Model-Based Algorithm Configuration

Guest lecture in CPSC 536H - Empirical Algorithmics

Frank Hutter Postdoctoral fellow, UBC CS

March 18, 2010

Most algorithms have parameters

- Decisions that are left open during algorithm design
 - numerical parameters (e.g., real-valued thresholds)
 - categorical parameters (e.g., which heuristic to use)

Motivation 1: Algorithm Configuration

Most algorithms have parameters

- Decisions that are left open during algorithm design
 - numerical parameters (e.g., real-valued thresholds)
 - categorical parameters (e.g., which heuristic to use)
- Provide flexibility
- Instantiate to optimize empirical performance

Most algorithms have parameters

- Decisions that are left open during algorithm design
 - numerical parameters (e.g., real-valued thresholds)
 - categorical parameters (e.g., which heuristic to use)
- Provide flexibility
- Instantiate to optimize empirical performance

Automated Approaches for Parameter Optimization

- Eliminate most tedious part of algorithm design and end use
- Can generate custom algorithms for different problem types
- Save development time & improve performance

Model-free techniques are limited

- Only return a good parameter setting
- Do not provide additional information
 - How important is each of the parameters?
 - Which parameters interact?
 - For which types of instances is a parameter setting good?

Model-free techniques are limited

- Only return a good parameter setting
- Do not provide additional information
 - How important is each of the parameters?
 - Which parameters interact?
 - For which types of instances is a parameter setting good?

Model-based approaches can help

- Construct response surface model
 - predictive model of algorithm performance

Model-free techniques are limited

- Only return a good parameter setting
- Do not provide additional information
 - How important is each of the parameters?
 - Which parameters interact?
 - For which types of instances is a parameter setting good?

Model-based approaches can help

- Construct response surface model
 - predictive model of algorithm performance
- Use model to answer the questions above
 - → Inform algorithm designer

Model-free techniques are limited

- Only return a good parameter setting
- Do not provide additional information
 - How important is each of the parameters?
 - Which parameters interact?
 - For which types of instances is a parameter setting good?

Model-based approaches can help

- Construct response surface model
 - predictive model of algorithm performance
- Use model to answer the questions above

→ Inform algorithm designer

Use model for algorithm configuration

1. Predictive Models of Algorithm Performance

2. Sequential Model-Based Optimization

3. Summary

1. Predictive Models of Algorithm Performance

2. Sequential Model-Based Optimization

3. Summary

Models of algorithm performance: basics

Data: algorithm performance in previous algorithm runs

- Parameter settings $oldsymbol{ heta}_1,\ldots,oldsymbol{ heta}_n$, $oldsymbol{ heta}_i\in oldsymbol{\Theta}$
- ▶ Observed algorithm performances $y_1, \ldots, y_n, y_i \in \mathbb{R}$
- ▶ For now: assume just a single instance

Models of algorithm performance: basics

Data: algorithm performance in previous algorithm runs

- ▶ Parameter settings $\theta_1, \ldots, \theta_n$, $\theta_i \in \Theta$
- ▶ Observed algorithm performances $y_1, \ldots, y_n, y_i \in \mathbb{R}$
- For now: assume just a single instance

Offline model training

- Learn a function $f: \mathbf{\Theta} \to \mathbb{R}$
- To minimize a loss function, such as $\sum_{i=1}^{n} (y_i f(\theta_i))^2$

Models of algorithm performance: basics

Data: algorithm performance in previous algorithm runs

- ▶ Parameter settings $\theta_1, \ldots, \theta_n$, $\theta_i \in \Theta$
- ▶ Observed algorithm performances $y_1, \ldots, y_n, y_i \in \mathbb{R}$
- For now: assume just a single instance

Offline model training

- Learn a function $f: \Theta \to \mathbb{R}$
- To minimize a loss function, such as $\sum_{i=1}^{n} (y_i f(\theta_i))^2$

Performance prediction for new algorithm run

- Given a new configuration θ_{i+1}
- Predict performance as $f(\theta_{i+1})$

Models of algorithm performance: which machine learning model to use?

Typical types of models used

- Linear regression
- Gaussian process (GP) regression
- Regression trees
- Random forests (forests of regression trees)

Models of algorithm performance: which machine learning model to use?

Typical types of models used

- Linear regression
- Gaussian process (GP) regression
- Regression trees
- Random forests (forests of regression trees)

Requirements in the context of algorithm configuration

- Handle many data points
- Handle mixed continuous/discrete parameters
- Quantify uncertainty of predictions

1. Predictive Models of Algorithm Performance

2. Sequential Model-Based Optimization

3. Summary

Picking the next configuration with the model

Balance exploration and exploitation

- High predicted variance is good (exploration)
- Low predicted mean is good (exploitation)

Picking the next configuration with the model

Balance exploration and exploitation

- High predicted variance is good (exploration)
- Low predicted mean is good (exploitation)

E.g. probability of improvement

- $Pr(\theta \text{ is better than incumbent})$
- Closed form expression for Gaussian predictive distribution

Picking the next configuration with the model

Balance exploration and exploitation

- High predicted variance is good (exploration)
- Low predicted mean is good (exploitation)

E.g. probability of improvement

- $Pr(\theta \text{ is better than incumbent})$
- Closed form expression for Gaussian predictive distribution

E.g. expected improvement

- $\mathbb{E}_{cost(\theta)}[max(0, cost(incumbent) cost(\theta))]$
- Closed form expression for Gaussian predictive distribution
- ► Also for Gaussian predictive distribution in log space

Blackbox function optimization; function = algo. performance

0. Run algorithm with initial parameter settings

Blackbox function optimization; function = algo. performance

0. Run algorithm with initial parameter settings

- 0. Run algorithm with initial parameter settings
- 1. Fit a model to the data

- 0. Run algorithm with initial parameter settings
- 1. Fit a model to the data
- 2. Use model to pick promising parameter setting (EIC)

- 0. Run algorithm with initial parameter settings
- 1. Fit a model to the data
- 2. Use model to pick promising parameter setting (EIC)
- 3. Perform an algorithm run with that parameter setting

- 0. Run algorithm with initial parameter settings
- 1. Fit a model to the data
- 2. Use model to pick promising parameter setting (EIC)
- 3. Perform an algorithm run with that parameter setting
- Repeat 1-3 until time is up

 $[\mathbf{R}, \theta_{inc}] \leftarrow \mathsf{Initialize}()$

- $[\mathbf{R}, \theta_{inc}] \leftarrow \mathsf{Initialize}()$
 - $\mathcal{M} \leftarrow \mathsf{FitModel}(\mathbf{R})$

 $[\mathbf{R}, \theta_{inc}] \leftarrow \mathsf{Initialize}()$

 $\mathcal{M} \leftarrow \mathsf{FitModel}(\mathsf{R}) \\ \vec{\Theta}_{new} \leftarrow \mathsf{SelectNewParameterSettings}(\mathcal{M}, \theta_{inc})$

 $[\mathbf{R}, \theta_{inc}] \leftarrow \mathsf{Initialize}()$

$$\begin{split} \mathcal{M} &\leftarrow \mathsf{FitModel}(\mathsf{R}) \\ \vec{\Theta}_{new} &\leftarrow \mathsf{SelectNewParameterSettings}(\mathcal{M}, \, \theta_{inc}) \\ [\mathsf{R}, \theta_{inc}] &\leftarrow \mathsf{Intensify}(\vec{\Theta}_{new}, \, \theta_{inc}, \, \mathsf{R}) \end{split}$$

```
[\mathsf{R}, \theta_{inc}] \leftarrow \mathsf{Initialize}()
```

repeat

 $\begin{array}{|c|c|} \mathcal{M} \leftarrow \mathsf{FitModel}(\mathbf{R}) \\ \vec{\Theta}_{new} \leftarrow \mathsf{SelectNewParameterSettings}(\mathcal{M}, \, \theta_{inc}) \\ [\mathbf{R}, \theta_{inc}] \leftarrow \mathsf{Intensify}(\vec{\Theta}_{new}, \, \theta_{inc}, \, \mathbf{R}) \\ \textbf{until time budget exhausted} \end{array}$

```
[\mathsf{R}, \theta_{inc}] \leftarrow \mathsf{Initialize}()
```

repeat

 $\begin{vmatrix} \mathcal{M} \leftarrow \mathsf{FitModel}(\mathsf{R}) \\ \vec{\Theta}_{new} \leftarrow \mathsf{SelectNewParameterSettings}(\mathcal{M}, \theta_{inc}) \\ [\mathsf{R}, \theta_{inc}] \leftarrow \mathsf{Intensify}(\vec{\Theta}_{new}, \theta_{inc}, \mathsf{R}) \end{vmatrix}$ **until** time budget exhausted

return θ_{inc}

Sequential Model-Based Optimization: roots

Experimental design literature in statistics

Expected improvement [Mockus et al., 1978]

Experimental design literature in statistics

- Expected improvement [Mockus et al., 1978]
- Efficient Global Optimization (EGO) [Jones et al., 1998]
 - Optimization of expensive blackbox functions without noise
 - Popularized the approach

Experimental design literature in statistics

- Expected improvement [Mockus et al., 1978]
- Efficient Global Optimization (EGO) [Jones et al., 1998]
 - Optimization of expensive blackbox functions without noise
 - Popularized the approach
- Sequential Kriging Optimization [Huang et al., 2006]
 - Also allowed noise

Sequential Model-Based Optimization: adaptation for optimizing algorithms

Sequential Parameter Optimization (SPO)

[Bartz-Beielstein et al., '05-present]

- SPO toolbox
- Set of interactive tools for parameter optimization

Sequential Model-Based Optimization: adaptation for optimizing algorithms

Sequential Parameter Optimization (SPO)

[Bartz-Beielstein et al., '05-present]

- SPO toolbox
- Set of interactive tools for parameter optimization

More robust completely automated tool [Hutter et al, GECCO-09]

- Studied SPO components
- How many runs to perform for each heta
 - "Intensification mechanism" inspired by FocusedILS

 \rightarrow : SPO⁺

Sequential Model-Based Optimization: adaptation for optimizing algorithms

Sequential Parameter Optimization (SPO)

[Bartz-Beielstein et al., '05-present]

- SPO toolbox
- Set of interactive tools for parameter optimization
- More robust completely automated tool [Hutter et al, GECCO-09]
 - Studied SPO components
 - How many runs to perform for each heta
 - "Intensification mechanism" inspired by FocusedILS

 \rightarrow : SPO⁺

- ► Time-Bounded SPO [Hutter et al, LION-10]
 - Reduced computational overheads due to the model
 - Removed need for costly initial design

Sequential Model-Based Optimization: algorithm configuration

Categorical parameters [Hutter, PhD thesis '09; in preparation for CP-10]

- Different kernel for Gaussian processes
- Random forest model

Sequential Model-Based Optimization: algorithm configuration

► Categorical parameters [Hutter, PhD thesis '09; in preparation for CP-10]

- Different kernel for Gaussian processes
- Random forest model

Multiple benchmark instances

[Hutter, PhD thesis '09; in preparation for CP-10]

- Include instance features in the model
- Predict marginal performance across the training instances

Sequential Model-Based Optimization: algorithm configuration

► Categorical parameters [Hutter, PhD thesis '09; in preparation for CP-10]

- Different kernel for Gaussian processes
- Random forest model

Multiple benchmark instances

[Hutter, PhD thesis '09; in preparation for CP-10]

- Include instance features in the model
- Predict marginal performance across the training instances
- → ActiveConfigurator 1.0

Sequential Model-Based Optimization: performance

Optimizing algorithms for single instances

- Outperforms FocusedILS in most cases
- Is more robust than FocusedILS
- No need to discretize continuous parameters

Sequential Model-Based Optimization: performance

Optimizing algorithms for single instances

- Outperforms FocusedILS in most cases
- Is more robust than FocusedILS
- No need to discretize continuous parameters

Optimizing algorithms for multiple instances

- Performed somewhat better than FocusedILS
- But need to perform more comparisons

Sequential Model-Based Optimization: issues yet to be addressed

- Capping (as in ParamILS)
 - Tricky for learning: if *i*-th run capped $\rightarrow y_i$ is only lower bound

Sequential Model-Based Optimization: issues yet to be addressed

- Capping (as in ParamILS)
 - Tricky for learning: if *i*-th run capped $\rightarrow y_i$ is only lower bound
- Conditional parameters
 - Tricky to exploit in learning

Sequential Model-Based Optimization: issues yet to be addressed

- Capping (as in ParamILS)
 - Tricky for learning: if *i*-th run capped $\rightarrow y_i$ is only lower bound
- Conditional parameters
 - Tricky to exploit in learning
- Use of model for
 - Active selection of instances
 - Active selection of captimes

Model-free vs model-based

Advantages of model-free approach

- Conceptual simplicity
- Simple to integrate adaptive capping
- Simple to integrate conditional parameters
- Implementation robustness (less things can break)

Model-free vs model-based

Advantages of model-free approach

- Conceptual simplicity
- Simple to integrate adaptive capping
- Simple to integrate conditional parameters
- Implementation robustness (less things can break)
- Advantages of model-based approach
 - Can interpolate & extrapolate
 - Can handle continuous parameters
 - Enable future, more sophisticated techniques
 - Active selection of most informative instance
 - Active selection of cutoff time
 - Per-instance approaches

- 1. Predictive Models of Algorithm Performance
- 2. Sequential Model-Based Optimization
- 3. Summary

Summary

Predictive Models of Algorithm Performance

- > Are learned from previously gathered performance data
- ► Map from a parameter setting to the predicted performance

Summary

Predictive Models of Algorithm Performance

- Are learned from previously gathered performance data
- ► Map from a parameter setting to the predicted performance

Sequential Model-Based Optimization (SMBO)

- Iteratively selects promising parameter configuration
- Updates the model on the fly

Predictive Models of Algorithm Performance

- Are learned from previously gathered performance data
- ► Map from a parameter setting to the predicted performance

Sequential Model-Based Optimization (SMBO)

- Iteratively selects promising parameter configuration
- Updates the model on the fly

Existing Extensions

- Handle noise better: intensification mechanism
- Keep computational overhead at bay
- Outperform ParamILS for single instances