
The Exponentiated Subgradient Algorithm for Heuristic Boolean Programming

Dale Schuurmans and Finnegan Southey
Department of Computer Science

University of Waterloo�
dale,fdjsouth � @cs.uwaterloo.ca

Robert C. Holte
School of Information Technology and Engineering

University of Ottawa
holte@site.uottawa.ca

Abstract

Boolean linear programs (BLPs) are ubiquitous in
AI. Satisfiability testing, planning with resource
constraints, and winner determination in combina-
torial auctions are all examples of this type of prob-
lem. Although increasingly well-informed by work
in OR, current AI research has tended to focus on
specialized algorithms for each type of BLP task
and has only loosely patterned new algorithms on
effective methods from other tasks. In this paper we
introduce a single general-purpose local search pro-
cedure that can be simultaneously applied to the en-
tire range of BLP problems, without modification.
Although one might suspect that a general-purpose
algorithm might not perform as well as specialized
algorithms, we find that this is not the case here.
Our experiments show that our generic algorithm
simultaneously achieves performance comparable
with the state of the art in satisfiability search and
winner determination in combinatorial auctions—
two very different BLP problems. Our algorithm
is simple, and combines an old idea from OR with
recent ideas from AI.

1 Introduction
A Boolean linear program is a constrained optimization prob-
lem where one must choose a set of binary assignments to
variables �������	�	�	�
��� to satisfy a given set of linear inequal-
ities � ����������� �����	�	����� ������� � while simultaneously opti-
mizing a linear side objective � ��� . Specifically, we consider
BLP problems of the canonical form���	� "!$#&% �('*)+�(,&- � ��� subject to . �/�10 (1)

Clearly this is just a special case of integer linear program-
ming (ILP) commonly referred to as 0-1 integer program-
ming.1 Many important problems in AI can be naturally
expressed as BLP problems; for example: finding a satisfy-
ing truth assignment for CNF propositional formulae (SAT)
[Kautz and Selman, 1996], winner determination in combi-
natorial auctions (CA) [Sandholm, 1999; Fujishima et al.,

1Although one could alternatively restrict the choice of values to2&3$465�7
we often find it more convenient to use

2�895�4(:;5
7
.

1999], planning with resource constraints [Kautz and Walser,
1999; Vossen et al., 1999], and scheduling and configuration
problems [Walser, 1999]. Two specific problems we will in-
vestigate in detail below are SAT and CA. To demonstrate that
these are indeed instances of Boolean programming prob-
lems, consider the explicit characterization of their represen-
tation as BLPs.

SAT: An instance of SAT is specified by a set of clauses�=<?>�@�ACB �AED � , where each clause @�A is a disjunction of FGA liter-
als, and each literal denotes whether an assignment of “true”
or “false” is required of a variable �IH . The goal is to find an
assignment of truth values to variables such that every clause
is satisfied on at least one literal. In our framework, an in-
stance of SAT can be equivalently represented by the BLP�J��� "!$#�% �('*)+�K, -ML ��� subject to . �N�1OJP�Q (2)

where L and Q are vectors of zeros and twos respectively, and

@�A H < R S
if � H appears in a negative literal in @&AP S if � H appears in a positive literal in @�AT
otherwise

An assignment of U S to variable �IH denotes “true”, and an
assignment of P S notes “false”. The idea behind this repre-
sentation is that a clause @&A is encoded by a row vector �$A in .
which has FGA nonzero entries corresponding to the variables
occurring in @ A , along with their signs. A constraint is vio-
lated only when the > P S ��U S B assignment to � agrees with
the coefficients in �VA on every nonzero entry, yielding a row
sum of � A �W� <XF A . If a single sign is flipped then the row sum
drops by 2 and the constraint becomes satisfied.

Note that the zero vector means that the minimization com-
ponent of this problem is trivialized. Nevertheless it remains a
hard constraint satisfaction problem. The trivialized objective
causes no undue difficulty to the methods we discuss below,
and therefore the BLP formulation allows us to accommo-
date both constraint satisfaction and constrained optimization
problems in a common framework (albeit in a more restricted
way than [Hooker et al., 1999]). To illustrate this further,
consider a nontrivial optimization problem.

CA: An instance of the optimal winner determination prob-
lem in combinatorial auctions (CA) is given by a set of items�Y<Z>�@ A B �A[D � with available quantities \]<^>�_ A B �AED � , and a

set of bids �N< >��CH"B �H D � which offer amounts � < >��
HGB �H D �
for a specified subset of items. Let

� H�� � denote the set of
items requested by bid � H . We can represent the requests in a
constraint matrix . where

@ A H < � S
if bidder � H requests item @&AT
otherwise

The problem then is to find a set of bids that maximizes the
total revenue subject to the constraint that none of the item
quantities are exceeded. If � H
	�> T � S B this problem can be
expressed as a BLP������!V#�� ' �(, � � � subject to .�� � \
However it is not in our canonical > P S ��U S B form. To trans-
form it to the canonical form we use the substitutions � <� � P S

, � < P ��� � and 0 < � \ P .�� . The minimum so-
lution to the transformed version of this problem can then be
converted back to a maximum solution of the original CA.

In a similar fashion one can also represent planning, con-
figuration and scheduling problems as BLPs, although this
often requires more complex encodings than those illustrated
above (for example, the representation of planning as an ILP
problem presented in [Kautz and Walser, 1999]).

In general, BLP problems are hard in the worst case
(NP-hard as optimization problems, NP-complete as decision
problems). They nevertheless remain important tasks and ex-
tensive research has been invested in improving exponential
running times of algorithms that guarantee optimal answers,
developing heuristic methods that approximate optimal an-
swers, and identifying tractable subcases and efficient algo-
rithms for these subcases. A fundamental distinction exists
between complete methods, which are guaranteed to termi-
nate and produce an optimal solution to the problem, and in-
complete methods, which make no such guarantees but never-
theless often produce good answers reasonably quickly. Most
complete methods conduct a systematic search through the
variable assignment space, using pruning rules and order-
ing heuristics to reduce the number of assignments visited
while maintaining correctness. Incomplete methods on the
other hand typically employ local search strategies that inves-
tigate a small neighborhood of a current variable assignment
(by flipping one or a small number of assignments) and take
greedy steps by evaluating neighbors under a heuristic evalu-
ation function. Although complete methods might appear to
be more principled, greedy local search methods have proven
to be surprisingly effective in many domains and have led
to significant progress in some fields of research (most no-
tably on SAT problems [Kautz and Selman, 1996] but more
recently CA problems as well [Hoos and Boutilier, 2000]).

In this paper we investigate incomplete local search meth-
ods for general BLP problems. Although impressive, most
of the recent breakthroughs in incomplete local search have
been achieved by tailoring methods to a reduced class of BLP
problems. A good illustration of this point is the CA sys-
tem of [Hoos and Boutilier, 2000] (Casanova) which is based
on the SAT system of [Hoos, 1999] (Novelty+), but is not
the same algorithm (neither of these algorithms can be di-
rectly applied to the opposing problem). Another example

is the WSAT(OIP) system of [Walser, 1999] which is an ex-
tension of WSAT and achieves impressive results on general
ILP problems, but nevertheless requires soft constraints to be
created to replace a given optimization objective.

Our main contribution is the following: Although a va-
riety of research communities in AI have investigated BLP
problems and developed effective methods for certain cases,
the current level of specialization might not be yielding the
benefits that one might presume. To support this observa-
tion we introduce a generic local search algorithm that when
applied to specialized forms of BLP (specifically SAT and
CA) achieves performance that competes with the state of
the art on these problems. Our algorithm is based on com-
bining a simple idea from OR (subgradient optimization for
Lagrangian relaxation) with a recent idea from AI, specifi-
cally from machine learning theory (multiplicative updates
and exponentiated gradients). The conclusion we draw is that
research on general purpose methods might still prove fruit-
ful, and that known ideas in OR might still yield additional
benefits in AI problems beyond those already acknowledged.

OR has thoroughly investigated the ILP problem in much
greater depth than AI. This literature has tended to place more
emphasis on developing general purpose methods applicable
across the entire range of ILP problems. Complete methods
in OR typically employ techniques such as branch and bound
(using linear programming or Lagrangian relaxation), cutting
planes, and branch and cut to prune away large portions of
the assignment space in a systematic search [Martin, 1999].
This research has yielded sophisticated and highly optimized
ILP solvers, such as the commercial CPLEX system, which
although general purpose, performs very well on the special-
ized problems investigated in AI. In fact, it is still often un-
clear whether specialized AI algorithms perform better [An-
dersson et al., 2000].

What is perhaps less well known to AI researchers is that
beyond systematic search with branch and bound, the OR lit-
erature also contains a significant body of work on incomplete
(heuristic) local search methods for approximately solving
ILP problems; see for example [Magazine and Oguz, 1984].
The simplest and most widespread of these ideas is to use sub-
gradient optimization (which we describe below). Our algo-
rithm arises from the observation that the most recent strate-
gies developed for the SAT problem have begun to use an ana-
log of subgradient optimization as their core search strategy;
in particular the DLM system of [Wu and Wah, 2000] and the
SDF system of [Schuurmans and Southey, 2000]. Interest-
ingly, these are among the most effective methods for finding
satisfying assignments for CNF formulae, and yet they appear
to be recapitulating a thirty year old idea in OR going back to
[Everett, 1963].

One of our contributions is to show that, indeed, a straight-
forward subgradient optimization approach (with just two ba-
sic improvements from AI) yields a state of the art SAT search
strategy that competes with DLM (arguably the fastest SAT
search procedure currently known).

Interestingly, the method we develop is not specialized to
SAT problems in any way. In fact, the algorithm is a general
purpose BLP search technique that can in principle be ap-
plied to any problem in this class. To demonstrate this point

we apply the method without modification (beyond parame-
ter setting) to CA problems and find that the method still per-
forms well relative to the state of the art (although somewhat
less impressively than on SAT problems). In this case we
also find that the commercial CPLEX system performs very
well and is perhaps the best of the methods that we inves-
tigated. Our results give us renewed interest in investigating
general purpose algorithms for BLP that combine well under-
stood methods from OR with recent ideas from AI.

2 The exponentiated subgradient algorithm
To explain our approach we first need to recap some basic
concepts from constrained optimization. Consider the canon-
ical version of the BLP (1). For any constrained optimization
problem of this form the Lagrangian is defined to be

��� � ����� < � ��� U ��
A[D �	� A � � A ���JP � A � (3)

where � A is the
 th row vector of the constraint matrix .
and � A is the real valued Lagrange multiplier associated with
constraint @&A . One can think of the multipliers � A simply

as weights on the constraint violations ��A��< ��A � �1P � A .
Thus the Lagrangian can be thought of as a penalized ob-
jective function where for a given vector of constraint vi-
olation weights one could imagine minimizing the penal-
ized objective

�� � ����� . In this way, the Lagrangian turns a
constrained optimization problem into an unconstrained op-
timization problem. In fact, the solutions of these uncon-
strained optimizations are used to define the dual function

��� ��� < �J��� "!$#�% �('*)+�K,&- �� � ����� (4)

The dual problem for (1) is then defined to be� � � ��� ��� subject to ��� L (5)

Let
���

denote the maximum value of (5) and let � �
denote

the minimum value of (1). Note that these are all just defi-
nitions. The reason that (5) can be considered to be a dual
to (1) is given by the weak duality theorem, which asserts
that

��� � � � [Bertsekas, 1995; Martin, 1999]. Therefore,
solving ���	� "!V#&% �K'*)+�(, - �� � ����� for any Lagrange multiplier
vector ��� L gives a lower bound on the optimum value of
the original problem (1). The best achievable lower bound is
achieved by solving the dual problem of maximizing

��� ���
subject to ��� L , yielding the optimal value

���
. The dif-

ference � � P ���
is called the duality gap. A fundamental

theorem asserts that there is no duality gap for linear (or con-
vex) programs with real valued variables [Bertsekas, 1995],
so in principle these problems can be solved by dual methods
alone. However, this is no longer the case once the variables
are constrained to be integer or > P S ��U S B valued.

Although the dual problem cannot be used to directly solve
(1) because of the existence of a possible duality gap, obtain-
ing the lower bounds on the optimal achievable value can still
prove very useful in various search strategies, ranging from
branch and bound to local search. Clearly, there is a natu-
ral desire to maximize

��� ��� by searching through Lagrange

multiplier vectors for larger values. A natural way to proceed
would be to start with a vector ��� ��� , solve the unconstrained
minimization problem (4), and then update � � ��� to obtain a
better weight vector � � � � , and so on. The issue is knowing
how to update the weight vector � � ��� . This question is com-
plicated by the fact that

��� ��� is typically non-differentiable.
Coping with non-differentiability leads to the last technical
development we will consider: subgradient optimization.

Since
��� ��� is always known to be concave [Bertsekas,

1995], the subgradient of
�

(at a point �) is given by any
direction vector � such that

��� � � � ��� ��� U � � P ���"!#� for
all � 	%$ & � . (Intuitively, a subgradient vector � gives the
increasing direction of a tangent plane that sits above

�
at

� , and hence can serve as a plausible search direction if one
wishes to increase

�
.) Therefore, to update � , all we need

to do is find a subgradient direction. Here is where we can
exploit an extremely useful fact: after minimizing

�� � ����� to
obtain � � < �('*) �J��� "!$#�% �('*)+�K,&- � �"� U%��! � . ��P 0 � the
resulting vector of residual constraint violation values � � <. � � P 0 is always a subgradient of

�
at � [Bertsekas, 1995;

Martin, 1999]. So, in the end, despite the overbearing termi-
nology, subgradient optimization is a fundamentally simple
procedure:

Subgradient optimization: To improve the lower bound��� ��� on the optimal solution of the original problem, take
a given vector of Lagrange multipliers � , solve for a pri-
mal vector � 	 > P S �
U S B � that minimizes the Lagrangian�� � ����� , and update � by adding a proportional amount of the
residual constraint violations � � < . � � P 0 to � (maintain-
ing ��� L); i.e. use the rule ��+ <,� U.- � � . Note that this has
the intuitive effect of increasing the weights on the violated
constraints while decreasing weights on satisfied constraints.
Although this update is not guaranteed to increase the value
of

��� ��� at every iteration, it is guaranteed to move � closer
to � � < �/'") ���� �1032 ��� ��� for sufficiently small step-sizes -
[Bertsekas, 1995].

These ideas go back at least to [Everett, 1963], and have
been applied with great success by Held and Karp [1970] and
many since. Typically, subgradient optimization has been
used as a technique for generating good lower bounds for
branch and bound methods (where it is known as Lagrangian
relaxation [Martin, 1999]). However, subgradient optimiza-
tion can also be used as a heuristic search method for approxi-
mately solving (1) in a very straightforward way: at each iter-
ation simply check if � � is feasible (i.e. satisfies . � � �X0),
and, if so, report � �"� � as a feasible objective value (keep-
ing it if it is the best value reported so far); see for example
[Magazine and Oguz, 1984].

Interestingly, in the last few years this procedure has been
inadvertently been rediscovered in the AI literature. Specifi-
cally, in the field of incomplete local search methods for SAT,
clause weighting methods turn out to be using a form of sub-
gradient optimization as their main control loop. These pro-
cedures work by fixing a profile of clause weights (Lagrange
multipliers), greedily searching through variable assignment
space for an assignment that minimizes a weighted score
of clause violations (the Lagrangian), and then updating the
clause weights by increasing them on unsatisfied clauses—all

of which comprises a single subgradient optimization step.
However, there are subtle differences between recent SAT
procedures and the basic subgradient optimization approach
outlined above. The DLM system of [Wu and Wah, 2000] ex-
plicitly uses a Lagrangian, but the multiplier updates follow a
complex system of ad hoc calculations.2 The SDF system of
[Schuurmans and Southey, 2000] is simpler (albeit slower),
but includes several details of uncertain significance. How-
ever, the basic simplicity of this latter approach offers many
interesting hypotheses for our investigation.

Given the clear connection between recent SAT procedures
and the traditional subgradient optimization technique in OR,
we conduct a controlled study of the deviations from the ba-
sic OR method so that we can identify the deviations which
are truly beneficial. Our intent is to validate (or refute) the
significance of some of the most recent ideas in the AI SAT
literature.

Linear versus nonlinear penalties: One difference between
recent SAT methods and subgradient optimization is that the
SAT methods only penalize constraints with positive viola-
tions (by increasing the weight on these constraints), whereas
standard subgradient optimization also rewards satisfied con-
straints (by reducing their weight proportionally the degree
of negative violation). To express this difference, consider
an augmented Lagrangian which extends (3) by introducing a
penalty function � on constraint violations

���/� � ����� < � ��� U ��
AED � � A � � � A ��� P�� A �

The penalty functions we consider are simply the traditional
linear penalty � � �/�9< � and the “hinge” penalty

� � �(� < � P �� if � � T
� P �� if ��� T

(Note that � is an integer.) DLM and SDF can be interpreted
as implicitly using a hinge penalty for dual updates on SAT
problems.3 Intuitively, the hinge penalty has advantages be-
cause it does not favor reducing the violation level of several
satisfied constraints above reducing the violations of a few
unsatisfied constraints. We verify below that the traditional
linear penalty function leads to poor performance on con-
straint satisfaction tasks and the AI methods have a distinct
advantage in this respect.

Unfortunately, the consequence of choosing a nonlinear
penalty function is that finding a variable assignment which
minimizes

���/� � ����� is no longer tractable. To cope with this
difficulty AI SAT solvers replace the global optimization pro-
cess with a greedy local search (augmented with random-
ness). Therefore, they only follow a local subgradient direc-
tion in � at each update. However, despite the locally optimal
nature of the dual updates, the hinge penalty retains a sig-
nificant advantage over the linear penalty, which we verify
below.

2The Lagrangian used in [Wu and Wah, 2000] is also quite dif-
ferent from (3) because it includes a redundant copy of the con-
straint violations in the minimization objective. However, this pre-
vents their Lagrangian from being easily generalizable beyond SAT.

3SDF apparently uses a different penalty for its primal search.

Multiplicative versus additive updates: The SDF proce-
dure updates � multiplicatively rather than additively, in an
apparent analogy to the work on multiplicative updates in ma-
chine learning theory [Kivinen and Warmuth, 1997]. A mul-
tiplicative update is naturally interpreted as following an ex-
ponentiated version of the subgradient; that is, instead of us-
ing the traditional additive update ��+M< � U -�� � ��� one uses
� + < � -	� ��
 � given the vector of penalized violation values
� � ��� . Below we compare additive and multiplicative updates
and verify that multiplicative updates are often advantageous.

Exponentiated subgradient optimization (ESG): The final
procedure we propose follows a standard standard subgradi-
ent optimization search with two main augmentations: (1)
we use the augmented Lagrangian

���
with a hinge penalty

rather than a linear penalty, and (2) we use multiplicative
rather than additive updates. An additional idea we exploit is
the weight smoothing technique of [Schuurmans and Southey,
2000] where after each update ��+ < � -� ��
 � the weights are
pulled back toward the population average � + < �� � �AED � � +Ausing the rule � + + <��/� + U � S P � � � + . (We have observed
that smoothing indeed yields benefits for multiplicative up-
dates.) To summarize, the final parameters of the final proce-
dure are - , � , and a noise parameter � which determines how
often a random move is made in the primal search phases. In
our experiments below we compare four variants of the ba-
sic method: ESG � , ESG � (multiplicative updates with hinge
and linear penalties respectively), and ASG � , ASG � (additive
updates with each penalty).

3 SAT experiments
For this problem we compared the various subgradient opti-
mization techniques introduced above against state of the art
local search methods. Specifically we compared DLM, SDF,
Novelty+, Novelty, WSAT, GSAT and HSAT. However, for
reasons of space we report results only for DLM and Nov-
elty+, which represent the best of the last two generations of
local search methods for this problem. We ran the systems on
a collection of (satisfiable) benchmark SAT problems in the
SATLIB repository. To measure performance we recorded
wall clock time (running on a PIII 750MHz cluster), aver-
age number of primal search steps (variable “flips”) needed
to reach an optimal solution, and the proportion of problems
not solved within 500K steps (1M on bw large.c).

To avoid the need to tune the methods for restarts we em-
ployed the strategy of [Schuurmans and Southey, 2000] and
ran each method 100 times on each problem to record the dis-
tribution of solution times, and used this to estimate the min-
imum expected number of search steps required under an op-
timal restart scheme for the distribution [Parkes and Walser,
1996]. Table 1 summarizes our results.

The outcome basically supports the hypothesis that multi-
plicative updates (ESG) are more effective than additive up-
dates (ASG), at least on SAT problems. Table 1 also shows
that the traditional linear penalty performs very poorly (as
anticipated). Moreover, the results show that ESG � systemat-
ically produces optimal answers in fewer primal search steps
(flips) than other procedures, and achieves run times that are
competitive with DLM and frequently better than Novelty+.

Est. Total
Avg. Optim. Fail msec

Steps Steps % � Step
flat100 (100 problems)

Novelty+ ��� � 4 � 3$5�� 23,995 13,893 .2 2.9
DLM � pars4

�
9,571 8,314 0 4.8

ESG ��� 5 � 5�4 � 3G5�4 � 3�3G5 � � 7,393 6,665 0 6.6
flat200 (100 problems)

Novelty+ ��� � 4 � 3$5�� 221,257 192,575 22 3.2
DLM � pars4

�
280,401 242,439 31 5.8

ESG ��� 5 � 3G5�4 � 3$5�4 � 3�3
	 � � 177,899 145,221 14 7.7
ais8 (1 problem)

Novelty+ ��� � 4 � 3$5�� 169,626 137,436 8 9.9
DLM � pars4

�
5376 5326 0 11

ESG ��� 5 � � 4 � 3�3$5�4 � 3�3�3��� 4956 4039 0 21
ais10 (1 problem)

Novelty+ ��� � 4 � 3$5�� 451,222 273,300 84 14
DLM � pars4

�
18,420 14,306 0 16

ESG ��� 5 � � 4 � 3�3$5�4 � 3�3�3��� 15,732 15,182 0 33
ais12 (1 problem)

Novelty+ ��� � 4 � 3$5�� 497,518 497,518 99 19
DLM � pars4

�
215,360 179,383 7 17

ESG � � 5 � � 4 � 3�3$5�4 � 3�3�3 � � 115,836 85,252 1 46
uf50 (10 problems)

Novelty+ ��� � 4 � 3$5�� 217 217 0 4.3
DLM � pars4

�
198 152 0 6.2

ESG ��� 5 � 	V4 � �� 4 � 3�3�3 � � 225 171 0 8.3
*ASG ����� 5�	V4 � 3�	� 783 271 0.1 10.9
*ESG ��� 	 � 3$4 � ��� 4 � 5�	 � � 178900 143030 25 30.3
*ASG � ��� 5�	V4 � 3�	�� 500000 na 100 20.1

uf150 (100 problems)
Novelty+ ��� � 4 � 3$5�� 8331 4456 .03 4.5
DLM � pars4

�
3263 2455 0 6.0

ESG � � 5 � 5 � 4 � 3$5�4 � 3�3$5�� 2649 2300 0 10
*ASG ������� 4 � 3�	� 17100 5978 2.6 74

uf200 (100 problems)
Novelty+ ��� � 4 � 3$5�� 28,529 17,953 2.3 4.9
DLM � pars4

�
12,215 9,020 .1 6.2

ESG ��� 5 � 	��G4 � 3$5�4 � 3�3���� 10,360 8,947 .18 11
uf250 (100 problems)

Novelty+ ��� � 4 � 3$5�� 31,560 21,434 2.2 4.9
DLM � pars4

�
22,635 12,387 .3 6.6

ESG � � 5 � 5 � 4 � 3$5�4 � 3�3���� 13,529 10,596 .14 12
bw large.a (1 problem)

Novelty+ ��� � 4 � 3$5�� 10,788 10,323 0 8
DLM � pars4

�
3712 3701 0 15

ESG � � �G4 � 3�3 � 4 � 3�3$5 � � 2594 2556 0 20
bw large.b (1 problem)

Novelty+ ��� � 4 � 3$5�� 373,001 217,394 53 12
DLM � pars4

�
44,361 39,216 0 18

ESG ��� 5 � �G4 � 3G5�4 � 3�3�3 � � 33,750 26,159 0 33
bw large.c (1 problem)

Novelty+ ��� � 4 � 3$5�� 1,000,000 na 100 21
DLM � pars4

�
895,213 895,213 77 33

ESG ��� 5 � �G4 � 3�3�3 � � 695,565 690,565 63 64
logistics.c (1 problem)

Novelty+ ��� � 4 � 3$5�� 163,622 163,622 1 9
DLM � pars4

�
12,101 11,805 0 25

ESG ��� 	 � 	V4 � 3G5�4 � 3�3�	 � � 8,962 8,920 0 35

Table 1: SAT results on benchmark SATLIB problems.
Parameters: Novelty+(walk, noise), DLM(a 21 parameter
set from http://manip.crhc.uiuc.edu), ESG � � - � S P � � noise� ,
ASG � � -�� noise� .

4 CA experiments
The second problem we investigated is optimal winner deter-
mination in combinatorial auctions (CA). This problem intro-
duces a nontrivial optimization objective. However, the sub-
gradient optimization approach remains applicable, and we
can apply the same ESG/ASG methods to this problem with-
out modifying them in any way. (However, we did conduct
some implementation specializations to gain improvements
in CPU times on SAT problems.) The CA problem has been
much less studied in the AI literature, but interest in the prob-
lem is growing rapidly.

Avg. Avg. Fail %
Time Steps % Opt

CATS-regions (100 problems)
CPLEX 6.7 64117 0 100
Casanova

� � S�� �����(� 4.2 1404 3.4 99.95
ESG � � S ��� ��� S ��� T S � 7.2 1416 4.1 99.93
ASG � � � T�� �"��� T S � 12.7 2457 7.9 99.86
*ESG� � S ���"�����"��� T S � 64.7 7948 77 88.11
*ASG� � � T S ��� T S � 48.1 9305 90 93.96

CATS-arbitrary (100 problems)
CPLEX 21.8 9510 0 100
Casanova

� � S � ��� T�� � 8.7 2902 0.47 99.98
ESG � � � � S ��� T �"�����(� 32.5 7506 4.21 99.95
ASG � � � T�� ��� T S � 30.2 6492 4.87 99.87

CATS-matching (100 problems)
CPLEX 1.30 499 0 100
Casanova

� � S�� �����(� .17 109 0 100
ESG � � S � � ��� T �"� T � .16 215 0 100
ASG � � ���"���� /� .73 1248 0 100

CATS-paths (100 problems)
CPLEX 25 1 0 100
Casanova

� � S � �����(� 26 49 0 100
ESG � � S ��� ��� T �"��� � � 28 2679 2.5 99.99
ASG � � � T S ��� S �/� 75 5501 6.8 99.96

CATS-scheduling (100 problems)
CPLEX 15 1426 0 100
Casanova

� � T�� �����(� 44 7017 19.9 99.87
ESG � � S �����"��� T �"��� T S �(� 65 11737 41 99.68
ASG � � � T S �"��� S � �(� 58 12925 44.2 99.51

Decay-200-200-.75 (100 problems)
CPLEX 1.1 2014 0 100
Casanova

� � S�� �����(� 0.5 2899 2 99.97
ESG � � S � ���"��� T�� � ��� � �(� 1.8 24466 96.3 96.91
ASG � � � T�� �����(� 1.7 24939 99.6 91.49

SAT(uf50) ! CA (10 problems)
CPLEX 42 754 0 1
Casanova

� � S$S �����(� 468 9.6 " S T$# 90 99.36
ESG

� � T ��� T �"��� S � 31 1.7 " S T�# 10 99.95
ASG

� � �����/� 173 8.6 " S T�# 80 99.40

Table 2: CA results

For this task we compared the ESG/ASG algorithms to
CPLEX and Casanova [Hoos and Boutilier, 2000], a local
search method loosely based on Novelty+. The problems we

tested on were generated by the CATS suite of CA problem
generators [Leyton-Brown et al., 2000], which are intended
to model realistic problems. However, our results clearly in-
dicate that these tend to be systematically easy problems for
all the methods we tested, and therefore we also tested on
earlier artificial problem generators from the literature [Sand-
holm, 1999; Fujishima et al., 1999]. Some of these earlier
generators were shown to be vulnerable to trivial algorithms
[Andersson et al., 2000] but some still appear to generate hard
problems. However, to push the envelop of difficulty further,
we also encoded several hard SAT problems as combinatorial
auctions by using an efficient polynomial (quadratic) reduc-
tion from SAT to CA. Unfortunately, space limitations pre-
clude a detailed description of this reduction, but our results
show that these converted SAT problems are by far the most
difficult available at a given problem size.

To measure the performance of the various methods, we
first solved all of the problems using CPLEX and then ran
the local search methods until they found an optimal solution
or timed out. Although we acknowledge that this reporting
ignores the anytime performance of the various methods, it
seems sufficient for our purposes. To give some indication
of anytime behavior, we recorded the fraction of optimality
achieved by the local search methods in cases where they
failed to solve the problem within the allotted time.

Table 2 gives our results for the default CATS problems,
and shows that there is very little reason not to use CPLEX
to solve these problems in practice.4 CPLEX, of course, also
proves that its answers are optimal, unlike local search. Nev-
ertheless, the results show that ESG � and ASG � are roughly
competitive with Casanova, which is a specialized local
search technique for this task. On these problems there seems
to be little to choose, however, between additive and multi-
plicative updates. Table 2 shows that the hinge penalty is once
again distinctly superior to the traditional linear penalty (as
demonstrated by the results for ESG � and ASG� on the “re-
gions” problems). On the more difficult SAT ! CA encoded
problems (Table 2) we find that the local search methods still
fail to show any significant improvement over CPLEX, but
nevertheless all are challenged by these problems.

References
[Andersson et al., 2000] A. Andersson, M. Tenhunen, and

F. Ygge. Integer programming for combinatorial auction
winner determination. In Proceedings ICMAS-00, pages
39–46, 2000.

[Bertsekas, 1995] D. Bertsekas. Nonlinear Optimization.
Athena Scientific, 1995.

[Everett, 1963] H. Everett. Generalized Lagrange multiplier
method for solving problems of the optimal allocation of
resources. Operations Res., 11:399–417, 1963.

4The CPLEX timings show time to first discover the optimum,
not prove that it is indeed optimal. Also note that even though
“steps” are recorded for each of the methods, they are incompara-
ble numbers. Each method uses very different types of steps (unlike
the previous SAT comparison in terms of “flips”) and are reported
only to show method-specific difficulty.

[Fujishima et al., 1999] Y. Fujishima, K. Leyton-Brown, and
Y. Shoham. Taming the computational complexity of com-
binatorial auctions: optimal and approximate approaches.
Proceedings IJCAI-99, pages 548–553, 1999.

[Held and Karp, 1970] M. Held and R. Karp. The travelling
salesman problem and minimum spanning trees. Opera-
tions Res., 18:1138–1162, 1970.

[Hooker et al., 1999] J. Hooker, G. Ottosson, E. Thorsteins-
son, and H.-K. Kim. On integrating constraint propaga-
tion and linear programming for combinatorial optimiza-
tion. Proceedings AAAI-99, pages 136–141, 1999.

[Hoos and Boutilier, 2000] H. Hoos and C. Boutilier. Solv-
ing combinatorial auctions using stochastic local search.
Proceedings AAAI-00, pages 22–29, 2000.

[Hoos, 1999] H. Hoos. On the run-time behavior of stochas-
tic local search algorithms for SAT. In Proceedings AAAI-
99, pages 661–666, 1999.

[Kautz and Selman, 1996] H. Kautz and B. Selman. Pushing
the envelope: Planning, propositional logic, and stochastic
search. In Proceedings AAAI-96, pages 1194–1201, 1996.

[Kautz and Walser, 1999] H. Kautz and J. Walser. State-
space planning by integer optimization. Proceedings
AAAI-99, pages 526–533, 1999.

[Kivinen and Warmuth, 1997] J. Kivinen and M. Warmuth.
Exponentiated gradient versus gradient descent for linear
predictors. Infor. Comput., 132:1–63, 1997.

[Leyton-Brown et al., 2000] K. Leyton-Brown, M. Pearson,
and Y. Shoham. Towards a universal test suite for combi-
natorial auctions algorithms. Proceedings EC-00, 2000.

[Magazine and Oguz, 1984] M. Magazine and O. Oguz. A
heuristic algorithm for the multidimensional knapsack
problem. Euro. J. Oper. Res., 16:319–326, 1984.

[Martin, 1999] R. Martin. Large Scale Linear and Integer
Optimization. Kluwer, 1999.

[Parkes and Walser, 1996] A. Parkes and J. Walser. Tuning
local search for satisfiability testing. In Proceedings AAAI-
96, pages 356–362, 1996.

[Sandholm, 1999] T. Sandholm. An algorithm for optimal
winner determination in combinatorial auctions. Proceed-
ings IJCAI-99, pages 542–547, 1999.

[Schuurmans and Southey, 2000] D. Schuurmans and
F. Southey. Local search characteristics of incom-
plete SAT procedures. In Proceedings AAAI-00, pages
297–302, 2000.

[Vossen et al., 1999] T. Vossen, M. Ball, A. Lotem, and
D. Nau. On the use of integer programming models in
ai planning. Proceedings IJCAI-99, pages 304–309, 1999.

[Walser, 1999] J. Walser. Integer Optimization by Local
Search. Springer-Verlag, 1999.

[Wu and Wah, 2000] Z. Wu and W. Wah. An efficient global-
search strategy in discrete Lagrangian methods for solv-
ing hard satisfiability problems. In Proceedings AAAI-00,
pages 310–315, 2000.

