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1 Introduction

Given a number of DNA sequences, the motif finding problem is the task of
discovering a particular polymer that appears (perhaps in a slightly mutated
form) in every given sequence. We are considering the problem as defined by
Pevzner and Sze[PS00], and as stated by Buhler and Tompa[BT01]:

Planted (l, d)-Motif Problem: Let M be a fixed but unknown
nucleotide sequence (the motif consensus) of length l. Suppose
that M occurs once in each of t background sequences of common
length n, but that each occurrence of M is corrupted by exactly
d point substitutions in positions chosen independently at ran-
dom. Given the t sequences, recover the motif occurrences and
the consensus M .

Much work has been done on the problem, but there are certain variations
of the problem for which satisfactory solutions have not yet been found. For
example, the problem becomes harder if insertions/deletions are considered
to be legal mutations or if the motif does not occur in all of the t background
sequences.

2 Existing Work

Many motif finding algorithms have been developed. Before 2000, there
were essentially two types of algorithms. One kind finds a motif that maxi-
mizes a score function representative of how likely the motif is to be ‘planted’,
rather than just randomly occurring. Unfortunately these algorithms often
stop at local maxima, completely ignoring absolute maxima that can have
much higher scores. The other kind of algorithm is enumerative. Those al-
gorithms are guaranteed to find the most probable motif, but running times
become prohibitively slow for larger motifs and more mutations.

Pevzner and Sze [PS00] introduced two new algorithms that were more
successful than previous attempts. WINNOWER treats every occurring l-
mer as a node in the graph, with nodes adjacent if and only if they differ in at
most 2d positions and they occur in different sequences. It then finds cliques
of size t and works from those starting points. SP-STAR tries testing every
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occurring l-mer in turn and considers the probability that it is a mutated
occurrence of the motif consensus. Using this technique it essentially does
an enumerative search, but only over the occurring data rather than the
entire space of 4l l-mers.

In 2002, Buhler and Tompa [BT01] introduced their Projection algo-
rithm. This algorithm ‘projects’ every occurring l-mer onto a smaller space
by hashing. The hash function is based on k of the l positions that are
selected at random when the algorithm begins. l-mers are hashed into the
same bucket if they have the same bases in those k positions.

The idea behind Projection is that background l-mers (essentially ran-
dom noise) will be distributed evenly between the buckets. Meanwhile, the
‘planted bucket’ (i.e. the bucket into which the motif consensus would be
hashed) will have additional l-mers because some occurrences of the planted
motif will not be mutated in any of the k hashable positions. Projec-

tion performs this hashing, then performs refinement on each sufficiently
full bucket to find the best motif in that neighbourhood. The algorithm will
find the consensus motif if it ends up refining the planted bucket. By running
the algorithm multiple times, Projection will refine the planted bucket in
at least one run with high probability.

Projection performs significantly better than other algorithms, espe-
cially for harder instances of the problem such as (14, 4), (17, 5), and (18, 6).
For this reason, we have decided to concentrate on finding improvements for
Projection, which has found success in the l-mer hashing technique and,
for now, seems to be the right direction to work in for the motif finding
problem.

3 Proposed Improvements

The majority of Projection’s running time is taken up by the refinement
stage that finds the best motif in the neighbourhood of a given bucket. For
this reason, it would be advantageous to refine as few buckets as possible in
our search for the planted bucket. The difficulty is that refining more buckets
is currently advantageous in that it increases the probability that we refine
the planted bucket at some point.
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Our goal is to find improvements to the projection process in a way that
will, in all likelyhood, make projection more complicated and time consum-
ing, but will allow us to refine few enough buckets that the time gained in
refinement will more than make up for the time lost in projection.

One problem with the projection method is that some mutated occurrences
of the motif consensus will be hashed to buckets other than the planted
bucket, essentially being thrown away and considered as noise. In reality, a
significant number of motif occurrences will land near, but not in, the planted
bucket. Rather than simply refining any bucket with at least some threshold
number of l-mers in it, we propose to introduce a more sophisticated bucket
scoring system.

We will implement a scoring technique that we call ‘bucket aggregation’.
A bucket will receive a score based on the number of l-mers projected to
it, as well as the number of l-mers that are projected to nearby buckets
(diminished by some probability coefficient). Essentially, the neighbour N of
a bucket B will count towards B’s score in an amount proportional to the
probability that an l-mer belonging in B could mutate to land in N . To keep
the running time reasonable, we will have to limit the number of neighbours
we consider, probably only considering buckets within a Hamming distance
of 1 or 2. After our aggregation, we will send to refinement any bucket with
a score above some threshold.

By aggregating the scores of nearby buckets, we hope to focus the effect
of the significant data (planted motif occurrences) in relation to the noise
(randomly occurring l-mers). By doing this, we should improve the chances
of sending the planted bucket to refinement. This means that we can send
fewer total buckets to refinement and the algorithm will therefore run faster.

The aggregation may also improve Projection’s performance in the vari-
ation of the problem in which the motif is not planted in all t of the given
sequences. That version of the problem is essentially the same but with more
added noise. Focussing the significant data may cut through that extra noise
to make Projection more effective.
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For this project, we will add our aggregation implementation to the existing
code, which we have already obtained from www.cse.wustl.edu/~jbuhler

/projection.html. Along with detailed probabilistic analysis of our method,
we will provide experimental analysis. We will compare the success of our
augmented version of Projection to that of the original version in a number
of different situations. If our modification does not yield any improvement,
we plan to give a detailed explain of why we failed.

4 Work Schedule

10.5-10.12: Analysis of existing implementation, including gathering of run-
time data and success rates. Probabilistic analysis of bucket aggregation.
More in depth research of other algorithms under recent or current develop-
ment.

10.12-10.26: Implementation, including debugging and testing. Further
theoretical analysis. Writing up of bucket aggregation analysis. Ongoing
research into current algorithms.

10.26-11.9: Experimentation, experimental analysis. Writing up of com-
parative experimental results.

11.9-11.16: Editing, proofreading, completion of written paper.

5 Distribution of Work

Mohammed Alam: Coding, testing, (experimentation, related research,
writing).

Warren Cheung: Coding, testing, (experimentation, analysis, writing).

Juan Estrada: Related research, experimentation, (writing).

James King: Analysis, writing.
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