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Abstract. In this paper we present a new randomized algorithm for SAT, i.e., the
satisfiability problem for Boolean formulas in conjunctive normal form. Despite its
simplicity, this algorithm performs well on many common benchmarks ranging from
graph coloring problems to microprocessor verification. Our algorithm is inspired by
two randomized algorithms having the best current worst-case upper bounds ([27, 28]
and [30, 31]). We combine the main ideas of these algorithms in one algorithm. The
two approaches we use are local search (which is used in many SAT algorithms, e.g.,
in GSAT [34] and WalkSAT [33]) and unit clause elimination (which is rarely used
in local search algorithms). In this paper we do not prove any theoretical bounds.
However, we present encouraging results of computational experiments comparing
several implementations of our algorithm with other SAT solvers. We also prove
that our algorithm is probabilistically approximately complete (PAC).
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1. Introduction

SAT (the problem of satisfiability of a Boolean formula in conjunctive
normal form (CNF')) is one of the most well-studied N'P-complete
problems. It also has many applications since individual instances of
many combinatorial problems, like graph coloring, planning or circuit
design problems, can be encoded into formulas in CNF in a natural way.
However, under the hypothesis of P # NP, designing a polynomial-
time algorithm for SAT is a hopeless task. During the past decade, this
obstacle has been attacked in two main directions: proving “weakly
exponential” worst-case upper bounds on the running time of various
SAT algorithms and designing more practical “heuristic” algorithms.
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Weakly exponential worst-case upper bounds. Interesting “weakly ex-
ponential” upper bounds on the worst-case running time of SAT algo-
rithms are known mostly for k-SAT (i.e., when the length of a clause
is bounded by k), and are typically bounds of the form p(n)c", where
¢ < 2 is a constant, n is the number of variables in the input formula,
and p is a polynomial (note that SAT can be easily solved in time
p(n)2™, but it is non-trivial that it can be solved faster). The first
such bounds were proved in [3, 22, 24]. Currently, the best known
deterministic algorithm for k-SAT has the bound p(n)(2 — 2/(k + 1))"
[4]. Randomized algorithms achieve even better bounds [30, 27]. If a
formula has exactly one satisfying assignment, it can be found even
faster: in the time p(n)1.308" for a formula in 3-CNF [27]. Concerning
other results in this reach field, we refer the readers to the survey [5].

“Heuristic” algorithms. Unfortunately, the worst-case upper bounds
currently known for SAT algorithms are still too large for practical
purposes. Another direction of research is the design of “heuristic”
algorithms. These algorithms, though they are very hard for theoretical
study, show good performance in practice both on randomly gener-
ated instances and on structured instances encoding various practical
problems like planning or circuit design. Theoretical knowledge about
these algorithms is very limited and mostly concentrates on exponential
worst-case lower bounds [11], average-case bounds [9, 19], or properties
related to their completeness [2, 13, 14]. Some of these algorithms are
surveyed in [10, 15].

In their turn, “heuristic” algorithms may be complete or incomplete.
A complete algorithm gives the correct answer with certainty. If an
incomplete algorithm finds a satisfying assignment, it is guaranteed
to be correct; however, if it fails to find a satisfying assignment, this
means that either the input formula is unsatisfiable, or it is satisfiable,
but appeared “too hard” for this algorithm. Note that since we have
no a priori bound on the probability of error, we cannot just repeat
such an algorithm sufficiently many times reducing the probability of
error to any predefined constant (O(2") iterations would do the job for
almost all known algorithms, but it is unrealistic in practice). There
are several very successful complete algorithms (e.g., satz [21], SATO
[39, 40], zChaff [25]; see comprehensive experimental results at SAT-Ex
web-site! [37]). However, solvers based on incomplete algorithms could
be faster just because they belong to a wider class of computations. For
example, they are typically better on randomly generated instances.

! http://www.lri.fr/~simon/satex/satex.php3
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In this paper we suggest one more incomplete heuristic algorithm
for SAT; therefore, throughout this paper we will speak only about
satisfiable formulas. Most incomplete “heuristic” algorithms use local
search paradigm (this line of research started from experiments of Gu
[8] and Selman, Levesque and Mitchell [34] and theoretical work by
Koutsoupias and Papadimitriou [19, 26]). Such an algorithm chooses
a random initial assignment and then modifies it step by step until
it finds a satisfying assignment. If the random walk is long enough,
it is restarted from another initial assignment. There is a number
of experimentally studied SAT local search algorithms, for example,
GSAT [34], GWSAT (aka GSAT+w) [33], HSAT [6], HWSAT [7], SDF
[32], IDB [29], WalkSAT [33] and various algorithms within WalkSAT
framework such as WalkSAT /TABU, Novelty, R-Novelty [23], Novelty+
and R-Novelty+ [14].

Some of these algorithms need restarts because there are initial
assignments such that the probability that the random walk (if al-
lowed to run infinitely long) hits a satisfying assignment is strictly less
than one (in fact, it can be zero for most of these algorithms). Such
algorithms are called essentially incomplete [14] (e.g., GSAT, Walk-
SAT/TABU, Novelty, R-Novelty [13, 14]). Other algorithms are proba-
bilistically approzimately complete (PAC) [14], i.e., they succeed with
probability one without restarts for every initial assignment (e.g., Nov-
elty+, R-Novelty+, or GWSAT with strictly positive noise parameter
[13, 14]).

Unit clause elimination is a common technique in complete SAT
algorithms. However, it seemed hard to use it in local search algo-
rithms. Recently, there has been such an attempt [29]. Our local search
algorithm also uses unit clause elimination, though in a different way.

Procedure of Paturi, Pudldk, Saks, and Zane and our algorithm. In
this paper, we suggest a new incomplete SAT algorithm UnitWalk. Sim-
ilarly to the experimentally best incomplete algorithms from WalkSAT
family [23] and the theoretically best algorithms by Schéning [30] and
Schuler, Schoning and Watanabe [31], our algorithm uses local search.
However, the heuristic for flipping a variable is motivated by another
theoretically best algorithm by Paturi, Pudlak, Saks, and Zane [27].
The core of the algorithm in [27] is the following procedure [28].
Take a random assignment for the input formula F and a random
permutation of variables of F'. Consider all variables in the order de-
termined by this permutation. For each variable v, do the following.
If the value of v is forced by a unit clause, then set the forced value
to the variable; otherwise, take the value from the random assignment.
In any case, make the corresponding substitution in the formula, i.e.,
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replace F' by F[v < True] or F|v < False]| respectively by removing
all clauses containing the literal (either v or —v) having the value True
and removing the opposite literal from the remaining clauses.

Paturi, Pudldk, and Zane [28] show that this procedure finds a sat-
isfying assignment for a formula in 3-CNF with probability at least
O(27%"/3) (in other words, with high probability, only 2n/3 values in
the initial assignment are essential). Therefore, repeating this procedure
O(2?"/3) times gives a constant probability of error (for any predefined
constant). This algorithm can be derandomized by enumerating 22n/3
assignments and a polynomial number of permutations ([28], see also
[5] for a simpler construction).

Paturi, Pudldk, Saks and Zane [27] give an extension of this al-
gorithm. The new algorithm includes a preprocessing step: it adds
some resolvents to the input formula. This allows to achieve a higher
probability of success in one iteration and hence the improved running
time p(n)1.363" (or even p(n)1.308™ if there is only one satisfying
assignment).

In [28, 27], the procedure described above is used for obtaining a
satisfying assignment in one iteration: if a satisfying assignment is not
found, the procedure is restarted with a new random assignment and a
new random permutation. In our algorithm, we use this procedure to
obtain an assignment that is closer to a satisfying assignment than
the initial assignment (i.e., the obtained unsatisfying assignment is
not dropped, but is used instead of a random assignment for the next
iteration of the procedure). In fact, we use a slightly modified procedure
based on the version described in [5]. Namely, we process unit clauses
as soon as they appear (irrespectively of the chosen permutation of
variables). We also make a random choice if more than one unit clause
appears. If there are two unit clauses of the opposite signs, we do not
flip the corresponding variable. Finally, if no variable is flipped after
considering all variables, we flip a randomly chosen variable (in fact,
this is a very rare situation). See Section 3 for more details about
our algorithm and its relation to other heuristic algorithms such as
WalkSAT/TABU [23].

We prove that our algorithm is probabilistically approximately com-
plete. We also implemented a SAT solver based on our algorithm; we
provide the experimental results of running it on various widely known
benchmarks. The C source code of various versions of UnitWalk solver
is available from http://logic.pdmi.ras.ru/~arist/UnitWalk/.

Organization of the paper. The paper is organized as follows. In Sec-
tion 2 we briefly describe notation related to Boolean satisfiability and
SAT algorithms. Our basic algorithm is described in Section 3, where
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it is also shown that the algorithm is probabilistically approximately
complete, and its relation to other local search algorithms is discussed.
Section 4 contains the details of our solver that took part in SAT Com-
petition 2002 [36]: we discuss its implementation and improvements
using other known algorithms. In Section 5 we present comprehensive
experimental data describing the execution of our algorithm on various
benchmarks including some of the benchmarks used in SAT Compe-
tition 2002. Finally, in Section 6 we summarize our results and point
directions for further research.

2. Preliminaries

We consider algorithms for the problem of satisfiability of a Boolean
formula in conjunctive normal form (CNF). A formula in CNF is the
conjunction of clauses, a clause is the disjunction of literals, and a
literal is a Boolean variable or its negation. A satisfying assignment S
for a formula F' is a truth assignment for the variables appearing in
F such that every clause of F' has the value True under S. If such an
assignment exists, then F' is called satisfiable. The satisfiability problem
(SAT) can be formulated as follows: given a formula in CNF, find a
satisfying assignment? for it, or answer “Unsatisfiable” if there are no
such assignments.

For any formula F', variable v and truth value ¢ (which may be True
or False), we form the formula F[v < t] as follows. If t = True, we
remove all clauses containing positive occurrences of v from F, and
remove the literal —v from the remaining clauses of F. If ¢ = False,
we remove all clauses containing negative occurrences of v from F, and
remove the literal v from the remaining clauses of F. In other words,
we substitute ¢ for v in F' and simplify the clauses that contained the
variable v.

We denote the value of a variable v in an assignment A by A[v]. The
Hamming distance between two assignments A and B is the number of
variables having different values in A and B.

We study incomplete randomized algorithms for SAT. Such an al-
gorithm either finds a (correct) satisfying assignment for the input
formula, or gives the answer “Not found”. In the latter case the formula
may be either unsatisfiable or satisfiable. If there is an a priori worst-
case bound on the probability of error (an error is the event of giving

2 SAT is classically formulated as a decision problem: given a Boolean formula
F in CNF, output “Satisfiable” if it has a satisfying assignment, otherwise output
“Unsatisfiable”. Clearly, it is polynomial-time equivalent to the version that we
study.
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the answer “Not found” for a satisfiable formula), then by repeating
the algorithm sufficiently many times, the probability of error can be
reduced to any predefined constant, and after that the answer “Not
found” can be treated as “Unsatisfiable”.

Most incomplete algorithms for SAT are local search algorithms.
A local search algorithm chooses an initial assignment at random. At
each step, it changes (at most) one value in it, trying to get closer to a
satisfying assignment. If an algorithm changes the value of a variable,
we say that it flips this value, or even flips this variable. This procedure
(as well as the whole algorithm) is called probabilistically approzimately
complete (PAC) [14] if for every satisfiable formula and every initial
assignment the procedure finds a satisfying assignment with probability
one. Even if a local search algorithm has the PAC property, it may be
more efficient to choose another initial assignment and restart the ran-
dom walk if a satisfying assignment is not found after a certain number
of steps. After sufficiently many unsuccessful restarts, the output “Not
found” is given.

3. The basic algorithm

3.1. DESCRIPTION

As a typical local search algorithm, our algorithm generates an initial
assignment at random and then modifies it step by step. The main
difference from other local search algorithms is that during this walk
our algorithm modifies also the input formula.

The random walk is divided into periods. During one period at least
one (usually, much more) flip is made. A period starts with choosing
a random permutation of variables. Then algorithm takes the input
formula and modifies it step by step, sometimes also modifying the
current assignment. At each step, the algorithm substitutes the value
of one variable in the current formula, i.e., replaces a formula G by the
formula G[v < t] for a variable v and a truth value ¢. If there are unit
clauses, then v is taken from one of them; if the value of v does not
satisfy the unit clause and satisfies no other unit clause, it is flipped
before the substitution. If there are no unit clauses, the algorithm
substitutes the value to the next variable in the chosen permutation
(taking the value from the current assignment).

If a period finishes (i.e., all variables are processed), but no variable
was flipped during it, the algorithm chooses a variable at random and
flips it (in fact, this is a very rare situation). After period finishes,
the algorithm chooses a new random permutation, replaces the current
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Input: A formula F' in CNF containing n variables z1,...,Zn.
Output: A satisfying assignment for F', or “Not found”.

Method:

For ¢ := 1 to MAX_TRIES(F') do

A := random truth assignment for n variables;
For p := 1 to MAX_PERIODS(F) do

7 := random permutation of 1..n;

G:=F;

f=0

For i :=1 to n do

While G contains a unit clause, repeat
e Pick a unit clause {z;} or {—z;} from G at random;

e If this clause is not satisfied by A, and G does not contain the opposite
unit clause, then flip A[j] and set f :=1;

o G := Gz Alj]];
If variable x[; still appears in G, then G := G[z [ Alr[¢]]].
If G contains no clauses (i.e., G = True), then output A and exit;
If f =0, choose j at random from 1..n and flip A[j].

Output “Not found”.

Figure 1. Algorithm UnitWalk

formula (which is trivial now) by the input formula, and starts a new pe-
riod. The number of periods is limited to MAX_PERIODS(F') which may be
a function of certain syntactic characteristics of the input formula, e.g.,
of the number of variables. After the last period finishes, the random
walk is restarted from another random initial assignment. If a satisfying
assignment is not found after taking MAX_TRIES(F') initial assignments,
the algorithm outputs the answer “Not found”. One of the practical
choices for MAX_PERIODS and MAX_TRIES is to set MAX_TRIES(F) to 1
and MAX_PERIODS(F') to +oo (clearly, in this case the algorithm will
never stop if given an unsatisfiable formula).

Note that instead of choosing a random permutation in the begin-
ning of each period, we could generate it “on the fly”, i.e., choose a
variable at random every time it is needed (from the set of all variables
that had not yet been substituted by their values). However, we for-
mulate our algorithm using permutations to stress its relation to the
procedure of Paturi, Pudldk, Saks and Zane [28, 27].

A more formal description of the algorithm is given in Fig. 1.
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3.2. PROBABILISTIC APPROXIMATE COMPLETENESS

The following theorem shows that our algorithm is probabilistically
approximately complete, i.e., if we set MAX_PERIODS(F) to +oo and
MAX_TRIES(F') to 1, then for every satisfiable formula and every initial
assignment, UnitWalk finds a satisfying assignment with probability
one.

THEOREM 1. Algorithm UnitWalk is probabilistically approximately
complete.

Proof. We now prove that for any A and for any satisfying as-
signment S for the formula F' during one period either the Hamming
distance® between A and S decreases with probability bounded from
below or the algorithm outputs a satisfying assignment.

Consider any satisfying assignment S and an assignment A at dis-
tance d of the assignment S. We now construct a permutation 7 such
that if it is chosen in the beginning of the period starting with A
(note that every permutation is chosen with probability %), then the
assignment obtained in the end of the period will be closer to S than
A.

Let 7[1] = 41,...,7[n — d] = ip—q, where z;,,...,z; _, are the vari-
ables on which A agrees with S. Clearly, the values of these variables
will not be changed during the period. The remaining variables have
different values in A and S. Thus, if at least one of them is flipped
during the period, then we are done. Note that these are the only
variables whose flippings can be forced by unit clauses. However, if no
variable is flipped during the period and satisfying assignment is not
found, then after the period finishes, UnitWalk chooses a variable at
random and flips it. With probability at least 1/n, it chooses a variable
whose values in A and S are different.

Therefore, every period decreases the Hamming distance between A
and S with probability at least ——;. The probability of outputting a

n-n!’
satisfying assignment in at most n periods is thus at least b(n) = W
(irrespectively of the initial assignment). Hence, the overall probability
of outputting a satisfying assignment is at least b(n) + (1 — b(n))b(n) +

(1 —-0b(n))%b(n) +... = 1. O

3 The Hamming distance between two assignments A and B is the number of
variables having different values in A and B.
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3.3. RELATION TO OTHER LOCAL SEARCH ALGORITHMS

Our algorithm is similar to other local search algorithm because at
each step it modifies the value of at most one variable. However, it
has an important difference, namely, the use of unit clause elimination.
Probably, the closest algorithm to UnitWalk is WalkSAT /TABU [23].
We now reformulate our algorithm in terms of tabu lists (instead of
formula modification) and compare it to WalkSAT /TABU.

Similarly to other algorithms in the WalkSAT family [23], Walk-
SAT/TABU chooses a variable for flipping from an unsatisfied clause
(our algorithm behaves in the same way). It maintains a tabu list of
variables whose flippings are disabled. This list consists of variables
flipped during the last ¢ steps (¢ is a parameter). For our algorithm,
the tabu list contains all variables whose values were substituted into
the formula during the current period (the first important difference is
that sometimes we put a variable on the tabu list without flipping it).
In both algorithms, clauses consisting of tabu variables only are not
considered. If all unsatisfied clauses consist of tabu variables, Walk-
SAT/TABU ignores the tabu list; our algorithm empties this list. One
more difference is the choice of an unsatisfied clause: WalkSAT/TABU
chooses it at random from the set of all unsatisfied clauses containing
at least one non-tabu variable; our algorithm chooses it at random
from the set of all unsatisfied clauses containing ezactly one non-tabu
variable.

The following arguments show that these differences are essential.

1. Our algorithm is probabilistically approximately complete (see The-
orem 1) while WalkSAT/TABU is essentially incomplete [13, 14].

2. Experimental data show that UnitWalk makes substantially less
flips than WalkSAT/TABU on almost all instances (see tables in

[12]).

4. The solver

The algorithm described in Section 3 is interesting in its own right.
However, life is always more complex than theory. Therefore, writing
a solver that performs well if run on a real computer is another kind
of art. In particular, one has to implement efficient data structures,
incorporate known heuristics, sometimes worsen the basic algorithm in
theoretical sense, combine it with other approaches, etc. In this section
we describe the way we did it: namely, the implementation details and
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the improvements to the basic algorithm that led to better performance.
The aim of this section is to describe the version of our solver that
participated in SAT Competition 2002 [36].

4.1. IMPLEMENTATION

Since our basic algorithm is very simple (in particular, it does not use
any hard to compute functions), even its first “rough” implementation
was quite competitive (see Table I for a quick comparison with other
solvers; the details of our experiments and more detailed tables are
given in Section 5) and, in fact, the implementation details has not
changed much since that time. Our data structures are similar to those
used in many complete SAT algorithms (e.g., GRASP [35]).

The solver is implemented in C and uses only the standard C library.
The implementation represents a formula in CNF by an array of clauses,
where each clause is represented by its size (i.e., a natural number) and
a link to an array of literals (i.e., integer numbers). When we substitute
a value for a variable, we only change the sizes of clauses:

— the size of every satisfied clause is set to zero;

— the size of every other clause containing this variable is decreased
by one, and the corresponding literal is exchanged with the last
literal of this clause.

This implementation of substitution helps us to restore the original
formula quickly, because all we need for that is to restore the sizes of
clauses.

We also use two additional structures; supporting them is also quite
inexpensive. For each variable, we maintain the list of clauses containing
this variable. Also, when a unit clause appears, we put its index (in the
array of clauses) on a special list of indices of unit clauses.

4.2. ADDING RESOLVENTS

Paturi, Pudlik, Saks and Zane [27] suggest an extension of the original
algorithm of [28], and this extension gives an improvement of the worst-
case time upper bound. The extension is a preprocessing step that adds
resolvents of logarithmic size to the input formula.

In practice, one cannot compute such large resolvents, and some-
times even adding all resolvents of size, say, four gives an intolerable
blowup. Thus, our extension of UnitWalk limits the size of resolvent by
two. Frequently, the input formula has no such resolvents. On the other
hand, adding new resolvents after substitutions is useful because this is
one more rule of simplification. Our implementation adds some of the
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Table I. UnitWalk (basic algorithm) vs other solvers.

UnitWalk GSAT WalkSAT Novelty R-Novelty SDF IDB
substi- flips(time) flips(time) flips(time) flips(time) flips(time) flips(time) time
tutions

u£100-430 13,500 2,547(0.029) * 3,652(0.009) 15,699(0.047) 1,536(0.005) 876(0.01)
ais10 432,191 18,405(6.077) * 173,422(1.978) * * 20,870(1.52)
ais12 6.0-108  222,967(142.5) * *2.9-106(34.28) * * *154,249(18.6)

3bitadd_31 753,820 4,778(7.164) * 28,511(1.090) * 210,907(19.54) * 11.0

3bitadd 32  416,9213,743(4.757) * 14,209(0.628) * * * 8.6

par8-5-c 5,311 863(0.011)  *21,859(0.160) *19,182(0.056) 4,318(0.012) 2,640(0.007) 3,691(0.033)
par16-5-c 13-106  3.1-10%(33.85) * * 86 - 105(236.6) 50 - 108(145.2) *
flat50-115 1,521 261(0.002) *16,857(0.10) 3,896(0.008) *24,421(0.027) *9,373(0.019) 773(0.01)
£1at100-239 18,833,500(0.051)  *752,775(4.63) 44,900(0.164) 17,893(0.036) 12,345(0.027) 6,983(0.15)
2im100 24,059 4,020(0.048) * *251,618(0.445)  *269,700(0.453)  *265,862(0.456)  *116,467(1.89)
1i8 1,468 203(0.021)  *169,366(7.09) 495(0.021) 5,593(0.180) *3,166(0.010) 3,946(0.80)
ii16 9,093 1,086(0.273) * 6,201(0.769) *91,031(10.07) *85,742(4.036) 7,180(1.35)  0.305
1i32 5,989 854(0.227) * 2,284(1.040) *88,779(6.775) *77,589(3.736) * 1.17
logistics.a 40-108  1.2-108(920.7) * 95,205(0.432) 55,748(0.332) 45,220(0.259)
logistics.d 10,686 4,120(0.940) * 472,513(3.013) 136,938(1.187) 1.1-108(12.63) 74,090(56.7)
3blocks 116,8083,193(4. 851) * 3,256(0.643) 13,696(0.270) 8,304(0.179) 10,561(2.60)
£600 * * 167,616(0.778) 182,985(18.3) 4.35
£1000 * * * 639,459(3.727) 5.6-108(1192) 84.1
£2000 * * * 4.5-108(36.51) * 686

*An asterisk means that MAX_FLIPS(F') was reached in one or more runs. A stan-
dalone asterisk means that the algorithm failed in all runs (in some of the formulas
of the given seris, where applicable). The empty cell means we do not have data.
For series of formulas, an average is given.

Aremrun
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Table II. Generating resolvents during formula preprocessing vs

number of substitutions -107% and elapsed time (sec.) is shown.

incBinSat. The

the basic algorithm pre-generated incBinSat
(size < 3) [2S502]
uf100 (average) .013(.03) .010(.04) .010(.04)
logistics.a 40(920) 2(465) 7(132)
bw_large.c™ 25(726) 14(2,634) 5(259)
bw_large.d * * 358(23,541)

*For bw_large.c, only resolvents of size < 2 were generated.

Table III. Combining UnitWalk (enhanced by incBinSat) with WalkSAT.

UnitWalk UnitWalk+incBinSat UnitWalk+incBinSat ‘WalkSat
+WalkSAT
substi- flips(time) substi- flips(time) substi- flips(time) flips(time)
tutions tutions tutions

2im100 24,059 4,020(0.048) 10,528 2,181(0.034) 4,062 2,288(0.021)  *251,618(0.445)
2im200 7.0-108 1.5-106(11.88)  1.1-10°  332,126(4.453) 76,578 18,201(0.267) *
ii8 1,468 203(0.021) 986 193(0.017) 1,017 194(0.018) 495(0.021)
1116 9,093 1,086(0.273) 7,771 1,113(0.405) 5,256 2,284(0.426) 6,201(0.769)
1132 5,989 854(0.227) 6,140 964(0.592) 2,103 1,082(0.273) 2,284(1.040)
qg1-07 72,304 5,642(36.13) 22,740 2,058(16.19) 30,424 20,334(44.24) 3.3-10%(730.1)
qgl-08  *1.5.10°  *115,280(1,757) * * * * *
qg2-07 35,843 3,045(18.35) 33,819 3,121(24.67) 28,709 32,080(58.42) 1.7-10% (375.6)
qg3-08 109,977 8,274(3.660) 62,617 5,030(3.656) 61,030  149,124(12.57) 45-10° (627.3)
qg4-09 882,454 63,602(32.79) 301,587 22,828(20.65) 756,264 109,950(55.08) *
qg5-11 721,535 32,552(65.63) 487,678 22,813(75.91) * * *
qg6-09 22,890 1,578(1.296) 13,194 1,061(1.277) 6,852 1.1-10%(150.0) *
qg7-09 6,196 645(0.381) 2,332 439(0.242) 2,607  425,693(69.39) *
qg7-13 *27.10  *1.2.109(3,598) * * * * *

2-resolvents after each substitution using a very fast method incBinSat
of Zheng and Stuckey [41]. Therefore, we trade the number of possible
implications (and simplifications) for the time spent for each period.

Our choice is partially supported by our experimental results shown

in Table II. It turns out that while adding the resolvents during prepro-
cessing sometimes gives better decrease in the number of substitutions,
the running time is better for the version of our solver which uses
incBinSat. The formal presentation of this version is given in Fig. 2.
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Input: A formula F' in CNF containing n variables z1,...,Zn.
Output: A satisfying assignment for F', or “Not found”.

Method:

For ¢ := 1 to MAX_TRIES(F') do

A := random truth assignment for n variables;
(!) For p:=1 to MAX_PERIODS(F) do
7 := random permutation of 1..n;
G:=F;
=0
temporary-assignment := ()
current_time := 0
For i:=1ton do
While G contains a unit clause, repeat
e Pick a unit clause {z;} or {—z;} from G at random;

e If this clause is not satisfied by A, and G does not contain the opposite
unit clause, then flip A[j] and set f :=1;

o G := Glzj<Aljl];

e While G contains a 2-clause {z,y}, repeat
* current_time := current_time + 1;
* If G contains a unit clause, leave the inner “while” cycle;
% Call IncTempPropUnit(z, temporary-assignment).

If variable & [; still appears in G, then G := G[z [ A[r[d]]].
If G contains no clauses (i.e., G = True), then output A and exit;
() If f =0, choose j at random from 1..n and flip A[j].

Output “Not found”.

procedure incTempPropUnit(z, A)

If({—z} € A and time({—z}) = current_time), then return;
A= 1{A— [{a}, {~a}]} U {a);

time({z}) := current_time;

For each 2-clause {—z,y} € G do

If {y} ¢ A, then call incTempPropUnit(y, A).

Figure 2. Algorithm UnitWalk enhanced by incBinSat

4.3. COMBINATION WITH TRADITIONAL LOCAL SEARCH

A careful reader may have already noticed that UnitWalk and Walk-
SAT are, in a sense, complementary: UnitWalk solves formulas that
WalkSAT does not solve, and vice versa (see, e.g., Table I). Therefore,
it is natural to unite these approaches in one solver. The version of
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Input: A formula F' in CNF containing n variables z1,...,Zn.
Output: A satisfying assignment for F', or “Not found”.
Method:

A := random truth assignment for n variables.
Repeat the following steps until a satisfying assignment is found:

a) Repeat “periods” of UnitWalk enhanced with incBinSat (the cycle (!)—(!!) in
Fig. 2); however, stop not when MAX_PERIODS is reached, but instead when
¢ > n/12 opposite unit clauses pairs are found during a period, and ¢’ < ¢ of
them are found during the previous period.

b) Make a WalkSAT walk (see [33]) with cutoff=n?/2 and noise=50%.

Figure 3. Solver UnitWalk 0.98

UnitWalk that participated in SAT Competition 2002 [36] corresponds
to a combination of WalkSAT with UnitWalk enhanced by incBinSat.

Although a mechanical combination of WalkSAT and UnitWalk (say,
running them in parallel) would give a provably stronger algorithm, it
turns out that we can get even more: there are formulas for which
our combination works better than both WalkSAT and UnitWalk (see
Table I1I). This is achieved by alternating WalkSAT-like and Unit Walk-
like fragments of the random walk. Unfortunately, sometimes it also
leads to worse performance (mainly, on some of the qg formulas). While
increasing the running time by a constant factor is natural for a combi-
nation of several algorithms, tuning the parameters of this combination
may probably improve the performance. Fig. 3 describes the particular
version that has been used for SAT Competition 2002 (note that the
last assignment for a UnitWalk-like fragment is the initial assignment
for the next WalkSAT-like fragment, and vice versa).

5. Experimental data

Evaluation criteria. Comparing algorithms empirically is a difficult
task. If one chooses to compare algorithms w.r.t. computation time (i.e.,
the most natural characteristic!), several problems emerge. First, it is
impossible to create an ideal computer environment; frequently, most
powerful systems are multi-tasking and even multi-user, and therefore
the state of the system at a given moment of time may influence the
measurements (even if one measures CPU time spent purely for the
investigated computational process). The second problem is that it is
almost impossible to use experimental data provided by other people
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since it is not easy to find a computer with the same characteristics,
and scaling the data to an available computer is imprecise. The most
important problem is that such a comparison is very implementation-
dependent (and it also depends on the compiler version used to compile
the program).

Another possibility is to compare algorithms w.r.t. some implemen-
tation-independent measure. For the case of local search algorithms, a
natural measure is the number of flips made until a solution is reached.
This approach has another drawback: different algorithms spend very
different amounts of time per flip, because some of them (such as ours)
do a non-negligible amount of work to determine a variable to flip.
However, one may argue that this work takes “polynomial time” per
flip while the total number of flips in all iterations is the essential
“exponential” component of the running time (cf. worst-case analysis
of [30, 31]). See [15] for more about this subject. For our algorithm, we
give both the number of flips and the number of substitutions made
which seems a more realistic measure for the current implementation
of the basic algorithm (but not for the solver as a whole because it uses
WalkSAT-like walks as well). We also give CPU time.

Benchmarks. The main source where we took benchmarks was the
online library SATLIB* [16]; see references there for the description
and original sources of these benchmarks. In addition, we ran our al-
gorithm on Velev’s microprocessor verification benchmarks 5 [38]. We
also used randomly generated benchmarks submitted to SAT Compe-
tition 2002 [36] by the first author, including the smallest satisfiable
benchmark hgen2-v500-s1216665065 remained unsolved during the
competition (as well as during our tests). Clearly, we selected only
satisfiable benchmarks from all these series.

Our experiments and other sources of data. Most of our experiments
were made on a 466 MHz Intel Celeron Pentium IT running under Linux.
The DIMACS hardware benchmark program dfmaz r500.5 [17] takes
54.64 seconds on the machine. Some of the experiments were made
on a 1GHz Pentium-III machine and the running time was scaled
to match our basic machine. The data for other algorithms is par-
tially taken from SAT Competition 2002 [36] results® and from other
sources [13, 15, 29]. In particular, [13, 15] gives comprehensive data
concerning the number of flips of HWSAT, GWSAT, GWSAT/TABU,
WalkSAT/TABU and other algorithms from WalkSAT family. How-

4 http://www.satlib.org/
5 http://www.ece.cmu.edu/ "mvelev/
5 See http://www.satlive.org/SATCompetition/.
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Table IV. The experimental results on various SATLIB benchmarks.
UnitWalk+incBinSat+WalkSat WalkSat Novelty R-Novelty SDF IDB
substitutions flips(time) flips(time) flips(time) flips(time) flips(time) time
uf100-430 758,405(0.028) 3,652(0.009) 15,699(0.047) 1,536(0.005) 876(0.01)
uf250-1065 6,406 75,101(0.677) 63,778(0.382)
flat150-360 186,696 47,326(0.975) 254,188(0.562) 130,359(0.296) *731,825(1.429) 39,156(0.86)
flat200-479 2.0-108 539,445(14.78) 869,162(3.828)
aim100 4,062 2,288(0.021) *251,618(0.445) *269,700(0.453) *265,862(0.456) *116,467(1.89)
aim200 76,578 18,201(0.267) *
ii16 5,256 2,284(0.426) 6,201(0.769) *91,031(10.07) *85,742(4.036) 7,180(1.35) 0.305
ii32 2,103 1,082(0.273) 2,284(1.040) *88,779(6.775) *77,589(3.736) * 1.17
ssa 5,564 753(0.034) 45,181(0.171) *650,156(7.024) *1.4-109(13.76) 27,238(2.15) 0.31
logistics.a 7.1-108 256,008(132.2) 95,205(0.432) 55,748(0.332) 45,220(0.259)
logistics.b 768,495 16,319(14.73) 229,529(1.314)
logistics.c 8.7-108 199,025(196.8) 554,260(3.451)
logistics.d 73,9463,731(1.128) 472,513(3.013) 136,938(1.187) 1.1-108(12.63) 74,090(56.7)
ais8 40,550 2,528(0.587) 28,528(0.152) * *1.2-108(6.529) 4,645(0.17)
ais10 301,745 15,129(8.620) 173,422(1.978) * * 20,870(1.52)
aisl2 5.2.108 223,800(235.1) * * *154,249(18.6)
600 21,552 14,085(1.988) 167,616(0.778) 4.35
£1000 22,400 653,315(10.51) 639,459(3.727) 84.1
£2000 1.2.108 3.9-106(118.7) 4.5.106(36.51) 686
bw _large.a 6,779 744(0.162) 19,158(0.093) 9,699(0.050) 6,911(0.039) 2,917(0.184) 0.425
bw_large.b 83,438 5,544(2.885) 480,187(3.793) 26,813(2.005) 347,827(4.443) 38,927(6.44) 7.75
bw _large.c 5.0-108 243,478(258.2) 14.1-10%(151.8) 6.4-108(20.8) * *
bw _large.d 358-108 14.1-10%(23541)
2bitadd_11 5,879 286(0.021) 1,174(0.005) *99,489(0.357) *139,062(0.498) 166,089(11.1) 0.026
2bitadd_12 4,248 252(0.017) 751(0.004) *99,478(0.411) *53,076(0.194) 111,328(8.07) 0.028
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Table V. The number of solved instances generated by hgen2 out of 5 instances
generated for the same number of variables v = 250, 300, ... An instance is counted
as solved if it was solved in at least 50% of the runs. UnitWalk+... and WalkSAT
were run for 10 times (by the authors), and other algorithms were run once (during
SAT Competition 2002).

UnitWalk dlmsatl oksolver saturn usatl0 WalkSAT
+incBinSat
+WalkSAT

hgen2-v250
hgen2-v300
hgen2-v350
hgen2-v400
hgen2-v450
hgen2-v500
hgen2-v600
hgen2-v650 -
hgen2-v700 1 — — — -

W W R B Ol ot
— W s A ol ol ot
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= N W N R s Ot W ot

ever, in many cases it does not give CPU time; therefore, we had to
make some experiments ourselves. Namely, we have gathered the data
for WalkSAT, Novelty and R-Novelty by running on our machine their
implementations taken from http://www.cs.washington.edu/homes/
kautz/walksat/. We have also made the experiments with implemen-
tations of GSAT and SDF taken from http://logos.uwaterloo.ca/
“dale/. The data for IDB is taken from [29] where the experiments
were made on a 400 Mhz Intel Pentium II. Saturn is a newer im-
plementation of the same algorithm; the data for it (as well as the
data for OKSolver, dlmsatX, zChaff, limmat and usat10) is taken from
SAT Competition 2002 web site® (note that OKSolver was the winner
for randomly generated instances, and zChaff and limmat were the
winners for industrial instances). All experiments except for the data
taken from SAT Competition 2002 results were repeated at least 10
times, and the median was taken. For the data where the machine was
substantially different to our basic machine, scaling was made using
dfmax [17] program where possible.

In most of the experiments of [13, 15], the number of restarts (from
a new initial assignment) was set to one. For our experiments with Unit-
Walk on SATLIB instances, we have made the same thing: MAX_TRIES(F') =
1 and MAX_PERIODS(F) = +o0, i.e., an algorithm performs just one
(long) random walk. For other algorithms we could not present some
data unless MAX_FLIPS would be set to a finite number, because they
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could occasionally loop forever (especially, essentially incomplete algo-
rithms). We set MAX_FLIPS = 10,000,000 for par8, pari6-c and ais
series and MAX FLIPS = 1,000,000 on other benchmarks. For the fol-
lowing benchmarks from SAT Competition 2002, a timeout was set for
all algorithms (including UnitWalk): Velev’s benchmarks (2400 seconds
on 450 MHz P-IIT machines) and hgen benchmarks (1200 seconds on
Athlon 1800+ machines).

The experimental data is organized in Tables I-VII. We give 'mean’
data where available; i.e., the solver terminated in the shown amount
of time in at least 50% of the experiments.

6. Conclusion and Further Research

In this paper we suggested a new local search algorithm for SAT which
we call UnitWalk. The main difference of our algorithm from other local
search algorithms for SAT is the use of unit clause elimination (which
is widely used in complete algorithms but seemed hard to combine
with local search). We also sketched the implementation details and
presented several ways to improve the practical behaviour of our algo-
rithm. The experimental data we present in the paper show that our
algorithm dominates other contemporary incomplete solvers on some
sets of benchmarks (for example, satisfiable instances of aim [1], ssa
[20], par [17] and ii [18] series) and is able to solve some very hard SAT
instances (for example, Velev’s instances). SAT Competition 2002 has
shown that UnitWalk is not a specialized solver; on the contrary, it is
able to solve benchmarks from various fields (note that UnitWalk was
in the top five solvers list for all applicable categories of benchmarks).
The two major open quesions concerning UnitWalk are:

— Design a complete algorithm based on UnitWalk. (See [5] for survey
of related derandomization issues).

— Prove upper and lower bounds on the running time of UnitWalk.
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Table VI. Results on formulas generated by hgenb.

UnitWalk+incBinSat+WalkSAT dlmsat1 oksolver saturn usat10 WalkSAT

substitutions flips(time) time time time time flips(time)
hgen5-v100-s1064278966 61,440 1.7-10°(26.10) 0.61 0.48 27.64 300.6 5.3-10°%(44.70)
hgen5-v100-s1398869456 37,550 1.0-10%(15.94) 8.80 0.43 33.62 17.98 953,233(8.069)
hgen5-v100-s1478813564 47,640 1.3-10%(20.32) 0.39 0.09 30.11 58.84 2.9-10%(24.57)
hgen5-v100-s1818647520 101,770 2.8-105(43.61) 0.56 1.08 95.80 17.59 2.4-105(19.88)
hgen5-v100-s2029002754 24,560 672,272(10.54) 0.13 0.17 92.55 18.98 245,198(2.078)
hgen5-v125-s1345272240 169,150 5.8-10%(93.00) 10.01 1.00 78.52 375.8 3.8-105(32.57)
hgen5-v125-s1840040075 685,275 23.7-10°(378.8) 15.64 10.10 738.1 92.77 17.8-108(152.3)
hgen5-v125-s281703058 237,125 8.1-106(129 6) 10.57 4.68 380.5 151.4 6.4-10° (54.82)
hgen5-v125-5486906609 580,125 19.9-10%(318.2) 24.57 7.54 143.5 81.64 7.9:10°(68.26)
hgen5-v125-5821831669 33,875 1.1-10°(18.17) 0.22 9.45 97.10 31.89 655,591 (5.553)
hgen5-v150-s1806439773 1.8-10° 72.7-10%(1,201) 1.17 25.35 2,517 877.4 46.3-10°(398.8)
hgen5-v150-s1820487564 1.2-10° 51.1-10%(825.7) 31.98 57.67 1,032 1,230 38.0-10%(327.8)
hgen5-v150-s2035743477 * * 26.00 44.54 27.26 746.4 193-108(1,669)
hgen5-v150-5252403245 187,485 7.7-10%(123.4) 12.09 6.67 364.9 177.8 4.5-10°(38.46)
hgen5-v150-s378059954 447,270 18.4-10%(296.0) 0.56 44.28 3,376 1,525 14.1-10%(121.1)
hgen5-v175-s1398691205 * * 422.9 247.8 * * *
hgen5-v175-s1578166233 * * 137.3 664.1 * 1,472 118-105(1,034)
hgenb-v175-s382577122 * * 198.8 167.0 * * *

hgen5-v175-s704839520 3.4-10° 163.4-105(2,714) 35.62 157.3 * 471.3 72105 (1,105)

hgen5-v175-s736195112 568,732 27.2-10°(440.5) 16.34 549.6 * 171.7 11.8-105(102.2)
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Table VII. Results on Velev’s microprocessor verification benchmarks SSS — SAT — 1.0 (2dlz_cc-mc_ex_bp_f2_bug+) [38].

UnitWalk+incBinSat+WalkSAT dlmsat2 oksolver saturn usat10 WalkSat limmat zchaff
substitutions flips(time) flips(time) time time time flips(time) visits(time) time
010 168,5923,999(7.781) 57,537(8.31) 106.57 41.12 * 437,865(45.65) 466,349(1.12) 1.11
011 594,799 5,560(24.90)  374,383(12.98) 515.36 89.70 *728,098(65.45) 4.5.109(3.09) 1.13
012 213,115 4,484(20.90) 65,255(7.78) 20.68 *159.04 * 391,476(46.23) 2.1-109(2.29) 4.18
013 7.3-108 41,769(30.1) * * 0 *1652.72 * * 18-108(11.15) 4.94
014 304,678 5,568(14.51)  248,280(22.99) 115.01 77.45 * 0 204,959(24.31) 1.9-10(2.29) 5.75
015 6.8-106 43,958(394.7) * * * * * 52.10%(50.05) 14.03
016 4.8-109 27,604(205.0) * * * * * 381-109(143.55) 12.13
017 1.4.106 10,444(66.94)  387,842(18.51) * 35.02 * 1.2-10%(10.3) 4.5.108(3.68) 1.45
018 1.8-108 11,976(78.42) * * * * * 475.109(169.85) 4.69
019 6.1.10° 35,650(259.4) * * * * * 24-106(12.15) 5.14
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