
Definition: Run-Time Distribution (2)

Given OLVA A′ for optimisation problem Π′:

I The success probability Ps(RTA′,π′ ≤ t,SQA′,π′ ≤ q)
is the probability that A′ finds a solution for a soluble
instance π′ ∈ Π′ of quality ≤ q in time ≤ t.

I The run-time distribution (RTD) of A′ on π′ is the
probability distribution of the bivariate random variable
(RTA′,π′ ,SQA′,π′).

I The run-time distribution function rtd : R+ × R+ 7→ [0, 1],
defined as rtd(t, q) = Ps(RTA,π ≤ t,SQA′,π′ ≤ q),
completely characterises the RTD of A′ on π′.
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Typical run-time distribution for SLS algorithm applied to
hard instance of combinatorial optimisation problem:
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Qualified RTDs for various solution qualities:
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Qualified run-time distributions (QRTDs)

I A qualified run-time distribution (QRTD) of an OLVA A′

applied to a given problem instance π′ for solution quality q’
is a marginal distribution of the bivariate RTD rtd(t, q)
defined by:

qrtdq′(t) := rtd(t, q′) = Ps(RTA′,π′ ≤ t,SQA′,π′ ≤ q′).

I QRTDs correspond to cross-sections of the two-dimensional
bivariarate RTD graph.

I QRTDs characterise the ability of a given SLS algorithm for
a combinatorial optimisation problem to solve the associated
decision problems.

Note: Solution qualities q are often expressed as relative solution
qualities q/q∗ − 1, where q∗ = optimal solution quality for given
problem instance.
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Typical solution quality distributions for SLS algorithm applied
to hard instance of combinatorial optimisation problem:
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Solution quality distributions for various run-times:
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Solution quality distributions (SQDs)

I A solution quality distribution (SQD) of an OLVA A′ applied
to a given problem instance π′ for run-time t’ is a marginal
distribution of the bivariate RTD rtd(t, q) defined by:

sqdt′(q) := rtd(t ′, q) = Ps(RTA′,π′ ≤ t ′,SQA′,π′ ≤ q).

I SQDs correspond to cross-sections of the two-dimensional
bivariarate RTD graph.

I SQDs characterise the solution qualities achieved by a
given SLS algorithm for a combinatorial optimisation problem
within a given run-time bound (useful for type 2 application
scenarios).
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Note:

I For sufficiently long run-times, increase in mean solution
quality is often accompanied by decrease in solution quality
variability.

I For PAC algorithms, the SQDs for very large time-limits t ′

approach degenerate distributions that concentrate all
probability on the optimal solution quality.

I For any essentially incomplete algorithm A′ (such as Iterative
Improvement) applied to a problem instance π′, the SQDs for
sufficiently large time-limits t ′ approach a non-degenerate
distribution called the asymptotic SQD of A′ on π′.
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Solution quality statistic over time (SQTs)

I The development of solution quality over the run-time of
a given OLVA is reflected in time-dependent SQD statistics
(solution quality over time (SQT) curves).

I SQT curves based on SQD quantiles (such as median solution
quality) correspond to contour lines of the two-dimensional
bivariarate RTD graph.

I SQT curves are widely used to illustrate the trade-off between
run-time and solution quality for a given OLVA.

I But: Important aspects of an algorithm’s run-time behaviour
may be easily missed when basing an analysis solely on
a single SQT curve.
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Typical SQT curves for SLS optimisation algorithms applied to
instance of hard combinatorial optimisation problem:
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Typical SQT curves for SLS optimisation algorithms applied to
instance of hard combinatorial optimisation problem:
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Note:

I The fraction of successful tuns, sr := k ′/k, is called the
success ratio; for large run-times t ′, it approximates the
asymptotic success probability p∗s := limt→∞Ps(RTa,π ≤ t).

I In cases where the success ratio sr for a given cutoff time t ′

is smaller than 1, quantiles up to sr can still be estimated from
the respective truncated RTD.

The mean run-time for a variant of the algorithm that restarts
after time t ′ can be estimated as:

Ê (RTs) + (1/sr − 1) · Ê (RTf )

where Ê (RTs) and Ê (RTf ) are the average times of successful
and failed runs, respectively.

Note: 1/sr − 1 is the expected number of failed runs required before

a successful run is observed.
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Ê (RTs) + (1/sr − 1) · Ê (RTf )
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Protocol for obtaining the empirical RTD for an OLVA A′

applied to a given instance π′ of an optimisation problem:

I Perform k independent runs of A′ on π′ with cutoff time t ′.

I During each run, whenever the incumbent solution is
improved, record the quality of the improved incumbent
solution and the time at which the improvement was achieved
in a solution quality trace.

I Let sq(t ′, j) denote the best solution quality encountered in
run j up to time t ′. The cumulative empirical RTD of A′ on π′

is defined by P̂s(RT ≤ t ′,SQ ≤ q′) := #{j | sq(t ′, j) ≤ q′}/k.

Note: Qualified RTDs, SQDs and SQT curves can be easily
derived from the same solution quality traces.
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