
1

Propositional Satisfiability and
Constraint Satisfaction

Stochastic Local Search Application
Author: Holger H. Hoos, Thomas Stützle

Presented by: Suling Yang

2

Outline:

1. The Satisfiability Problem (SAT)
2. The GSAT Architecture
3. The WalkSAT Architecture
4. Dynamic Local Search Algorithms for

SAT
5. Constraint Satisfaction Problems (CSP)
6. SLS Algorithms for CSPs

3

The SAT Problem

n To decide or search for a given
propositional formula F, whether there
exists an truth assignment (a model) to
the variables in F under which F
evaluates to true.

n Conjunctive Normal Form (CNF)
Representations and Transformations:
n ijnjmi

l
..1..1 ==

∨∧

4

Alternative Formulations of SAT (1)

n True: 1 ; False: 0.
n Variables’ domain: {0,1}
n I(x) := x ; I(x) := 1 – x.
n For ci=l1 v l2 v … v lk(i),

I(ci)=I(l1) + I(l2) + … + I(lk(i)).
n For ci=l1 ^l2 ^ … ^ lk(i),

I(ci)=I(l1) * I(l2) * … * I(lk(i)).
n A truth assignment satisfies ci if I(ci)≥1

¬

5

Alternative Formulations of SAT (2)

n ui (F,a) := 1 if clause ci of F is unsatisfied under
assignment a, and ui (F,a) := 0 otherwise.

n U (F,a) := Σi=1..mui (F,a).
n A model of F corresponds to a solution of

Subject to:
Which can be consider as a discrete constrained

optimization problem.

),(minarg
}1,0{

* aFUa
na∈

∈

0),(:},...,2,1{ =∈∀ aFumi i

6

Polynomial Simplification of CNF Formulae

n Elimination of duplicate literals and clauses:
n E.g.

n Elimination of tautological clauses:
n E.g.

n Elimination of subsumed clauses:
n E.g.

n Elimination of clauses containing pure literals:
n E.g.

)()()()()(babababaaba ∨=∨∧∨=∨∧∨∨

Taa =¬∨)(

)()()(bacbaba ∨=∨∨∧∨

.)(
)()()(

falseisbifTbc
bccbaba

=¬∨=
¬∨∧¬∨¬∨∧∨

7

Complete Unit Propagation

n Unit Clause: a clause consisting of only
a single literal.
n E.g.

n Unit Resolution:
n E.g.

n Complete Unit Propagation: repeat
application of unit resolution until:
n No more unit clause, or
n Empty clause, or
n No more clauses.

)()(baa ∨¬∨

)()()(bbaa =∨¬∨

8

Unary and Binary Failed Literal Reduction

n Unary failed literal reduction: If setting a
variable x occurring in the given formula F
to true makes F unsatisfiable, i.e. adding a
unit clause c:=x to F resulting an empty
clause, then add a unit clause to F
yields a logically equivalent formula F’.
Then, we can apply complete unit
propagation.

n Binary failed literal reduction works in the
same way.

xc ¬=:

9

Randomly Generated SAT Instance

n Random clause length model (also called
fixed density model):
n n variables and m clauses; each of 2n literals are

chosen with fixed probability p.
n Fixed clause length model (also known as

Uniform Random k-SAT):
n n variables, m clauses, and clause length k; k

literals are chosen uniformly at random from 2n
literals, and check if it contains multiple copies of
the same literal, or it is tautological.

10

Random k-SAT Hardness and
Solubility Phase Transition

n For a fixed number of variables n, when m is small,
all formulae are underconstrained and therefore
satisfiable; however, when increasing the number m
of clauses crossing some critical value m*, the
probability of generating a satisfiable instance drops
sharply to almost zero.

n This rapid change in solubility is called a phase
transition.

n It’s empirically shown that problem instances from
the phase transition region of Uniform Random 3-SAT
tend to be hard.

11

Practical Applications of SAT

n Bounded Model Checking (BMC)
n Binary Decision Diagrams (BDDs)
n Asynchronous circuit design

n Signal Transition Graphs (STGs)
n Complete State Coding (CSC) Problem

n Real-world spots scheduling problems

12

Generalisations and Related Problems

n CSP
n Multi-Valued SAT (MVSAT)
n Pseudo-Boolean CSPs

n (unweighted) MAX-SAT
n weighted MAX-SAT
n Dynamic SAT (DynSAT)
n Propositional Validity Problem (VAL)
n Satisfiability Problem for Quantified Boolean

Formulae (QSAT)
n #SAT

13

The GSAT Architecture

n SLS algorithms for SAT
n 1-exchange neighbourhood
n Evaluation function g(F,a) maps each variable

assignment a to the number of clauses of the
given formula F unsatisfied under a

n Model m (solution) of F : g(F,m)=0
n Iterative improvement methods
n Differ primarily in underlying variable

selection method

14

The Basic GSAT Algorithm
procedure GSAT(F, maxTries, maxSteps)

input: CNF formula F, positive integers maxTries and maxSteps
output: model of F or ‘no solution found’
for try := 1 to maxTries do

a := randomly chosen assignment of the variables in formula F;
for step := 1 to maxSteps do

if a satisfies F then return a end
x := randomly selected variable flipping that minimizes the

number of unsatisfied clauses;
a := a with x flipped;

end
end
return ‘no solution found’

end GSAT

15

Basic GSAT (1)
n Underlying search procedure: simple best-

improvement procedure
n Variable selection method: a variable that results in

maximal decrease in the number of unsatisfied
clauses

n Tie breaking method: randomly selected according to
a uniform distribution

n Escaping local minima method: static restart
mechanism

n Termination method: a model is found, or maxTries
sequences of maxSteps variable flips have been
performed without finding a model

n Evaluation method: change in #unsatisfied clauses

16

Basic GSAT (2)

n For any fixed number of restarts, GSAT
is essentially incomplete, and severe
stagnation behaviour is observed on
most SAT instances

n Outperformed the best systematic
search algorithms for SAT

17

GSAT with Random Walk (GWSAT)

n Underlying search strategy: randomised best-
improvement method – incorporate conflict-directed
random walk steps with probability wp

n Escaping from a local minima method (1): with
probability wp>0, this algorithm allows arbitrarily
long sequences of random walk steps; this implies
that from arbitrary assignment, a model can be
reached with a positive, bounded probability

n Escaping from a local minima method (2): static
restart mechanism

18

The GWSAT Algorithm
procedure GSAT(F, maxTries, maxSteps)

input: CNF formula F, positive integers maxTries and maxSteps
output: model of F or ‘no solution found’
for try := 1 to maxTries do

a := randomly chosen assignment of the variables in formula F;
for step := 1 to maxSteps do

if a satisfies F then return a end
x := randomly selected variable flipping that minimizes the

number of unsatisfied clauses with probability 1-wp;
otherwise, choose a variable from an unsatisfied clause.

a := a with x flipped;
end

end
return ‘no solution found’

end GSAT

19

GSAT with Random Walk (GWSAT) (2)

n Outperforms basic GSAT
n Probabilistically approximately complete

(PAC)
n Does not suffer from stagnation

behaviour with sufficiently high noise
setting, and shows exponential RTDs

n For low noise settings, stagnation
behaviour is frequently observed

20

GSAT with Tabu Search (GSAT/Tabu)

n Underlying search strategy: tabu search
n After a variable x has been flipped, it cannot be flipped back

within the next tt steps
n Efficient implementation

n For sufficient high tt settings, GSAT/Tabu does not
suffer from stagnation behaviour, and for hard
problem instances, it shows exponential RTDS.

n It’s not clear whether GSAT/Tabu with fixed cutoff
parameter maxSteps has the PAC property.

n Using instance-specific optimised tabu tenure settings
for GSAT/Tabu, it typically performs significantly
better than GWSAT.

21

HSAT and HWSAT

n When in a search step there are several
variables with identical score, HSAT always
selects the least recently flipped variable.

n Although HSAT outperforms basic GSAT, it’s
more likely to get stuck in local minima.

n HWSAT: HSAT extended with random walk
mechanism.

n HWSAT has PAC property.

22

The WalkSAT Architecture
n Based on 2-stage variable selection process focused

on the variables occurring in currently unsatisfied
clauses:
n 1st stage: A clause c that is unsatisfied under the current

assignment is selected uniformly at random.
n 2nd stage: one of the variables appearing in c is then flipped

to obtain the new assignment.
n Dynamically determined subset of the GSAT

neighbourhood relation – substantially reduced
effective neighbourhood size

n Same random search initialisation and static random
restart as GSAT

23

The WalkSAT Architecture
procedure WalkSAT(F, maxTries, maxSteps, slc)

input: CNF formula F, positive integers maxTries and maxSteps, heuristic
function slc

output: model of F or ‘no solution found’
for try := 1 to maxTries do

a := randomly chosen assignment of the variables in formula F;
for step := 1 to maxSteps do

if a satisfies F then return a end
c := randomly selected clause unsatisfied under a;
x := variable selected from c according to heuristic function slc;
a := a with x flipped;

end
end
return ‘no solution found’

end WalkSAT

24

WalkSAT/SKC
n 1ST WalkSAT algorithm
n The scoring function scoreb(x): counts the number of

currently satisfied clauses that will be broken –
become unsatisfied – by flipping a given variable x.

n Variable selection scheme:
n Zero damage step: if there is a variable with scoreb(x)=0 in

the clause selected in stage 1, this variable is flipped.
n Greedy step: if no such variable exists, with a certain

probability 1-p, the variable with minimal score value is
selected.

n Random walk step: with probability p (noise setting), one of
the variables from c is selected uniformly at random.

25

WalkSAT/SKC (2)
n PAC property when applied to 2-SAT; unknown in

general case.
n In practice, WalkSAT/SKC with sufficiently high noise

setting does not appear to suffer from any stagnation
behaviour, and its runtime behaviour is characterized
by exponential RTDs.

n Stagnation behaviour is observed for low noise
settings.

n With optimised noise setting, WalkSAT/SKC
probabilistically dominates GWSAT in terms of the
number of variable flips, but not HWSATor
GSAT/Tabu; in terms of CPU times, it’s always
outperforms all GSAT variants.

26

WalkSAT with Tabu Search
(WalkSAT/Tabu)
n Similar as WalkSAT/SKC; additionally enforces a tabu

tenure of tt steps for each flipped variable.
n If the selected clause c does not allow a zero damage step,

WalkSAT/Tabu picks the one with the highest score of all
the variables occurring in c that are not tabu.

n null-flip: all variables appearing in c are tabu, in which
case no variable is flipped.

n WalkSAT/Tabu with fixed maxTries parameter has been
shown to be essentially incomplete.

n With sufficient high tabu tenure settings, WalkSAT/Tabu’s
run-time behaviour is characterised by exponential RTDs;
but there are cases in which extreme stagnation
behaviour is observed.

n Typically, WalkSAT/Tabu performs significantly better than
WalkSAT/SKC.

27

Novelty

n Uses a history-based variable selection
mechanism; based on variable’s age:
the number of local search steps that
have been performed since a variable
was last flipped.

n Uses the same scoring function as GSAT.
n Variable selection scheme:
n If the variable with the highest score
does not have minimal age among

28

Novelty+

n By extending Novelty with conflict-directed random
walk analogously to GWSAT, the essential
incompleteness as well as the empirically observed
stagnation behaviour can be overcome.

n With probability 1-wp, Novelty+ selects the variable
to be flipped according to the standard Novelty
mechanism; otherwise, performs a random walk step.

n Novelty+ is provably PAC for wp>0 and shows
exponential RTDs for sufficiently high setting of the
primary noise parameter p.

29

R-Novelty and R-Novelty+

n R-Novelty’s variable selection strategy is even more
deterministic than Novelty’s.

n Diversification mechanism: Every 100 steps, a
variable is randomly chosen from the selected clause
and flipped – still not sufficient -> R-Novelty is
essentially incomplete for fixed maxTries.

n Analogous to Novelty+, R-Novelty with a random walk
mechanism leads to R-Novelty+.

n R-Novelty+ is provably PAC for wp>0 and shows
exponential RTDs for sufficiently high noise setting.

n Do not reach the performance of R-Novelty+.

30

WalkSAT with Adaptive Noise
n Low noise settings leads to stagnation behaviour,

while high noise setting maxSteps has typically little
or no impact on the behaviour of algorithm, since the
corresponding RTDs are closely approximated by
exponential distributions.

n Finding the optimal noise setting is typically rather
difficult; it appear to depend on the given problem
instance.

n Adaptive WalkSAT use high noise values only when
they are needed to escape from stagnation situations.

31

Dynamic Local Search
Algorithms for SAT
n Most DLS algorithms are based on variants of GSAT

as their underlying local search procedure.
n The penalty associated with clause c, clp(c), is

updated in each iteration.
n Evaluation function:

n Another representation:

n

∑
∈

+=
),(

)(),(:),('
aFCUc

cclpaFgaFg

∑
∈

=

+=

),(
)(:),('

1)(:)(

aFCUc
cclwaFg

cclpcclw

32

GSAT with Clause Weights
n Weights associated with clauses are initially set to one;

before each restart, the weights of all currently unsatisfied
clauses are increased by one.

n Underlying local search procedure: a variant of basic GSAT
that use the modified evaluation function.

n Different from other DLS methods: begins each local search
phase from a randomly selected variable assignment.

n Performs substantially better than basic GSAT on some
instances; with GWSAT as underlying local search
procedure, further performance improvements can be
achieved.

n Breakout method: performs weight updates whenever a
local minimum of the modified evaluation function is
encountered. With tabu: the most recently visited variable
assignments

33

Methods using Rapid Weight
adjustments
n Benefit from discovering which clauses are most

difficult to satisfy relative to recent assignments.
n WGSAT: uses the same weight initialisation and

update procedure as GSAT with Clause Weights, but
performs only a single GSAT step before updating the
clause weights.

n UGSAT: uses a best-improvement local search
strategy, but restricts the neighbourhood to the set
of variables appearing in currently unsatisfied clauses.

n WGSAT with Decay: uniformly decaying all clause
weights in each weight update phase before the
weights of the currently unsatisfied clauses are
increased.

34

Guided Local Search (GLS)
n GLS for SAT (GLSSAT): from the set of variables that

lead to a strict decrease in the total penalty of
unsatisfied clauses (if no such variable exists, then
from those that do not cause an increase in the
evaluation function), the one whose last flip has
occurred least recently is flipped.

n Performs a complete pass of unit propagation before
search begins.

n The penalties of all clauses with maximal utilities are
incremented by one after each local search phase.

n GLSSAT2: all clause penalties are multiplied by a
factor of 0.8 after every 200 penalty updates.

35

Discrete Lagrangian Method
(DLM)

n Basic DLM: underlying local search procedure is
based on GSAT/Tabu with clause weights.

n Terminates when the number of neighbouring
assignments with larger or equal evaluation
function value exceeds a give threshold.

n Bound the range of clause penalties.
n Perform a complete pass of unit propagation.
n DLM-99-SAT: uses temporary clause penalties.
n DLM-2000-SAT: long-term memory mechanism

36

Exponentiated Subgradient
Algorithm (ESG)

n Underlying local search procedure: best improvement
search method (simple variant of GSAT).

n Variable selection: appear in currently unsatisfied
clauses and whose flip leads to a maximal reduction
in the total weight of unsatisfied clauses.

n Scaling stage: weights of all clauses are multiplied by
a factor depending on their satisfaction status.

n Smoothing stage: all clause weights are smoothed
using the formula

n The weight update steps are computationally much
more expensive than the weighted search steps.

wcclwcclw ⋅−+⋅=)1()(:)(ρρ

37

Scaling and Probabilistic
Smoothing (SAPS)
n Scaling stage is restricted to the weights of currently

unsatisfied clauses, and smoothing is only performed
with a certain probability.

n By applying the expensive smoothing operation only
occasionally, the time complexity of the weight
update procedure can be substantially reduced.

n Compared to ESG, SAPS typically requires a similar
number of variable flips for finding a model of a
given formula, but in terms of time performance it is
significantly superior to ESG, DLM-2000-SAT, and
best known WalkSAT variants; but SAPS does not
reach the performance of Novelty+ for some cases.

38

Constraint Satisfaction
Problems (CSP)
n An instance of the CSP is defined by a set of

variables, a set of possible values (or domain) for
each variable, and a set of constraining conditions
(constraints) involving one or more of the variables.

n The CSP is to decide for a given CSP instance
whether all variables can be assigned values from
their respective domains such that all constraints are
simultaneously satisfied.

n P is a finite discrete CSP instance if and only if all
variables in P have discrete and finite domains.

n CSP instances for which at least one solution exists
are also called consistent, while instances that do
not have any solutions are called inconsistent.

39

Encoding CSP instances into
SAT

n Sparse encoding (unary transform or direct
encoding):

n Compact encoding (binary transform or log
encoding).

.:, vxrepresentsc ivi =

.:)(
):;...;2:;1:(...)3(

)1(...)2(
)21);(2,1;1()1(

211,1,0,1

1,1,0,

2,1,

sCwithCCtconstrainsomeviolates
vsxvxvxwhereccc

niccc
vvxDvvnicc

jj

isiivkivivi

vkivivi

ivivi

=∈

===¬∨∨¬∨¬

≤≤∨∨∨

∈≤≤¬∨¬

−

−

σ

p

40

CSP Simplification and Local
Consistency Techniques

n Local consistency techniques can
reduce the effective domains of CSP
variables by eliminating values that
cannot occur in any solution.

n Arc consistency
n Path consistency

41

Prominent Benchmark
Instances for the CSP

n Uniform Random Binary CSP
n Graph colouring Problem
n Quasigroup Completion Problem
n n-Queen Problem

42

SLS Algorithms for CSPs

n Categorized into three types:
n SLS algorithms for SAT applied to SAT-

encoded CSP instances
n Generalisations of SLS algorithms for SAT
n Native SLS algorithms for CSPs

43

“Encode and Solve as SAT”
approach

n It allows the use of highly optimised
and efficiently implemented “of-the-
shelf” SAT solvers.

n Inability of standard SAT algorithms to
exploit the structure present in given
CSP instances.

44

Pseudo-Boolean CSP and
WSAT(PB)
n Pseudo-Boolean CSP, or (Linear) Pseudo-Boolean

Programming, have Boolean values for each variables.
n WSAT(PB) is based on direct generalisation of WalkSAT

architecture to Pseudo-Boolean CSP.
n The evaluation function is based on the notion of the

net integer distance of a constraint from being satisfied.
n Randomly selects a constraint, and flips the variable in

the constraint that leads to largest decrease in the
evaluation function; if no such variable, choose the
least recent flipped one with probability wp; otherwise,
choose the one with minimal increase in the evaluation
function.

n Use simple tabu mechanism.

45

WalkSAT Algorithms for Many-
Valued SAT
n Non-Boolean SAT: non-Boolean literal is of

the form z/v or ~z/v, where z is a variable
and v a value from the domain of z.

n A variable flip corresponds to assigning a
different value to a non-Boolean variable such
that the literal selected in the corresponding
search step, and hence the clause in which it
appears becomes satisfied.

n MV-WalkSAT solves a variant of many-valued
SAT that is slightly richer than the non-
Boolean CNF formulae underlying NB-SAT.

46

Min Conflicts Heuristic (MCH)
and Variants
n MCH iteratively modifies the assignment of a

single variable in order to minimise the
number of violated constraints.
n Variable initialisation: uniformly at random
n Variable selection: uniformly at random from the

conflict set, which is the set of all variables that
appear in a constraint that is unsatisfied under the
current assignment.

n Value selection: the number of unsatisfied
constraints (conflicts) is minimised.

n MCH is essentially incomplete.

47

WMCH and TMCH

n WMCH is a variant of MCH that uses a
random walk mechanism analogous to
GWSAT.

n WMCH is PAC for noise setting >0.
n TMCH is MCH extended with a tabu

search mechanism.

48

A Tabu Search for CSPs
n TS-GH by Galinier and Hao:

n Amongst all pairs (x,v’) such that variable x appears in a
currently violated constraint and v’ is any value from the
domain of x, TS-GH chooses the one that leads to a maximal
decrease in the number of violated constraints.

n Augmented with the same tabu mechanism used in TMCH.

n When computing evaluation function values, TS-GH
uses incremental updating technique analogous to
the one is used by GSAT.

n Empirical studies suggest that when applied to the
conventional CSP, TS-GH generally achieves better
performance than any of the MCH variants.

49

Further Readings and Related
Work

n Covers some additional SLS algorithms
for SAT and CSP problems.

n Page 306 of the text.

