering, however, is a O(n) operation itself, albeit
being considerably less expensive than evaluating the subdivision points. An important point is
that if in a certain node it has been determined that the ordering is identical on two axes, the same
can be concluded on all subsequent ”offspring” nodes generated by it. Therefore, it is believed that
to be advantageous to check for identical ordering along the three axes. Indeed, a quick experiment
on two benchmark instances, the largest one Cloister and the smallest one escher, showed that run
time is slightly reduced when this technique is applied. The real CPU time consumed dropped from
2.469s to 2.422s on Cloister, and from 0.266s to 0.2665s on escher. As expected, the advantage
becomes more significant as the problem size grows,

151

Instance Original New

bijou 1.710e7 2.840e7
Cloister 1.845e9 2.632e9
escher 4.8195e5 7.335e5
konistil 1.027e14 2.137e14
pinecon2 1.361e6 1.651e6

Table 2: Comparison of bounding volume hierarchy costs obtained using a different cost function
with those using the original one

3.3 Evaluation of Hierarchy Quality

Once an hierarchy has been built, it is possible to objectively evaluate its quality. If the assumption
of uniform random ray distribution can be made, then the cost of a hierarchy can be calculated
using the formula:

∑
i∈nodes Pi · Costi, wherePi is the probability that a ray is intersecting with

a node, andCosti is the cost of intersection tests with its children. Intuitively, this is the sum of
products of intersection cost and the probability that such intersection test is required for all nodes.

As the set of scene objects as well as their immediate bounding boxes is the same for all possible
hierarchies built for them, the associated intersection cost is fixed and therefore can be excluded
when comparing hierarchies. Furthermore, it is a fair assumption that the cost of intersecting a
bounding volume in the hierarchy, which is an axis-aligned bounding box, is also fixed regardless
of size and location. Taking into account the above assumptions, and the fact that the probability
of intersection is proportional to the surface area, we can use the total surface area of all internal
bounding volumes to measure the quality of a given bounding volume hierarchy.

A different yet simpler heuristic function has been tested but did not produce good hierarchies.
The results can be found in table 2. It is a simple function that only considers the surface area
of the subscene bounding volumes, ignoring the number of objects contained inside them. This
can be viewed as a naive attempt to apply the objective function directly as the heuristic in the
construction steps. This shows why the objective function may not always be a good choice for
evaluation function, especially in the constructive search case, where the solution components are
likely to be dependent on each other.

3.4 Applying Stochastic Local Search

This heuristic of building a hierarchical data structure for scene objects can be modelled as a con-
structive search method. It builds the hierarchy by dividing the objects into two halves at each
point, adding levels to the hierarchy by recursively deciding the subscenes. This corresponds to
building the solution by adding solution components one by one. The selection of the subdivision
point at each step is guided by a heuristic function, and the best selection encountered is always
selected. The heuristic function, which can also be called the evaluation function, aims at estimat-
ing the actual quality of possible choices. It differs from the final objective function that solution
quality, which is the total surface areas of all internal bounding volumes. Moreover, the heuris-

152

Instance Base Rand 10 Rand 100

bijou 1.710e7 2.028e7 1.963e7
Cloister 1.845e9 2.013e9 1.978e9
escher 4.8195e5 5.3575e5 5.2116e5
konistil 1.027e14 1.188e14 1.111e14
pinecon2 1.361e6 1.587e6 1.513e6

Table 3: Comparison of bounding volume hierarchy costs by running the first randomized method
with those by the base method. Rand 10 and Rand 100 refer to the best hierarchy cost obtained in
10 and 100 trials respectively.

tic function is adaptive, because its value depends on the solution components (other subdivision
points) already present in the partially built hierarchy.

The above description of the heuristic fits into the model of a greedy constructive search method,
as introduced in the textbook by Hoos and Stützle [11]. The leads to the conjecture that an im-
provement can be achieved by randomizing the search, inspired by the success obtained from
applying the Greedy Randomized Adaptive Search Procedure (GRASP) [6, 7]. In the random-
ized construction phase of GRASP, the solution component with the optimal heuristic value is not
automatically selected in each step. Instead, the component is randomly selected from a set of
highly ranked solution components contained in a restricted candidate list (RCL). The RCL can
be either defined by cardinality or value restriction. In the first case, thek best ranked solutions are
included, while in the second case, the components within a factor ofα of the best heuristic value
is included. The second phase of GRASP is a perturbative local search phase, which is briefly
discussed in section 5.

In our implementation of the base method, a function is invoked to find the best subdivision point
along a particular axis in each construction step. The subdivision point with the best value is
then chosen from the best ones, found along each of the three axes. Therefore, an obvious and
straightforward way to extend the base method is to randomly pick from those three subdivision
points. Unfortunately, this simple modification does not perform nearly as well as the original
method, and failed to improve the solution quality on all of the benchmark instances even after a
relatively large number of attempts (100). Table 3 shows the costs of hierarchies obtained on the
test scenes by running this method.

Without any subsequent processing to improve the resulting hierarchies, the frequent deviation
from the best point (two thirds of the time) generates poorly constructed trees. The problem is
aggravated by the fact that other two points could be among lower ranked points when considering
all possible ones along the three axes.

As a result, an adjustable noise setting is added to allow different probabilities of not picking the
point with the best heuristic value. With a small noise setting of around 10 percent, randomized
construction search occasionally produces better quality hierarchies than the greedy one, and the
majority of them stay within five percent of the one built greedily. Table 4 contains the experimen-
tal results. It is interesting to see that in two instances (konistil and pinecon2), an improvement
over the original method can be observed after a small number of attempts (10). While the im-

153

Instance Base Rand 10 Rand 100

bijou 1.710e7 1.713e7 1.699e7
Cloister 1.845e9 1.850e9 1.828e9
escher 4.820e5 4.837e5 4.733e5
konistil 1.027e14 1023e14 1.023e14
pinecon2 1.361e6 1.360e6 1.359e6

Table 4: Comparison of bounding volume hierarchy costs by running the first randomized method
with a noise setting of 10 percent with those by the base method. Rand 10 and Rand 100 refer to
the best hierarchy cost obtained in 10 and 100 trials respectively.

provement obtained may be small, it is always achieved when given enough number of trials.

A further attempt to enhance the performance is made by lifting the restriction of considering
only the best points from the three axes. By modifying the program to store extra information,
one can add flexibility by adopting an approach more similar to the one described in GRASP. In
this case, the restricted candidate list is built following the cardinality restriction, consisting of
the bestk ranked subdivision points among all possible ones. The parameterk, along with the
noise setting, can then be tuned to optimize the performance. Preliminary findings indicate that
there is no apparent advantage of this approach. With a smallk and a small noise setting, the
performance is comparable to the previous version. Larger values of the parameters generally
result in worse hierarchies. Furthermore, the computation resources required by this method is
significantly greater than the previous one, making it an unattractive choice. It should be no
surprise as the time complexity of this algorithm isk times that of the previous one. Figure 1 is a
plot of costs vs number of trials for different values ofk. It shows that the performance is optimal
whenk is 5.

4 Enhancing the Object Insertion Method with Evolutionary Ap-
proach

In [4] the authors proposed the use of evolutionary techniques for the automatic generation of
near-optimal partitioning trees, which is another approach for speeding up rendering. The idea is
that once partitioning planes are determined, the trees only differ in the order in which partitions
are chosen; each tree can be specified by a permutation of the list of partitions. Populations of
permutations can be created and mutation, crossover, and selection can be used, trying to optimize
them.

Originally the idea adopted here was to use such an approach for choosing the split points for
a top-down subdivision (M̈uller and Fellner’s [10] is top-down, for example). Only the order of
the split points matters, since all are chosen – however, that only applies to the one dimensional
version of the problem. Eventually it was realized that there was no way to do this with three axes,
sincen − 1 split points have to be chosen out of3(n − 1) possible over the three axes, and the

154

Figure 1: Costs vs number of trials on escher for variousk.

155

choosing has to be done in such a way as to avoid invalid permutations (where two split points
each on a different axis result in the exact same split between volumes; these cannot be detected
since they change depending on the particular order). Most permutations generated using a genetic
algorithm would be invalid, and it would be inefficient to test for that.

Next this idea was applied to Goldsmith and Salmon’s algorithm, which builds the BVH by adding
volumes one by one, and depends on the order of insertions. The following is a more detailed
description of Goldsmith and Salmon’s method. The first node to be inserted forms the root of the
tree. The tree is then searched for an insertion location for the next node. It can either become
a child or sibling of a node. The tree is searched top down without backtracking, every time
choosing a subtree to search that will have a minimal increase in cost if the volume were to be
added to that subtree. Cost increase depends on the surface area, increase in surface area in case
of addition, and number of children, for the node and it’s ancestors; for the exact algorithm, see
[1], which includes the C++ source code, makefile, and one test scene (for gcc 3.2 or higher). This
process takes approximatelylog(n) time for each of then volumes to be added.

Some discussion on testing is appropriate. The cost values that Goldsmith and Salmon’s algorithm
returned were different than those obtained by simulating actual ray intersections; however, this
is to be expected, because here shadow rays were tested rather than primary rays (most rays in
scenes are usually shadow rays), and depend on the distribution of the rays (here random rays
with origins within the root scene volume were used; in actual ray tracing there is the additional
restriction that shadow ray origins lie on either surfaces or lights, depending on implementation;
only intersections along the direction of the ray after the ray origin, not behind it, are considered).
The differences varied across scenes. However, the correlation between this heuristic cost function
and the cost from simulations (for various orderings of input for the same scene) is very strong
(almost proportional). Simulations of 10000 rays were used in each case; different simulations on
the same bounding volume hierarchy gave average numbers of intersections that were the same to
two significant digits. Unfortunately, using this many rays takes longer than building a hierarchy.
The intention was to use actual simulation instead of the cost function for evaluating fitness, but
using a small number of rays gave unstable evaluations and poor performance. Thus, the Gold-
smith and Salmon cost function was used as a fitness measure, which is not much of a sacrifice
due to the good correlation it has with the empirically determined costs.

The mutation, crossover, and selection methods are the same as those proposed by [4]. In a popu-
lation of permutations, new permutations are created by mutation and crossover as follows. Muta-
tion is simply a swap of two randomly chosen elements in a permutation. Due to the large number
of objects in the scene (and thus length of the permutations), multiple mutations are possible at a
time (a number proportional to the length). Crossover is accomplished by choosing two parents
and a crossover point randomly; for the first offspring, elements are copied from the beginning
of the first parent up to the crossover point, and then the rest from the second parent in a way
that avoids copying duplicate elements and results in a valid permutation (see [1]). The second
offspring is created in the same way, but starting with the other parent. The offspring replace the
parents, and thus population size is constant. The selection is tournament style, whereby random
pairs of permutations are chosen (as many times as is the size of the population), and the one with
the lower cost (higher fitness) is kept for the next generation (additionally, the most fit is always
kept; due to this selection, duplicates are possible). This approach was chosen here because it is
simple, more memory efficient, and because it was used in [4] for a related problem. The fact that

156

in the case of high crossover probability most permutations will be replaced by their children even
if they are less fit than the parents should not be a significant problem: the fittest permutation is
always kept in the population and memorized as the best solution seen so far, and permutations
with high fitness can be chosen more than once by the random tournament selection, resulting in
duplicates.

In their experiments, [4] tested the algorithm with populations sized several times the length of
the permutations, for several tens of thousands of generations, resulting in runtimes of hours. The
justification of such long runtimes is that the acceleration data structure, once optimized, can be
stored with the scene, and used to speed up many renderings, even though one rendering might
only take minutes. However, in their case the calculation of the evaluation function can be done
faster than here, where each permutation is evaluated by generating the BVH with a full run of
the Goldsmith and Salmon algorithm. Most testing was done with two scenes obtained from
the public domain of around 10000 objects (triangles) each; these can be found in pinecon2.zip
and escher.zip fromhttp://web.ukonline.co.uk/Members/bebop/meshes/meshes.htm. This
algorithm appears to have a somewhat limited sensitivity to the ordering. Using subsets of the
scenes of around 1000 objects, the evolutionary approach gave essentially no gains for runs with
population sizes up to 100 and 200 generations. In the case of the whole scenes, due to the
very large computation time for the evaluation of each permutation of length around 10000, small
population sizes and number of generations were used (this is also why larger scenes were not
tested). In figures 2 and 3 (on page 158) population sizes of 50 and 100 generations were used,
taking several minutes each on the departmental Unix server. The value graphed is the Goldsmith
and Salmon BVH optimality cost function returned by their algorithm for the most fit tree (see the
description of that algorithm in section 1). The empirical costs from simulation of ray intersections
for the most fit members of the last generation in each run were 33 and 27 average number of
intersections per ray. It is interesting to note that these are similar numbers for two similarly sized
scenes; M̈uller and Fellner’s algorithm produces a value of 26 for the first scene, but a value of 12
for the second one. Clearly M̈uller and Fellner’s approach has significantly better performance in
optimization, and ran in less than a minute on the same machine.

It is worth considering why evolutionary techniques only resulted of improvements of about a
third over the average Goldsmith and Salmon case, which was at least better than random picking
of permutations (which was also tried), but not enough. Varying the mutation and crossover rates
was attempted. Due to the long time for each run, a pick-and-test method was used for a number
of values, rather than some exhaustive search. The aforementioned graphs are those for the best of
the values tested, with a crossover rate of 0.7 and a mutation rate averaging around 1/500th of the
length of a permutation. Graphs produced with other values, however, were very similar, with the
worst case being no mutation at all and producing cost values about one third higher for runs of
the same population size and number of generations. Doing five runs (only five due to the speed
issue) with those parameters for each scene gave final costs within intervals of 30 and 38 for the
first scene, and 26 and 30 for the second (the graphs in this paper show the median runs). It appears
that the variance of the performance of the underlying Goldsmith and Salmon algorithm over the
various possible orderings is quite low; i.e. Goldsmith and Salmon’s method has only limited
sensitivity to the ordering of objects in the majority of cases (this was also observed when testing
random picking of permutations, where the majority of orderings had similar cost values, with
some significantly worse, and few with higher ones). Another possible factor is that the specific

157

Figure 2: Cost vs generation (population=50) on pinecon2.

Figure 3: Cost vs generation (population=50) on escher.

158

Figure 4: Cost vs generation (population=200, long run) on pinecon2.

crossover, mutation, and selection methods have too much difficulty getting out of local minima,
as evidenced by the apparent stagnation seen in the graphs. Trying to increase diversification
by having larger mutation and/or crossover rates than the ones used above, however, produced
virtually identical graphs. Finally, a large test was ran with a population of 200 for 400 generations
for the pinecon2 scene to see whether the algorithm continues to slowly improve the cost value
or completely stagnates. This took about an hour on a dual Xeon machine in theβ lab, with
results shown in figure 4. Some improvement can be seen in the cost function as compared to the
shorter runs, but in the empirical testing with random rays the value was actually worse (40). This
fits with the observation that the Goldsmith and Salmon cost function is just an approximation;
nevertheless, using the ray testing as a cost function instead is impractical, as getting stable values
(no variance in the first few significant digits of the values returned by several tests of the same
BVH) required the use of hundreds of thousands of rays; this would increase the computation time
many times, as the ray tracing evaluation would take much longer than the actual Goldsmith and
Salmon procedure, the current bottleneck.

5 Future Work

All the results from the randomized constructive search experience in section 3 seems to indicate
that a good local improvement or perturbative local search phase could potentially be the missing
piece of the puzzle. However, there is no indication of how to meaningfully encode the hierarchy
and select a good neighbourhood that will produce good results when local improvement tech-
niques are applied. One may wish to view that a hierarchy as a permutation of the subdivision
points. Unfortunately, not all subdivision points are needed due to the existence of three axes.

159

Furthermore, even in the one axis case, there could be different distinct permutations that generate
identical hierarchies.

Another suggestion is to re-examine the hierarchies after they have been built. If at some node
it appears that a wrong decision has been made so that the two children are highly imbalance
and one is contributing significantly to the overall cost of the hierarchy, a different selection point
can be made and this part of the hierarchy resembling a subtree can be rebuilt. This approach,
however, requires more information to be stored at each node, and it is not a local search step
strictly speaking. Despite that, it is still a worthwhile attempt in the future.

6 Conclusion

Good data structures for storing and organizing scene objects are crucial in the ray-tracing based
rendering. We have attempted to apply stochastic search techniques to enhance existing heuris-
tic methods that are generally agreed to produce good quality bounding volume hierarchies. A
approach based on Greedy Randomized Adaptive Search Procedures (GRASP) is applied to im-
prove upon M̈uller and Feller’s object division construction method. An evolutionary algorithm
is employed in the attempt to obtain a good object ordering for Goldsmith and Salmon’s object
insertion-based construction method. The tested approaches could only provide marginal improve-
ments over the original algorithms at the expense of increased computation time. Furthermore in-
vestigation can be performed to study other possible ways to improve upon existing results found
in this project.

References

[1] Borislav Trifonov.: Source code for evolutionary approach.http://www.cs.ubc.ca/ tri-
fonov/gsg.tar.gz.

[2] Müller, G. and Ng, Kelvin.: Personal electronic mail correspondences, dated Mar 19-24,
2003.http://www.cs.ubc.ca/ kng/mueller-email.txt.

[3] Chang, A. Y. A survey of geometric data structures for ray tracing. Technical Report
TR-CIS-2001-06, CIS Department, Polytechnic University, 2001.

[4] Cassen, T., Michalewicz, Z., and Subramanian, K. R.: Near-optimal construction of parti-
tioning trees by evolutionary techniques. Graphics Interface, 1995.

[5] R. L. Cook, T. Porter, and L. Carpenter.: Distributed ray racing, Computer Graphics, vol.
18, no. 3, pp 137-145, 1984.

[6] Feo, T.A. and Resende, M.G.C.: A probabilistic heuristic for a computationally difficult
set covering problem. Operations Research Letters, 8:67-71, 1989.

[7] Feo, T.A. and Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal
of Global Optimization, 6:109-133, 1995.

160

[8] Goldsmith, J. and Salmon, J.: Automatic creation of object hierarchies for ray tracing.
IEEE Computer Graphics and Applications, 7(5):14-20, May 1987.

[9] Kay, T.L. and Kajiya, J. T. Ray tracing complex scenes. Computer Graphics (SIGGRAPH
’86 Proceedings), 20(4):269-78, Aug. 1986.

[10] Müller, G. and Fellner, D. W.: Hybrid scene structuring with application to ray tracing. Pro-
ceedings of the International Conference on Visual Computing (ICVC’99), 19-26, February
1999.

[11] Hoos, H. H. and Sẗutzle, T.: Stochastic local search: foundations and applications. Morgan
Kaufmann Publishers, to appear in 2003.

[12] Smits, Brian. Efficiency issues for ray tracing. Journal of Graphics Tools, 3(2):1-14, 1998.

[13] Whitted, T. An improved illumination model for shaded display. Communications of the
ACM, 23(6):343-349, June 1980.

161

162

