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Abstract. Membrane systems are models of computation which are inspired
by some basic features of biological membranes. In a membrane system mul-
tisets of objects are placed in the compartments defined by the membrane
structure, and the objects evolve by means of “reaction rules” also associated
with the compartments, and applied in a maximally parallel, nondeterminis-
tic manner. The objects can pass through membranes, the membranes can
change their permeability, they can dissolve, and they can divide. These fea-
tures are used in defining transitions between configurations of the system,
and sequences of transitions are used to define computations. In the case of
symbol-objects, we compute a set of numbers, and in the case of string-objects
we compute a set of strings, hence a language. Many variants of such comput-
ing devices (now called P systems) have already been investigated. Most of
them are computationally universal, i.e., equal in power to Turing machines.
Systems with an enhanced parallelism are able to trade space for time and
solve in this way (at least in principle), by making use of an exponential
space, intractable problems in a feasible time.

The present paper presents the basic ideas of computing with membranes and
some fundamental properties (mostly concerning the computational power and
efficiency) of P systems of various types?.

1 Introduction

The basic function of biological membranes is to define compartments and to relate com-
partments to their environment, including neighboring compartments. For instance, the
plasma membrane (see, e.g., [2]) ensures that certain substances (molecules) stay within
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(do not escape from) the cell, while other substances, e.g., toxic molecules, stay out of
the cell. Moreover, membranes allow certain molecules to pass through: e.g., waste prod-
ucts to leave, and certain nutrients to enter. Also, membranes form a communication
structure, allowing messages (signals) to be received or to be transmitted by the enclosed
space. This communication is crucial for establishing multicellular communication and
hence for establishing multicellular organization (see, e.g., [26]). This compartmentaliza-
tion by membranes, with each enclosed area having its own set of molecules and (enzymes
enhancing) reactions, with the transport of molecules and (hence) the communication
through membranes, is the paradigm underlying membrane systems (see, e.g., [40] and
Chapter 3 of [10]).

It must be stressed that membrane systems (also called P systems) are not intended
to model the functioning of biological membranes. Rather, we explore the computational
nature of various features of membranes, i.e., we investigate how such features can be
used in a model of computation. To this aim, we abstract from a number of principles
underlying the functioning of biological membranes, and use this abstraction to construct a
novel model of computing. Such an approach is typical for the area of Natural Computing,
where one studies all kinds of computing inspired by (or gleaned from) nature.
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Figure 1: A membrane structure
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The membrane structure of a P system is a hierarchical arrangement of membranes
(understood as three dimensional vesicles), embedded in a skin membrane, the one which
separates the system from its environment. A membrane without any membrane inside
is called elementary. Each membrane defines a region. For an elementary membrane this
is the space enclosed by it, while the region of a non-elementary membrane is the space
in-between the membrane and the membranes directly included in it. Figure 1 illustrates
these notions. We label membranes (by positive integers in Figure 1) in order to be
able to address them in programming computations by membrane systems. Since each
region is delimited (“from the outside”) by a unique membrane, we will use the labels
of membranes to also identify (label) the regions they delimit. We will use the obvious



terminology here — thus, for example, we say that membrane 8 is directly contained in
membrane 6 (or that membrane 6 directly contains membrane 8).

Each region contains a multiset of objects, and a set of (evolution) rules. The objects
are represented by symbols from a given alphabet. Typically, an evolution rule from
region 7 is of the form ca — cbin, doutdpere, and it “says” that a copy of the object a, in
the presence of a copy of the catalyst ¢ (this is an object which is never modified, it only
assists the evolution of other objects), is replaced by a copy of the object b and two copies
of the object d. Moreover, the copy of b has to “immediately” enter the inner membrane
of region r labeled by j (hence to enter region j), a copy of object d is sent out through
the membrane of region r, and a copy of d remains in region r. Note that the considered
evolution rule can be applied in the region r only if this region includes the membrane j.

Note that (syntactic) evolution rules are stated in terms of objects while their imple-
menation (execution) is done using copies of objects: at a given moment the given region
may contain many copies (a multiset) of a given object. In order to simplify descriptions
of computations in membrane systems, we will often use the term “object” rather than
“a copy of an object”, but, bearing in mind the above principle, the real meaning will
always be clear from the context of considerations.

Membrane systems are synchronous, in the sense that a global clock is assumed, i.e.,
the same clock holds for all regions of the system. In each time unit a transformation
of a configuration of the system takes place by applying the rules in each region, in a
nondeterministic and maximally parallel manner. This means that the objects to evolve
and the rules governing this evolution are chosen in a nondeterministic way; this choice is
“exhaustive” in the sense that, after the choice was made, no rule can be applied anymore
in the same evolution step (there are not enough objects available anymore for any rule
to be applied now — this is the maximality of application).

It is instructive to see a single step transforming a configuration of the system as a
“macro-step” consisting of several “micro-steps” performed after each other. Consider a
region r of the system. First, we assign (occurrences of) objects from r to rules from
r, nondeterministically choosing rules and objects until no further assignment is possible
(note that the multiplicity of objects present in r is crucial in this micro-step). Then,
all these “assigned” objects are removed from the current multiset of objects in r, and
(occurrences of) all objects specified by the right hand sides of the chosen rules are
added to this multiset, together with their “transfer commands”: in;, out, here. Now,
all transfers indicated by commands in; and out are executed (if a copy of an object is
introduced in the skin region, i.e., the region delimited by the skin membrane, and its
transfer command is out, then it will be sent out of the system, to the environment, and
it never “comes back”), and copies of objects with the transfer command here remain in
region r. Finally, the transfer commands (subscripts) are removed, and a “macro-step”
is completed for r. Since all regions are processed “simultaneously” (with all micro-steps
performed synchronously), this completes the global macro-step.

In this way, one gets transitions between the configurations of the system. A sequence
of transitions is called a computation. A configuration is halting, if no rule is applicable in
any region (nothing can happen anymore). A computation is halting if it reaches a halting
configuration. We consider only halting computations. The result of a (halting) compu-
tation is the number of objects sent (through the skin membrane) to the environment



during the computation.

Many modifications/extensions of this very basic model described above are discussed
in the literature. We will now briefly discuss two additional features that will be used in
the basic model of membrane systems considered in this paper.

The first one is a priority relation among rules. This means that in each region a
partial order relation on the set of rules in this region is given — then, a rule can be chosen
(to process a multiset of objects) in a given step only if no rule of a higher priority is
applicable.

Another “control device” for P systems considered in the literature is a modification
of membrane permeability. Thus, the membranes can be dissolved (the objects of a
dissolved membrane remain in the region surrounding it, while the rules are removed; the
skin membrane cannot be dissolved), or made impermeable (no object can pass through
such a membrane).

There are two standard ways of investigating the influence of various features of P
systems: (1) to consider their computational power/competence — e.g., are P systems
using given features computationally universal (hence equivalent to Turing machines)?,
and (2) to consider their computational complezity (are P systems able to make use of their
intrinsic parallelism and solve hard problems, e.g., NP-complete problems, in a feasible
time?). These two topics will be considered in detail in this paper.

As the reader can realize from the previous discussion, and as it will be obvious
also below, membrane computing is related to various areas, such as formal language
theory, Lindenmayer systems, vector addition systems, multiset processing (e.g., in the
sense of the Gamma language, [4]), the Chemical Abstract Machine of [6], but it is also
significantly different from all these. In particular, we stress the similarity with and,
mainly, the differences from the Chemical Abstract Machine, which also uses a membrane
structure and deals with multisets of objects, but involves quite different operations, both
when acting on objects and on membranes, and has a quite different goal (to simulate
distributed processes, while here we deal with computing in the Turing sense, of computing
functions). It is also worth noting that we look here for “minimalistic” models, using a
minimal number of simple features, which is not the case in either [4] or [6]. For example,
the standard rule in the Gamma language is of a maximal generality, it has the form
(u — v;7), where u and v are multisets, and 7 is a predicate on the family of multisets;
the rule v — v is applied for “rewriting” a multiset w only if P(w) = true.

2 Bio-membranes; Structure and Functions

In this section we describe in more detail some of the basic features of the plasma mem-
branes. We have chosen those features that are of interest from a computational point
of view and from which we will abstract the (mathematical) features of our computing
model.

A cell has a complex structure, with several compartments delimited inside the main
membrane by several inner membranes: the nucleus, the Golgi aparatus, various vesicles,
etc. In principle, all these membranes fulfill the same main roles: they are separators
and filters. We now recall some facts concerning the structure and the functioning of the



plasma membrane (see, e.g., [2] and [26]) which will be relevant in the sequel of this paper.

The currently accepted model of the membrane structure is the so-called fluid-mosaic
model, proposed in 1972 by S. Singer and G. Nicolson. According to this model, a mem-
brane is a phospholipid bilayer in which protein molecules (as well as other molecules, such
as cholesterol, steroids and others) are totally or partially embedded — this is illustrated
in Figure 2.
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Figure 2. The structure of the plasma membrane

The phospholipid molecules are composed of two main parts: a polar head and a non-
polar tail. The head is composed of a phosphate group and a nitrogen group, the tail
consists of two fatty acid chains; the head is bonded to the tail by a glycerol. Conse-
quently, the heads of the molecules in the two layers are hydrophylic, while the tails are
hydrophobic. This explains the arrangement of heads against the aqueous solutions from
the inner region (plasma) and from outside the cell, as well as the difficulty of passing
water through a membrane. Moreover, the polar heads lead to polarizations of the two
sides of the membrane: positive charge in the outside layer and negative in the inner layer
of molecules. This facilitates the exit of negative ions and the entrance of positive ions.



The (plasma) membrane is only partially permeable. For instance, small noncharged
molecules, particularly if they are lipid soluble, cross the membrane almost freely. Larger
molecules can only cross a membrane if they are assisted, while charged ions pass selec-
tively from a region to another one.

The transmembrane transfer of molecules can take place in a passive manner, e.g., by
diffusion towards the region of lower concentration, and in an active (mediated) manner.
The most important active membrane transfer is done by protein channels present in
various numbers in membranes. For instance, water (which otherwise cannot pass through
the hydrophobic barrier of the tails of the phospholipidic molecules) can pass through such
channels.

Actually, there are two main types of protein channels, some which just select the
moving objects by their size, and others, the so-called carrier proteins, which interact
with specific molecules (perhaps also modifying them) when helping them to cross the
membrane.

Other important functions of membrane proteins are the catalytic activity (certain
reactions can take place only in the presence of certain enzymatic proteins), recognition
and binding activities (certain proteins recognize certain molecules or even catch them
and keep them bound to the membrane).

Another important aspect is the way the neighboring cells establish protein channels
for inter-cellular communication: due to the fact that the phospholipid molecules can
move on the membrane surface (that is why the model is called the “fluid-mosaic” one),
when two membranes touch each other, their proteins can “look for each other”; when
two proteins come close enough, they bind to each other and establish a unique channel
through the two membranes. In this way, a complex communication network can be
established among cells. If one of the cells is invaded by “undesired” molecules, then the
cell isolates itself from the neighboring cells by closing the passage channels — they may
be re-opened again, once the emergency situation has been resolved.

We conclude this section by stressing once again that biological membranes provide
“a protected and well equipped” space (a kind of a natural reaction tube) within which
chemical reactions can take place. Correspondingly, membranes in a P system provide
space (and objects) for computations.

3 The Basic Model

We move now to a more formal presentation of the membrane-based computing paradigm,
by introducing one of the basic variants of P systems, followed by an example.

A membrane structure is pictorially represented by an Euler-Venn diagram (like the
one in Figure 1); it can be mathematically represented by a tree, or by a corresponding
string of matching parentheses. For instance, the membrane structure from Figure 1 is
represented by the following parentheses expression:

WL L LG s llyls 171014

Since the membranes have labels, the pairs of corresponding parentheses also have labels.
It should be noted that the same membrane structure may be represented by different



parenthetic expressions (the order of neighboring membranes placed in the same upper
membrane does not matter).

For the basics of formal language theory we refer the reader to, e.g., [53] (as a matter
of fact, our use of formal language theory in this paper is quite limited). We use V* to
denote the set of all strings over the alphabet V' (we consider only finite alphabets). For
a € V and x € V* we denote by |z|, the number of occurrences of a in x. Then, for
V ={a,...,a,}, the Parikh mapping associated with V' is the mapping on V* defined
by Uy(z) = (||ays-- -, |T]a,) for each x € V*. The family of recursively enumerable
languages is denoted by RE, and the Parikh images of languages in RE is denoted by
PsRE (this is the family of all recursively enumerable sets of vectors of natural numbers).
The family of all recursively enumerable sets of natural numbers is denoted by nRE.

The multisets over a given finite support (alphabet) are represented by strings of
symbols. The order of symbols does not matter, because the number of copies of an
object in a multiset is given by the number of occurrences of the corresponding symbol
in the string. Clearly, using strings is only one of many ways to specify multisets.

We define now a membrane system, which in addition to the most basic features
discussed in the Introduction uses also priority relations on evolution rules, and the mem-
brane dissolving capability.

Such a membrane system is called a P system, and it is a construct

II = (‘/7 T7 Caluawla <oy Wi, (Rlapl)a R (Rmapm))a

where:

(i) V is an alphabet — its elements are called objects;

(ii) T C V (the output alphabet);

(iii) C CV —T (catalysts);

(iv) p is a membrane structure consisting of m membranes, with the membranes (and
hence the regions) injectively labeled by the elements of a given set H of m labels
(in this paper H = {1,2,...,m}); m is called the degree of II;

(v) w;, 1 < i < m, are strings which represent multisets over V' associated with the
regions 1,2,...,m of y;

(vi) An evolution rule is a pair (u,v), which we will usually write in the form u —
v, where u is a string over V and v = v/ or v = v'd, where v’ is a string over
{@heres Gouts @in; | @ € V,1 < j < m}, and ¢ is a special symbol not in V. The
length of u is called the radius of the rule u — wv.

R;,1 <i < 'm, are finite sets of evolution rules over V — each R; is associated with

the region 7 of p; p; is a partial order relation over R;, called a priority relation (on
the rules of R;).

To simplify the notation, the subscript “here” for letters (objects) in evolution rules
will be mostly omitted.

If IT contains rules of radius greater than one, then we say that II is a system with
cooperation. Otherwise, it is a non-cooperative system. A particular class of cooperative
systems is that of catalytic systems: the only rules of a radius greater than one are of the
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form ca — cv or ca — cvd, where ¢ € Cya € V —C, and v € (V —C)*; moreover, no other
evolution rules contain catalysts (i.e., there are no rules of the form ¢ — v or a — vycvs,
with c € C and a € V — C).

Now since we have a priority relation and the dissolving capability, we have to modify
the description of the single macro-step of a computation in a membrane system given in
the Introduction.

To take into account the dissolving action ¢ we add as the last step the following
micro-step: for each region where a rule containing § was used, the membrane enclosing
this region is removed, and consequently the objects of this region will belong now to
the region that was enclosing the dissolved membrane. Obviously, if the membrane of
this region was also dissolved, then the objects “travel” even further up. Since the skin
membrane is never dissolved, there is a limit to this travel. Note that the evolution rules
in each region are associated with this region, and so, if the region disappears because
the membrane enclosing the region is dissolved, then the associated evolution rules also
disappear.

To take care of the priority relation we modify the first micro-step as follows: an object
can be assigned to a rule only if no object can be assigned to a rule of a higher priority.
Hence, we have a competition for rule application and not a competition for choosing
perhaps the same objects.

The (m + 1)-tuple (p, wy, ..., wy) constitutes the initial configuration of II. Since we
have the possibility of dissolving membranes, the system may enter a configuration which
will include only some of the initial membranes, Thus, any sequence (u',w; ..., w;, ),
with g/ a membrane structure obtained by removing from g all membranes different
from iy, ..., 4 (of course, the skin membrane is not removed), with ng strings over V/,
1 <j <k and {iy,...,it} C {1,2,...,m}, is called a configuration of II. Note that
not every configuration may be reachable through an evolution of the system. Also, note
that if a membrane is present in two different configurations, then it will have the same
label, because labels are associated with membranes (and never manipulated during an
evolution of the system).

For two configurations Cy = (p',w;,...,w; ), Co = (", wj,...,wy) of Il we write
C1 = (), and we say that we have a transition from C to Cs, if we can pass from C;
to Cy by using the evolution rules from R; , ..., R; in the regions iy, ..., .

We emphasize here the fact that when using a rule u — v in the region i;, copies of
the objects as specified by u are “consumed” (removed), and the result of using the rule
is determined by v.

The macro-steps corresponding to the use of evolution rules are performed in parallel,
for all possible applicable rules u — v, for all occurrences of multisets u in the regions
associated with the rules, for all regions, following the principles of nondeterminism and
maximal parallelism as discussed in the Introduction.

A sequence of transitions between configurations of a given P system II is called a
computation with respect to II. A computation is successful if and only if it halts, that
is, there is no rule applicable to the objects present in the last configuration. The result
(output) of a successful computation is W7 (w), where w describes the multiset of objects
from T sent out of the system during the computation (a non-successful computation has
no output). The set of such vectors ¥y (w) is denoted by Ps(IT) (“Ps” stands for “Parikh



set”), and we say that it is generated by II.

We illustrate the above definitions with the following example. Consider the following
P system (of degree 3):

1= (V,T,C, p,wi,wa, w3, (R1, pr), (Ra, p2), (R, p3)),

V ={a,b,d,e, f}, T ={e}, C =10,

1= [0 1slalys

wy =\, Ry = {e = e}, p1 =0,

wy=A, Ro={b—=d, d—de, ri:ff—f, ro: f—=0}, po={r1 >rs},
w3y = af, R3={a—ab, a —=bd, f— ff}, ps=0.

\\

e
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a — ab
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f=rff

b—d
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\(ff—>f)>(f—>5)/
K € — Cout /

Figure 3: The initial configuration of 11
(with rules included)

The initial configuration of IT (including the rules) is given in Figure 3. No objects
are present in regions 1 and 2, and so no rules can be applied in these regions. Hence one
has to start in region 3, using the single copies of objects a and f. If we iterate the use
of rules « — ab and f — ff, in parallel for all occurrences of a and f currently available,
then after n steps, n > 0, we get n occurrences of b and 2" occurrences of f. If we then
use a — bd instead of a — ab (note that we always have only one copy of a), then we get
n+ 1 occurrences of b and 2"*! occurrences of f, and, moreover, we dissolve membrane 3
(and so region 3 disappears). This means that all the occurrences of objects from region
3 become occurrences of objects from region 2, the rules of region 3 are “lost” (removed),
and the rules of region 2 can now be applied to all occurrences of objects present in
region 2. As dictated by the priority relation, we have to use the rule ff — f as much
as possible. In one step, we transform v"*! to d"*!, while the number of occurrences of
f is halved. In the next step, n + 1 occurrences of e are produced: each occurrence of
d introduces one occurrence of e. At the same time, the number of occurrences of f is
halved again.



The priority relation ensures that this step must be iterated n times (each time pro-
ducing n + 1 occurrences of e), and then the rule f — ¢ must be used. Its use dissolves
membrane 2 (and so the rules of region 2 are removed), while the objects of region 2
become objects of the skin region, which contains only rules for e. Now, in one step, all
copies of this object will be sent out of the system, by using the rule e — e,,;. No further
step is possible, and so the computation stops.

Figure 4 illustrates a halting computation in II, for n = 4.

2 2

—_
DO
w
—_
(ON]
—
w

Initial config. Step 1 Step 2
1 1 1 1
2 2 2 2
b* d* d* et d* eb
f16 f8 f4 f2
Step 4 Step 5 Step 6 Step 7
1 1 1
2
d4 612
f d4 616 d4 616
Step 8 Step 9 Step 10

Figure 4. A computation in the P system II from the example

Hence, for this computation the result is 42 = 16. More general, we send out of the
system (n+1)(n+1) copies of the object e, for some n > 0. Hence Ps(I1) = {(n?) | n > 1}.

4 Organizing Communication

Communication between regions plays a central role in computations in P systems. Such
a communication consists of exchanging objects between regions, where the exchange is
programmed by the use of addressing (subscripts of objects) here, out, and in; which
precisely indicates the region destination of objects introduced by evolution rules. In par-
ticular, in; is a very powerful form of addressing: an object with this subscript introduced
in region ¢ will enter region j only if region j is directly contained in region ¢; otherwise
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an evolution rule using in; addressing cannot be used. This “adjacency checking” is a
powerful feature of programming computations in P systems.

There are a number of ways of weakening the programming power provided by in;.

The obvious way is to replace in; addressing by in addressing: if an object ay, is
introduced in region ¢, then a will enter any of the adjacent lower regions, chosen nonde-
terministicaly among all adjacent lower regions; if membrane 7 is elementary, then rules
using in addressing cannot be used.

The addressing using in; associates a specific object with a specific membrane (hence a
region). An alternative way, more specific than in and less specific than in;, is to associate
both with objects and membranes (electrical) charges of three sorts: +,—,0 (positive,
negative, neutral). The charges of membranes are given in the initial configuration, and
they are not changed during computations, the charge of objects are given explicitly by
the evolution rules that introduce them. For example, the rule a — b*d~ introduces one
occurrence of b positively charged, and one negatively charged occurrence of d. A charged
object will immediately go through one of the directly adjacent lower membrane of the
opposite charge, the neutral objects remain in the same region or will exit it, depending
on whether they have the subscript here or the subscript out, respectively. After a charged
object crosses a membrane, it becomes neutral.

0T 0T

)
Coting ) (D, (] -

Figure 5: The effect of actions 9, 7

Another way of controlling the passage of objects through membranes is to control
the permeability of membranes. It is well-known that the permeability of (real life) bio-
membranes can be variable. This control of permeability is implemented in P systems
by the use of action 7, which can increase the “thickness” of a membrane making it
impermeable. Together, actions 0 and 7 provide a very convenient programming device
to regulate the passage of objects through membranes. Let us asssume that initially all
membranes have thickness 1. If a rule within a membrane of thickness 1 introduces the
symbol 7, then the thickness of this membrane becomes 2. A membrane of thickness 2
does not become thicker through the use of other rules which introduce the symbol 7,
however no object can pass through it. If a rule which introduces the symbol ¢ is used
within a membrane of thickness 1, then the membrane is dissolved; if the membrane had
thickness 2, then it returns to thickness 1. If within the same step one uses rules which
introduce both ¢ and 7 in the same membrane, then the membrane does not change its
thickness. The cumulative effect of the actions 6 and 7 are illustrated by the diagram in
Figure 5. It turns out that the control of the membrane permeability is a very powerful
computing tool (see Section 5).
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5 Universality

In this section we consider the computational power of our basic model, equipped with
the features discussed above.

The family of sets of vectors over natural numbers Ps(II) generated by P systems
of degree at most m > 1, with priority and catalysts, using target indications of the
form here, out, in;, and also using the actions ¢, 7, is denoted by NP,,(Pri, Cat, tar,o,7);
whenever one of the features « € {Pri, Cat, §,7} is not used, we replace it with nao.
Hence, e.g., N P, (nPri,Cat, tar,nd,nt) denotes the family of sets of vectors over natural
numbers generated by the most basic membrane systems discussed in the Introduction.

When we use the communication commands here, out, in, then we replace tar with
i/o; when we use electrical charges, we write + instead of tar.

The following theorem (based on the main results from [40], [16]) is the basic univer-
sality result for P systems.

Theorem 5.1 PsRE = NP,y(Pri,Cat,i/o,nd,nt) = NPy(nPri,Cat,i/o,0,T).

The proofs of these equalities are based on a technique used in the proofs of many
universality results for P systems. It can be briefly explained (for the reader familiar with
basic language theory) as follows. It is known that the recursively enumerable languages
are also generated by matriz grammars with appearance checking (ac), a class of regulated
context-free grammars already well investigated in the sixties, see [53], [13]. Moreover, a
binary normal form is valid for such grammars (see Lemma 1.3.7 in [13]). The number
of nonterminals which appear in rules which are used in the ac mode can be bounded
(by two — see [17], which has improved the bound six from [39]). Starting from a matrix
grammar G with appearance checking, in the binary normal form, and with at most two
nonterminals used in rules which can be applied in the ac mode, we can construct a P
system Il of the type (nPri,Cat,i/o,d,7) simulating G and with only four membranes:
the skin membrane and one inner membrane simulate the matrices without ac rules, while
two further membranes can take care of the two nonterminals which appear in matrices
which contain ac rules, thus also simulating these matrices — that’s why four membranes
suffice. If priority relations among rules are also used, then two membranes suffice (even
without using the membrane thickness control). In either case, only weak addressing
(using commands here, out, in) is used.

The use of catalysts is very convenient in programming computations in P systems.
Their main role is to keep the parallelism under control: we have to simulate a sequential
device (a matrix grammar) in an inherently parallel framework (a P system), hence we
have to “inhibit” the parallelism, and this is done by using (a limited number of) catalysts.
When these catalysts have a sort of “short term memory”, then even one membrane
suffices for obtaining universality. Each such catalyst (called bi-stable) has two states, ¢
and ¢, and they are used in rules of the form ca — @v and ¢a — cv (always changing
from ¢ to € and back). We write 2Cat instead of Cat in denoting the generated families
of vector sets. The proof of the following result (demonstrating the power of bi-stable
catalysts) can be found in [49].

Theorem 5.2 PsRE = NP, (nPri,2Cat,i/o,nd,nr).
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6 Trading Evolution for Communication

Let us now cousider, following [34], a “purely communicative” class of P systems, where
the objects never change (never evolve) — they only pass through membranes. Due to
the fact that the number of objects present in the system at any time should be in-
creased/decreased in a controlled manner, we use carriers, and provide sufficient copies
of each object in the environment.

The origin of this idea is twofold. It abstracts the work of the carrier proteins assist-
ing molecules to pass through membranes (see, e.g., [2]), and it also abstracts from the
fundamental idea of 'vectors’ used in gene cloning (see, e.g., [9]).

Thus, in membrane systems with carriers we have objects of two types: the carriers
(“vehicles”) and the passengers. None of them ever changes, and moreover the passen-
gers can pass through membranes only when carried by carriers. We also have objects
(both carriers and passengers) available in the environment. Rules to handle objects
(attaching/detaching carriers to/from passengers, and passing through membranes) are
associated with regions, and also with the environment. Otherwise, the functioning of
a membrane system with carriers is the same as an ordinary membrane system: rules
are applied in a nondeterministic maximally parallel manner, and transitions between
configurations yield computations.

It is also worth mentioning that in this case no object is created or destroyed, only
the location of the objects can be changed. Hence, the “conservation law” is observed —
which does not necessarily happen in other classes of P systems.

The rules used in P systems with carriers are of the following four types (V' is the set
of vehicle-objects and O is the set of passenger-objects):

—vay...a — way...q, forveViay,...,a, € O,k > 1 (attaching rules);
— [vay ...ax] = vay...aqx, forv e Viay,...,ax € O,k > 1 (detaching rules);
— [vay ...ag] = in, for v e Viay,...,a, € O,k >0 (carry-in rules);
— [vay ...ag] = out, for v € V,ay,...,ar € O,k > 0 (carry-out rules);
where v is a carrier and aq, ..., a; are passengers. In the environment there are only rules

of the first three forms. The maximal number of passengers in any rule of a system is
called the carring index of the system.

The family of all sets Ps(II) computed by systems with carriers of degree at most
m > 1, using at most p > 1 carriers, and with the carrying index not exceeding k > 1, is
denoted by NC'P,,(p, k); when any of the parameters m, p, k is not limited, we replace it
by .

The following results are from [34]. (Note that, again, two membranes suffice, while
the carrying index is rather low.)

Theorem 6.1 PsRE = NCPy(3,3) = NCPy(x,2).

7 Structuring Objects (Strings)

In a cell, many objects can be considered as being atomic (with no internal structure), but
many other objects, such as, e.g., DNA molecules, have a structure, which, sometimes,
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can be described by a string. This leads one to consider P systems where objects are
strings.

This points to a general observation/analogy: in Lindenmayer systems (see, e.g., [51],
[52]) the basic unit is a cell with no internal structure assigned to it; in P systems that we
have considered so far, one “zooms” into a cell, distinguishing the membrane structure
and the objects contained within its compartments. Now we will zoom one level “deeper”:
the objects will be structured (as strings). If we focus at this level of abstraction, then we
are again within the framework of formal language theory, and when we choose splicing
as the basic operation, then we are in the framework of H systems (see, e.g., [19], [44]).

It is natural, when working with string-objects, to use string processing rules as evo-
lution rules. We will consider first the simplest case, when the multiplicity is ignored and
we deal with formal languages in the classic sense.

7.1 P Systems with Rewriting

One natural way to process string-objects is to use rules of the form (X — v;tar), where
X — v is a usual context-free rule and tar is a target indication, one of here, out, in,
specifying in the standard way the region where the result of rewriting should go. We can
also append to v the symbols ¢ and 7, which control the membrane thickness in the way
discussed in Section 4.

The structure and the functioning of a rewriting P system are defined in the usual
way, with the following additional observations: all strings are processed in parallel, but
each single string is rewritten by only one rule (the parallelism is maximal at the level
of strings and rules, but the rewriting is sequential at the level of the symbols from each
string). One begins with finite sets of strings in each region, then one applies rewriting
rules, and collects the strings over the terminal alphabet which leave the system during a
computation — again only halting computations are considered successful. We denote by
RP,,(Pri,i/o,6,7) the family of languages generated in this way by rewriting P systems
with at most m membranes, using priorities among the rewriting rules, target indications
here, out, in, and the actions d,7. As usual, we write na instead of « € {Pri, 0,7}
whenever the corresponding feature is not used.

Here is a simple example. Consider the rewriting P system

I = (V,T,p, My, My, (R, p1), (Rz, p2)),

V. = {a,b,c,d,d e €}, T ={a,b,c},

wo= [1[2 ]2]17
M, = {de}, My=10,
Ry = {(d— ad'b,here), (e — c€',in), (d — ab, here), (e — c,out)}, p1 =0,
Ry = {(d' — d,out), (¢ — e, here)}, p, = 0.

Assume that we have a string of the form a"db™c¢™e in the skin region, with n, m > 0
(initially we have n = m = 0). If we apply the rule (e — ce’,in), then the string
a™db™c™t1e is sent to region 2, we apply then the rule (' — e, here), and the computation
halts without sending out any string. Thus, in the skin membrane we have to use both
rules (d — ad'b, here) and (e — c€',in). The string a1 d'b" '™ e’ is sent to region
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2. If we use here only the rule (¢ — d,out), then the string a"*'db" '™ e’ is sent to
region 1, where we can use one of the rules (d — ad'b, here) or (d — ab, here), but the
computation halts again without producing any output. We have to use both rules from
region 2, hence we return to the skin membrane the string a"*'db"*1¢™*te. The process
can be iterated, resulting in the simultaneous increase of the number of occurrences of
symbols a, b, c. If in the skin region we use the rules (d — ab, here) and (e — ce’,in),
then again we cannot exit from the inner membrane. Also, if we send out of the system a
string by using the rule (e — ¢, out) before using the rule (¢ — ab, here), then the string is
not accepted because it contains the symbol d, which is not in 7". In this way we generate
the non-context-free language L(IT) = {a™b"c¢" | n > 1}.
The following result is from [23], [59].

Theorem 7.1 RE = RPy(Pri,i/o,nd,nt).

The use of a priority relation can be avoided at the cost of controlling the membrane
thickness. This was first considered in [59], [60], where a characterization of RE has been
given, using systems without a bound on the number of membranes. The following result
is from [16].

Theorem 7.2 RE = RPy(nPri,i/o,0,T).

One can combine the rewriting of strings with their duplication. A rewriting-replication
rule (see [24]) is of the form r : X — (uq,tary)l|...||(u,, tar,). To apply r to a string w
one replaces one occurrence of X in w by u;, by us, and so on, in a context-free manner
(i.e., X is replaced and the rest of w is just replicated). Thus, this rewriting yields n
strings, wiuiws, ..., wiu,we, where w = wi; Xwsy. As usual, these n strings are sent to
regions as indicated by the targets tary,...,tar,, respectively.

The family of all languages L(II), generated by rewriting-replicating systems II of
degree at most m > 1 is denoted by RRP,,(i/o) (no further feature is used, such as
Pri,0,7). The following characterization of RE is from [28].

Theorem 7.3 RE = RRP;(i/0).

7.2 P Systems with Splicing

An attractive variant is to process the string-objects by the splicing operation, introduced
in [19] as a formal model of DNA recombination under the influence of restriction enzymes
and ligases (see [44] for a comprehensive investigation of splicing systems).

Consider an alphabet V' and two symbols #,$ not in V. A splicing rule over V
is a string r = w;#usSusfuy, where wuy,us, us3,uy € V*. For such a rule r and for
x,y,w,z € V* we define

(ff;y) Fr (waz) ift == xiuiuews, v = yiususys, W= T1UIULY2, T = Y1U3ULTo,

for some x1, 29,1y, € V™.

(One cuts the strings x, y in between u;, up and ug, uy, respectively, and then recombines
the fragments obtained in this way.)
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In a splicing P system II, the rules are given in the form (r;tary,tary), where r =
w1 #FusSus#uy is a splicing rule over V, and tary, tary € {here,out,in}.

As usual in splicing systems, when a string is present (in a region of II), it is assumed
to appear in arbitrarily many copies.

The transitions among configurations of a splicing P system are defined by applying
the splicing rules from each region, in parallel, to all possible strings from the region,
and following the target indications associated with the rules. More specifically, if x,y
are from region i and (r = uj#usSus#tuy;tary,tars) is a rule from region i such that
we can have (z,y) b, (w, z), then w and z will go to the regions indicated by tary, tars,
respectively. Note that the strings z,y are still available in region 7, because we have
assumed that they appear in arbitrarily many copies (an arbitrarily large number of them
were spliced, arbitrarily many remain). However, if a string w, z obtained by splicing is
sent, out of region ¢, then no copy of it remains in region .

The result of a computation consists of all strings which are sent out of the system
at any time during the computation (here we do not work with halting computations,
because the computations which contain at least one transition never halt, due to the
assumption that the strings are not consumed by splicing). We denote by SP,,(i/o)
the family of languages generated in this way by splicing P systems of degree at most
m,m > 1.

Splicing P systems with three membranes either arranged in two levels or in three
levels, were shown in [48] to characterize the recursively enumerable languages. The
following result from [38] shows that two membranes suffice.

Theorem 7.4 RE = SP(i/o).

7.3 Counting the Copies of String-Objects

We will consider now P systems handling multisets of strings, and where the result of a
computation is the number of strings sent out of the system during a halting computation,
and not the strings themselves. The number of copies of strings is important, so therefore
we need to consider operations on strings which can increase this number (we do not also
need operations which decrease the number of strings, because we can achieve this by
storing strings in certain membranes, which can act as “garbage collectors”).

The operations that we will use are replication, as defined at the end of Subsection
7.1, and splitting. If a € V and uy,us € VT, then 7 : a — uy|uy is called a splitting rule.
For strings wy, we, w3 € VT we write wy =, (w2, w3) (and we say that wy is split by rule
r) if wy = x1axe, wy = iUy, w3 = usxe, for some wy, xy € V*.

P systems with multisets of string-objects, processed by rewriting, replication (into
two new strings), splitting, and recombination/crossover (for z,wy, we, w3, wy € VT, we
write (wy, we) =, (w3, wy) if wy = x1229, We = Yy12Ys, and w3 = T12Yys, Wy = Y122, for
some ¥y, Ta, Y1, Y2 € V*) were considered in [11].

These rules have associated targets here, out, in for the resulting strings (two in the
case of replication, splitting, and recombination, and one in the case of rewriting), and
they are applied as usual in P systems. A string which enters an operation is “consumed”
by that operation, its multiplicity is decreased by one. The multiplicity of strings produced
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by an operation is increased accordingly. A string is processed by one operation only. For
instance, we cannot apply two rewriting rules, or a rewriting rule and a replication rule,
to the same string.

The result of a halting computation consists of the number of strings sent out of the
system during the computation. We denote by NW P,,(i/0) the sets of numbers computed
by all P systems of this type, using in, out, here addressings (in [11] they were called P
systems with worm-objects, following the terminology of [54], where similar operations
were used) with at most m > 1 membranes.

The following result is from [32].

Theorem 7.5 nRE = NW Ps(i/o).

Going further, we can now consider systems with a combination of operations. An
example of such a system is a P system with worm-objects, taking as the result of a
computation the strings themselves sent out of the system rather than their number (that
is, we work with multisets of strings, but we generate languages, not sets of numbers).
The case when rewriting and crossover operations are used was considered in [33]. We
denote by RX P,,(i/0) the family of languages generated by P systems with at most m > 1
membranes using these operations. The proof of the following result can be found in [33]

Theorem 7.6 RE = RX Ps(i/o).

8 Trading Time for Space

We now address the important issue of the computing efficiency of P systems.

An important theorem from [58] says that each deterministic P system of the type
(Cat, Pri, tar,d, ) (hence working with symbol-objects, and using all features: catalysts,
priorities, the control of membrane thickness, and addressing by in;) can be simulated by
a deterministic Turing machine with a polynomial slowdown. This means that by using
such systems we cannot solve exponential problems in polynomial time, in spite of the
fact that exponentially many objects can be produced in linear time, for instance, by rules
of the form a — aa. Therefore, in order to improve the computational performance of
our systems it is necessary to provide more efficient ways for producing an exponential
space. Three such ways will be discussed in the following subsections.

8.1 Dividing Membranes

One possibility to get exponential space is to consider membrane division (and this also
corresponds to a common biological phenomenon). This feature was considered in [43] for
systems with active membranes, where the membranes themselves are involved in rules.
We recall the definition in a restricted form (considered in [37]).

A P system with active membranes, is a construct I1 = (V, H, p, wy, . . ., wp, R), where:

(i) m > 1;
(ii) V is the alphabet of the system;
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(iii) H is a finite set of labels for membranes;

(iv) p is a membrane structure, consisting of m membranes labeled with elements of H
and having a neutral charge (initially, all membranes are neutrally charged);

(v) wy,...,wy, are strings over V', describing the multisets of objects placed in the m
regions of y;
(vi) R is a finite set of rules, of the following forms:

(a) [,a =], forhe H, a€V, veV* ac {+, —,0} (object evolution rules),

(b) al, ]y — [hb]f, where a,b € V, h € H, o, € {+,—,0} (an object is introduced in
membrane h),

(c) [,a]; — [h]ib, for h € H, o,5 € {+,—,0}, a,b € V (an object is sent out of
membrane h),

(d) [,a]ly — b, for he H, a € {+,—,0}, a,b €V (membrane h is dissolved),

(e) [,alyt = 1[,0];2[,cl?, for h € H an elementary membrane, oy, ay, a3 € {+, —, 0},
a,bceV
(2-division rules for elementary membranes; in reaction with an object, the mem-
brane is divided into two membranes with the same label, maybe of different po-
larity; the object specified in the rule is replaced in the two new membranes by
possibly new objects; all other objects are duplicated in the two new copies of the
membrane).

The rules are used as usual in a P system, in a maximally parallel manner: in each
time unit, all objects which can evolve, have to evolve. Each copy of an object and each
copy of a membrane can be used by only one rule, with the exception of rules of type
(a), where we count only the involved object, not also the membrane. That is, if we have
several objects a in a membrane ¢ and a rule [,a — v]?, then we use this rule for all copies
of a, irrespective of how many there are; we do not consider that the membrane was used
— note that its electrical charge is not changed. However, if we have a rule [;a]; — [, ]fb,
then this counts as using the membrane, no other rule of types (b), (¢), (d), (e) which
uses the same membrane can be applied at the same time. When dissolving a membrane,
its contents becomes a part of the contents of the directly surrounding membrane; when
dividing a membrane, its contents are replicated in the two obtained membranes. Only
elementary membranes can be divided. The skin membrane can neither dissolve nor
divide, but it can be “electrically charged”. During a computation, objects can leave the
system (by using rules of type (c)).

A natural extension is to allow also the division of non-elementary membranes by rules
of the form [,a]}* — [,0],%[,¢c]7?; in such a case, not only the objects from the former
membrane, but also the membranes present in it are replicated in the two newly obtained
membranes. Such a rule is said to be of type (¢').

The family of all sets of vectors Ps(II), computed by systems which use simulta-
neously at most n membranes, and using rules of the forms (a),...,(e) is denoted by
NAP,((a),...,(e)); (e) is replaced by (¢') if non-elementary membranes can be divided.
When a type of rule is not used, we remove the corresponding index from the list
(a),...,(e)/(€).

The proof of the following result can be found in [16].
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Theorem 8.1 PsRE = NAP,((a), (b), (c)).
More significant than this (expected) result is the following one, from [37].

Theorem 8.2 The Hamiltonian Path Problem (HPP) can be solved in quadratic time
and the SAT problem can be solved in linear time by P systems with active membranes,

using rules of the forms (a),. .., (d), (¢).

Similar results are given in [43], but also using the possibility of dividing a membrane
under the influence of inner membranes, not only under the influence of an object, as in
rules of types (e) and (e’). In [22] one considers the possibility of dividing a membrane
in an arbitrary number of copies (not only two), and solutions to the HPP and the Node
Covering Problem in that framework were proposed. The proofs are based on constructing
a P system associated with a graph and generating all paths from a specified initial node
to a specified final node, then checking whether or not at least one of these paths is
Hamiltonian. This directly corresponds to the way HPP is solved in [1], but here the
generation of all paths takes a quadratic time, because both the number of nodes and the
maximal outdegree of the graph count. As in [25], we can then reduce SAT to a problem
of paths in a graph with each node having the outdegree two, and so we obtain a linear
time solution to this problem.

8.2 Replicating Strings

Another powerful way to obtain exponential space sufficient for solving NP-complete
problems in polynomial time is to use the replication of string-objects, as considered in P
systems with replicated rewriting (as in Theorem 7.3) and in systems with worm-objects.
It was proved in [11] and [24] that HPP and SAT can be solved in linear time by such
systems. (If the replication produces only two new strings, then HPP reauires a quadratic
time — see [11].)

The replication of strings can be obtained not only in a “direct” way, by replicating
rules as mentioned above, but also in an “indirect” manner, starting from a conditional
way of communicating objects through membranes. The basic idea is to consider certain
predicates on strings and communication rules of the form (7,in;), (7, out), with the
meaning that if 7(w) = true, then the string w must follow the addressings in;, out. A
variant is to send the string w to one of these targets, nondeterministically choosing it,
but we may also choose to send the string to all membranes for which a predicate holds
true. That is, we replicate the string in as many copies as many communication predicates
are true.

Predicates for controlling the string-object communication were considered in [8], but
without investigating the computational efficiency of the replication. This was done in
[31], for the so-called P systems with valuations, introduced in [30]: a morphism from
symbols to integer numbers assigns “valuations” to strings; the sign of this valuation is
interpreted as an electrical charge and used for communicating the string as discussed in
Section 4 (a string of a given polarization goes to a membrane of the opposite polariza-
tion, while the neutral strings remain in the same membrane). When a string can go to
several adjacent membranes (for instance, it has polarity + and there are several adjacent
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membranes with polarity —), then the string is replicated and copies of it are sent to all
targets. As expected, by using this idea, polynomial solutions of NP-complete problems
can be devised; this is illustrated in [31] by SAT and HPP.

8.3 Creating Membranes

An interesting way for obtaining exponential space is by using the possibility of creating
new membranes. For instance, rules of the form a — [ b], can be used, where a and b are
symbol-objects and 7 is the label of a membrane, from a given list of possible membranes
(this is important, because by knowing the label, we know the rules to be applied in
the associated membrane). Such rules for creating membranes were considered in [21],
where a characterization of Parikh images of ETOL languages is obtained in this way, but
they can also be used for producing an exponential space for computations. We illustrate
this with the HPP, giving full details, in order to let the reader see an example of a “P
algorithm?”.

Consider a graph g = (N, E) with the nodes N = {ay,as,...,a,}. In order to decide
whether a Hamiltonian path exists which starts in a; and ends in a, we construct the P
system IT with the membrane structure u = [,[, ],], (the skin membrane is labeled by
0, and it contains a unique membrane, with label 1), with the object (ai,1) present in
membrane 1, using the following alphabet of objects

V ={(ai, ), (a5, ) | 1 <i,j <n}pU{M C N | M # 0}

(notice that the subsets of N are interpreted as symbol-objects); the possible membranes
are labeled by 0,1,2,...,n — 1, and the associated sets of rules are as follows:

Ry = {N = yesou},
R = {(ai,j) = (af,,j+1) ... (af, i+ 1) | (a;,ax,) € E, for all
1<r<spsi>1,and1<j<n-1}
U {(ah,5) = [lar, 3], [ 1 < kyj <n—1}
U {(an,n) = {an}}
U {M— (MU{a;})ou | M C N}, foralli=1,2,...,n—1.

The idea behind this construction is the following. The tuple symbols (a;, j) encode the
fact that we have reached node a; on a path starting in a; which has already passed
through j nodes. Each object (a;, j) introduces as many objects of the form (a},j+1) as
many successors of a; exist in the graph. Then, each object (a},j+ 1) creates a membrane
with label k. That is, the paths we create are encoded in the membrane structure (all the
paths in the graph ¢ consisting of at most n nodes are “recorded” as paths from the root
to the leaf nodes of the tree describing the membrane structure of IT). When we reach the
node a, or the paths already contain n nodes, this process (it takes 2(n — 1) — 1 steps) is
finished, and we pass to the second phase of the computation, that of checking whether or
not among the generated paths there is one which is Hamiltonian. This process can start
only from object (a,n), that is, only if we have reached node a, after passing through
exactly n nodes. After producing an object of the form of a subset of N (at the first
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step, this is {a,}), we exit the membranes, one by one; when we exit membrane i we
add the node a; to the current set of nodes. In this way, after at most n steps (one for
passing from (al,,n) to {a,}, and n — 1 for other nodes), we reach the skin membrane
with several objects of the form M C N. Only N can exit the skin membrane, sending
out the message yes, that is, we have an output (after 3n — 2 steps) if and only if the
graph g contains a Hamiltonian path from a; to a,,.

The results from this subsection and from Subsections 8.2, 8.3 have a special signif-
icance in view of the theorem from [58] cited above: when we have exponentially many
symbol-objects placed in a bounded number of membranes we can simulate the system by
a Turing machine of a similar efficiency (with a polynomial slowdown); when one uses an
exponential number of string-objects placed in a bounded number of membranes, or an
exponential number of objects placed in an exponential number of membranes this is no
longer true. We can “explain” these results by the much greater quantity of information
stored in a string or in a membrane structure than in a multiset of symbol objects.

9 Discussion

In this paper we have outlined the basic framework for membrane computing. We have
introduced, and discussed a number of programming features and we have given a number
of results that are representative for membrane computing. The research in this area is
very active now. The current bibliography (February 2000) includes about 90 papers,
with some of them motivated by the properties of bio-membranes, and some of them
motivated by formal properties of P systems. We will mention now, in a telegraphic style,
some interesting notions and results not discussed above.

For instance, two natural operations are: to merge membranes and to move membranes
through other membranes. The first operation can be done by rules of the form [; |,[; ], —
[, 1 the effect of such a rule is that the contents of membranes 7 and j are put together
in a new membrane, with the label k. Knowing the label &, we also know the rules which
can be applied in the region of membrane k. The merge operation was first considered in
[20], where several DNA computing experiments done by T. Head and his collaborators
were interpreted as membrane computations. Actually, in [20] several other operations
on membranes were considered: divide, create, separate (the string-objects which satisfy
a given property are encapsulated in a new membrane, created inside the membrane
currently in use). More about such operations can be found in [29].

The operation of moving a membrane, together with its contents, through another
membrane, corresponds to the biological operations of endocytosis and fagocytosis, and
it was considered in [3] in the framework of P systems with active membranes, as a way
of avoiding the division of membranes under the influence of inner membranes (this is a
type of rule which we have not considered in Subsection 8.1, but it is considered in [43],
[22] and in other papers).

One of the most important ways of moving chemicals through bio-membranes is based
on concentration differences between adjacent regions. This idea was formalized in [14],
but only results for the case of using bi-stable catalysts were given.

Another variant which has a good motivation is that of systems with energy accounting:
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integer numbers are associated with rules, expressing “quanta of energy” produced or
consumed when applying these rules; at each step, we can use a combination of rules
only if the total energy in each region is positive; one starts with zero units of energy
in the system, and the energy remaining from an application of a step is passed to the
next step; however, if the total energy within a membrane is bigger than the threshold
associated (in advance) with the membrane, then the membrane is dissolved (and all its
energy consumed in this way). Again, characterizations of PsRE are obtained, either
with a small number of membranes or a small total quantity of energy present in the
system at any time, [47]; it seems that a trade-off between these two parameters holds.

In the systems discussed in this paper we have considered membrane structures which
correspond to trees. An attractive generalization is to consider arbitrary graphs (in such
a case, the “regions” associated with the nodes do not necessarily have a spatial coun-
terpart in the form of a membrane structure — unless we consider direct communication
among regions, corresponding to the inter-celular communication through common pro-
tein channels, see [2], [26]). Such variants were considered in [46], where characterizations
of PsRE were given through P systems using planar graphs with one-way communication
among regions.

In [15] and in a series of subsequent papers, one considers P systems with a sequential
use of rules; this makes the use of catalysts unnecessary, hence “purely non-cooperative”
characterizations of recursively enumerable sets of numbers are obtained.

An important direction of research concerns the normal forms, mainly with respect to
the membrane structure: it is expected that certain structures are easier to handle than
others; in particular, the lyposomes are more frequently arranged in a “linear way” (the
tree describing the membrane structure is a line) than in a “branched way”. Normal form
theorems concerning the membrane structure can be found in [46], [50]. Normal forms
with respect to the number and the form of rules present in each membrane (for the case
of rewriting P systems) were given in [59].

Several papers have considered the fundamental topic of implementing P systems on an
electronic computer, either on the existing media or on a purposely designed architecture.
The first type of approach appears in [5], [12], [27], [56], while the second one is dealt with
in [57]. A definite assessment of these attempts is premature, but up to now, no result of
practical significance was obtained.

This leads to considerations concerning the significance of P systems (for biology, for
mathematics, and for computing). The approach is clearly motivated from a mathemati-
cal point of view, not only because it is natural to (try to) model the cell computational
behavior (with a possible future relevance for biology), but also because the new com-
puting model has several intrinsically interesting features. Examples of such features are:
the use of multisets, the inherent parallelism, the possibility of devising computations
which can solve exponential problems in polynomial time (by making use of an exponen-
tial space created in a natural manner). All these features are only potentially useful
from a practical computational point of view (a more optimistic comment can be made
on using the basic ingredients of P systems in other computational frameworks, such as
Artificial Life — see, e.g., [55]). How should one approach the implementation problem?
Should one try to develop, in lab, wet membrane computers (as this happens now in DNA
computing), or it is wiser to try to implement P systems on electronic computers? The
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latter approach has a long and quite successful tradition in Natural Computing: Neural
Networks and Evolutionary Programming are also biologically inspired, and they led to
new computing paradigms of a definite practical use when implemented on the traditional
electronic computer. Maybe, this will also be the case for membrane computing, possibly
implemented on a devoted architecture, specially designed for P systems.

Anyway, it is clear already now that the idea of computing with membranes is fruitful
from a mathematical point of view. The long list of notions and results discussed in this
paper is still growing, and, perhaps more importantly, it is accompanied by a long list of
open problems and topics for further research. A list of research topics was given in [42],
many more others can be found on the web page (the address is given in the first page of
this paper). It is perhaps important to realize that the research in P systems is driven by
three seemingly contradictory goals: to get variants of P systems as realistic as possible
(from a biochemical point of view, or from a possible implementation point of view), as
powerful as possible, and as efficient as possible. Above all these, the models should be
(mathematically and computationally) as elegant as possible. It is our expectation that
the field will flourish, hopefully reaching some of these goals.
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