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Learning Goals  
 Explain the concept of bias for machine learning 

algorithms and formally define Meta Learning in its 
terms  

 State at least two variations of Meta Learning  
 Explain the basic concept of ensemble methods like 

Bagging, Boosting, Stacked Generalization  
 Explain the basic idea behind Genetic Algorithms  
 Explain how genetic algorithms can be used to learn 

learning rules and optimize hyper-parameters for 
simple neural networks  
 



Outline 
 Introduction  
 Bias for learning algorithms 
 Definition 
 Variations of Meta Learning 
 Ensemble Methods 
 Neural Networks (introduction) 
 Genetic Algorithms (introduction) 
 Genetic Connectionism 
 Genetic Algorithms for neural network hyper-

parameter optimization 
 
 



Introduction 
 Meta Learning (social psychology) definition:  
 “being aware of and taking control of one’s own 

learning” 
 
 Meta Learning (computer science) definition: 

“automatic learning algorithms are applied on meta-
data about machine learning experiments ” 

 
 “Learning to Learn” 



Bias for learning algorithms 

 Need for Bias 



Bias for learning algorithms 
Notation: 
H : 
Hypothesis space 
(learning algorithm 
runs in this space) 
 
L(H) : 
Each state is a  
language for 
describing the 
hypotheses in that 
space 
 
P(L(H) :  
Each state is search 
strategy for 
searching in the 
hypothesis spaces 
 



Example 
Exercise: 
Features: size, shape, color 
 
Dataset: 
Small, cube, blue  +1 
Small , sphere, red -1 
 



Example 
Selected features in this case determine the hypothesis space 
Case 1: 
Features selected:  size, color  
h1: Small, blue - positive and small ; small, red – negative 
 
Case 2: 
Features selected: shape 
h2: Cube – positive ; sphere - negative 
 
Both hypotheses are consistent with the training data 
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Definition 
Meta Learning affects the hypothesis space for the 
learning algorithm by either: 

 Changing the hypothesis space of the learning 
algorithms (hyper-parameter tuning, feature selection) 

 Changing the way the hypothesis space is searched by 
the learning algorithms (learning rules) 

 



Variations of Meta Learning 
 Algorithm Learning (selection) 

 Select learning algorithms according to the 
characteristics of the instance 

 Hyper-parameter Optimization 
 Select hyper-parameters for learning algorithms. The 

choice of the hyper-parameters influences how well you 
learn.  

 Ensemble Methods 
 Learn to learn “collectively” – Bagging, Boosting, 

Stacked Generalization 
 
 



Variations of Meta Learning 
 Dynamic bias selection 

 Adjust the bias  of the learning algorithm dynamically to 
suit the new problem instance.  

 Inductive Transfer  
 Learn to learn using previous knowledge from related 

tasks 
 Learning to learn 

 In the sense of learning the learning rules for algorithms 
 Fully self referential learners 

 
 



Ensemble Methods 
 Bagging 

 Randomly drawn (with replacement) subsets from the 
training data 

 Majority vote 
 Adaboost  

 iteratively train classifiers  
 for each iteration, assign higher weights to training 

examples which were misclassified 
 Random Forests 

 Bagging with random selection of features 
 



Ensemble Methods 
 Stacked generalization: 

 Given: dataset of N instances, k classifiers (level 0 
classifiers) 

 Divide the training data set into J partitions – train each 
classifier k on J-1 folds and test it on the remaining 
partition 

 Prediction on the nth  instance by the kth classifier = zkn 
 Dataset to level 1 classifier = {yn,z1n,z2n…. zkn} for n = 1:N 
 Train on this dataset using meta classifier (level 1 

classifier)   
 
 

 



Exercise 
What if the meta classifier just chooses the feature 
 which best correlates with the actual label for each test 
 instance ? 
 Ans: Winner takes all 
 

What if the instead of the k classifiers, there are 
actually k hyper-parameter values ? 

Ans: Cross validation  
 



Neural Networks 



SINGLE LAYER NEURAL NETWORK 
AND THE DELTA RULE 
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•Independent of the neuron activation 
function 
 

• Minimizes the squared error between 
the desired output value and the output 
neuron’s activation 
 

•  ∆wij = c (ti - oi) aj 
 



Genetic Algorithms 
POPULATION ENCODING 

POPULATION GENERATION 

FITNESS EVALUATION 

END 

TERMINATE ? CROSSOVER 
MUTATION 

NO 

YES 

REPLACE OLD 
POPULATION 



Exercise 

 Population encoding: 
 4 bit strings (0000,0010,1111) 

 Population generation  
 Generate random 4 bit strings 

 Fitness evaluation for string 1100 
 x = 8 => fitness = -16 

 Crossover:  1  1 | 0 0 
                 0 0| 1  0 

 children - 1110 and 0000 
 Mutation on 0000:  0010 
 

Minimize f(x) = (x-4)2  for integer x in the range [0,15] 
 



Genetic Connectionism 
 Population Encoding - Encode possible learning rules 

as a binary string (pairwise products)  
 length(chromosome) = 35 bits 
 Population Generation – Generate random bit strings 

each encoding a different learning rule (Pop = 40) 
 Fitness Evaluation – Use the learning rule to train the 

neural network for a variety of learning problems, use 
error on training instances as a measure of the fitness 
(for 20 different tasks) 



Genetic Connectionism 
 Crossover – 2 point crossover (crossover rate = 0.8) 

 
 Mutation – Random bit flip (mutation rate = 0.01) 

 
 Elitist selection strategy 



Genetic Connectionism 
 Learns the delta rule ! 

Fitness % =  
Total Error for  different 
tasks / No of examples 



Genetic Connectionism 

Fitness vs Number 
of tasks used in 
training 



Neural Network Hyper-parameter 
Optimization 
 Can learn weights of the neural network too (is this 

meta learning ?) 
 Can learn genetic algorithms to learn hyper-

parameters like number of hidden neurons, number of 
hidden layers, activation functions 

 Encode the neural network parameters  in a 
chromosome and train the NN using back-prop 

 Can do all of the above simultaneously with different 
rates of evolution  



Neural Network Hyper-parameter 
Optimization 
 Genetic algorithms become ineffective when the 

chromosome becomes too long 
 Can we still learn learning rules for neural networks ? 
 



Learning learning rules for complex 
neural networks 
Fixed weight recurrent neural networks 
 Parameters specific to the task to be learnt is encoded 

in the self loops of the RNN  
 Weights encode the learning algorithm 
 Changing Weights => Using a different learning 

algorithm 
 Can change the weights using gradient descent => use 

backprop to meta-learn ! 
 

 

Presenter
Presentation Notes
Just a basic idea. Only if time permits !
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