RNA Secondary Structure Prediction (continued)
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1. “Basic” energy functions:
e Stacked pairs
eS(i,)) =1 -2 ifi,i+1e{G,C},j,j— 1 complementi,i+ 1
{ -1 ifi,1+ 1 not all {G, C},j,j— 1 complementi, 1+ 1
+oo  otherwise

e Hairpin
eH(I, j) = +o0 if loop size 0
+3 if loop size 1
+2 if loop size 2
+1 if loop size 3
[loop size| otherwise /Noop size=j—1—1

e Internal/Bulge loops
eL(i,j,1,j) =+l
Here we only concern a bulge loop case.

e Multiloop
eM(1, J, 11, Jis -+ » 1k, Jk)

Example:
Given above energy functions, and sequence 5’- ACCGUCAAAGACGU -3,

what is the total free energy of the sequence intuitively.

Intuitively, we can get the following secondary structure for above sequence.
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Above structure contains : 1 hairpin with loop size 3, 3 stack pairs
Total energy = +1 + (-1) + (-1) + (-2) = -3.



Note: Minimum energy of secondary structure for a sequence is always <= 0 since a free
structure without any base pairs has free energy 0.

2. Recursive Relations
. W(j): minimum free energy of the strand S; ... S;

w(0) = 0
W () =min(W (j ~1),min(V' (i, j) + W(i - 1)), for j > 0

First term W(j-1): j is not paired (external base, contribute nothing to free
energy)

Second term: The base S; pairs with otherbase S; in Sy, S,, ..., Si.1, where 1
is chosen to minimize the resulting free energy. That energy is the sum of the
energy V(i,j) of the compound structure closed by pair i-j, plus the energy W(i-1)
of the remainder Sy, Sy, ..., Si.;. V(i,)) is defined to be the minimum energy of
secondary structures on S;, ..., S;, in which S; is paired with S;.

. V(i,j): minimum energy of secondary structures on S;, ..., S;, in which §;
is paired with S;.
+o0 for i>=j
V(i,j) =L min(eH (i, j),eS(i, ))+V (i+1,j—1),VBI(i, j), VM (i, j)) ,for i<j

The terms in the second equation correspond to choosing the minimum free
energy structure among the following possible solutions:

a. eH(,j), 1] is the exterior pair in a hairpin loop.

b. 1, and (i+1)-(j-1) forms stacked pair. V(i+1,j-1) is the energy of the
compound structure closed by pair (i+1)-(j-1).

c. VBI(, ), i-j is the exterior pair of a buldge or internal loop.

d. VM(,)), i-] is the exterior pair of a multiloop.

. VBI(i, j): minimum energy of secondary structures on S;, ..., S;, in which
1-] 1s the exterior pair of a buldge or internal loop.

VBI(i,j) = min (eL(é,j,4,J") + V(')

il gty

In this case, 1-] is the exterior pair of a bulge or interior loop, and we must
search all possible interior pairs i’-j” for the pair that results in the minimum free
energy. For each such interior pair, the resulting free energy is sum of the energy
of the bulge or internal loop eL(i, j, 1°,]’), plus the energy of the com-pound
structure closed by 1’-j’. It is easy to see that this search for the best interior pair is
computationally intensive, simply because of the number of possibilities that



must be considered. We will see later how to speed up this calculation, which is
the new contribution of Lyngse ef al. [1].

J VM(i,j): the free energy of the optimal structure for S; ... S;, assuming i-j
closes a multibranched loop.

k
VMF{E‘!J") = i 'I’r"H‘T'I L (GNI(Ljail.*jl: 3, 2, . .- :ikajk) + Z V(?:h:jh):l
s<='1éj}iﬁ;?.{;?ﬁ:@.’fg‘?ﬁ;h < h=1
In the same way that the recurrence for VM requires a search for the best

structure among all the possible interior pairs, the calculation for VM is even
more intensive, requiring a search for k interior pairs iy-js, €ach of which closes its
own branch out of the multibranched loop and contributes free energy V(in, ju). A
direct implementation of the calculation shown for is infeasibly slow.

. WM(i, j): used to compute VM. WM(i,j) gives the free energy of an
optimal structure for S;, ...,S;, assuming that S; and S; are on a multibranched
loop.
WM(i,1) = ¢
WM(i,5) = min(V(i,5) +8&, ,q}in,( WM{i,h— 1)+ WM(h,5))), fori < j
tch)

The terms in the second equation correspond to the following possible solutions:

a. 1- forms a base pair and therefore defines one of the k branches, whose free
energy is V(i ).

b. S;and S; are not paired with each other, so the free energy is given by the
minimum partition of the sequence into two contiguous subsequences.

Calculating VM then reduces to partitioning the loop into at least two pieces with
the minimum total free energy:

VM{ij) = :’+1¥_.#-=Ii1j—i( WMGE+1,h=1)+ WM{h,j-1)+0a)

Example:

S1S2 S3 S84S5
G GCCC

Ignore the multiloops, alg. Mantains 3 arrays: V(i,j), VBI(1,j), W(i).



VL)) |1 2 |3 4 5
1 w | |[+3 |+2 |+1
2 o | o +3 | +2
3 o0 ) 0
4 o0 0
5 o0
VBI(1,J) |1 2 |3 (4 |5
1 w0 | | | |w®
2 o | | |w®
3 w | |w
4 © | oo
5 o0
0 |1 ]2 (3 |4 |5

W@ |0 |0 |0 |0 |0

(e}

Running time: (first ignoring multiloops)

The running time to fill in each of the complete tables (assuming the values on

which it depends have already been computed and stored in their tables) is

determined as follows:

e W: O(n%). Each of n entries requires the computation of the min of O(n) terms.

e V:O(n?). Each of O(n?) entries requires the computation of the min of 4
terms.

e VBI: O(n%). Each of O(n?) entries requires the computation of the min of
O(n2) terms.

For multiloops, if we assume that:

k-1
eM(i, G dty f1seeesiba i) = @b bk +e((is =i = 1)+ (G —dx = 1)+ D (ine1 = jn = 1))
h=1

Where a,b and c are constants. a — cost for starting a multiloop, b — charge for 1
branch, ¢ — charge associates with each unpaired bases on the loop.
Above assumption makes calculate VM reasonably efficiently although it has
been suggested that it would be more accurate to approximate the free energy as a
logarithmic function of the loop size.

There is a way to get the time complexity of calculating VBI to O(n’). Please refer
to notes from University of Washington.
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