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1 INTRODUCTION

The scheduling of computer and manufacturing systems has been the subject of
extensive research since the early 1950s. The range of application areas for
scheduling theory goes beyond computers and manufacturing to include agricul-
ture, hospitals, transport, etc. The main focus is on the efficient allocation of one
Or more resources to activities over time. It is convenient to adopt manufacturing
terminology: we refer to a job which consists of one or more activities, and
a machine which is a resource that can perform at most one activity at a time.

We restrict our attention to deterministic machine scheduling where it is
assumed that the data that define a problem instance are known with certainty in
advance. An excellent survey of the area is the paper by Lawler et al. [1993], and
the textbooks of Conway, Maxwell & Miller [1967], Baker [1974], French
[1982] and Blazewicz et al. [1994] provide an introduction.

Much of the early work on scheduling was concerned with the analysis of
single-machine systems. Examples include Jackson’s derivation of the earliest due
date (EDD) rule in which jobs are sequenced in order of nondecreasing due dates
[Jackson, 1995], and Smith’s derivation of the shortest weighted processing time
(SWPT) rule in which jobs are sequenced in order of nondecreasing processing
time to weight ratios [Smith, 1956]. In addition to providing optimal solutions to
single-machine problems, these orderings are used as priority rules for scheduling
more complex systems.

A major theme in recent research has been the use of complexity theory to
classify scheduling problems as polynomially solvable or NP-hard. Many funda-
mental results in this area are derived by Lenstra, Rinnooy Kan & Brucker
[1977]. The NP-hardness of a problem suggests that it is impossible to find an
optimal solution without the use of an essentially enumerative algorithm, for
which computation times will increase exponentially with problem size. To
obtain exact solutions of NP-hard scheduling problems, a branch-and-bound or
dynamic programming algorithm is usually applied. In most cases where these
algorithms have been successful in solving problems of reasonable size, problem-
specific features are used to restrict the search.

In practice it may be acceptable to use a heuristic method to find an approxi-
mate solution for an NP-hard problem. There is clearly a trade-off between the
computational investment in obtaining a solution and the quality of that
solution. The performance of heuristic methods is often evaluated empirically,
but it is sometimes possible to carry out a theoretical analysis of heuristic
performance. Following the pioneering work of Graham [1966, 1969] on list
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scheduling heuristics for parallel machines, there has been a significant interest in
obtaining performance guarantees through worst-case analysis. An alternative
approach is to use probabilistic analysis to predict the behavior for ‘typical’
problem instances.

There are, however, some classes of problems that have resisted attempts to
design a satisfactory solution procedure: enumerative algorithms may be unable
to solve problems with more than a handful of jobs, and the solutions generated
by simple heuristic methods may be far from the optimum. Such problems can be
tackled by local search methods. These methods have the advantage that they can
be employed as ‘black-box’ techniques if no problem-specific knowledge is
available. On the other hand, it is often possible to incorporate structural
properties of a problem into the local search method to improve its performance.

In addition to reviewing the literature and presenting the results of computa-
tional tests, this chapter builds a framework for the application of local search
methods toscheduling problems. Section 2 starts with a description of scheduling
problems and then presents a classical representation scheme based on the
physical environment and the performance criterion for the problem. The
combinatorial nature of the various problem types is also identified; for example,
many problems involve sequencing jobs or assigning jobs to machines. Section 3
" discusses design features for local search algorithms including the representation
of solutions and issues of feasibility. Section 4 outlines a range of possible local
search algorithms for each of the broad classes of combinatorial structure that are
encountered in scheduling problems. Specific applications of local search
methods are reviewed in Sections 5, 6, and 7, within the general categories of
single-machine, parallel-machine, and multi-stage problems. Section 8 compares
the computational performance of different local search methods for four differ-
ent types of scheduling problem. Section 9 makes some concluding remarks.

2 SCHEDULING MODELS

The machine scheduling problems that we consider can be described as follows.
There are m machines, which are used to process n jobs. A schedule specifies, for
each machine i and each job j, one or more time intervals throughout which
processing is performed on j by i. A scheduleis feasible if there is no overlapping of
time intervals corresponding to the same job (so that a job cannot be processed by
two machines at once), or of time intervals corresponding to the same machine (so
that a machine cannot process two jobs at the same time), and also if it satisfies
various requirements relating to the specific problem type. The problem type is
specified by the machine environment, the job characteristics, and an optimality
criterion.

2.1 Machine environment

Different configurations of machines are possible. In each case, however, all
machines become available to process jobs at time zero.
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A single-stage production system requires one operation for each job, whereas
in multi-stage systems there are jobs that require operations on different machin-
es. Single-stage systems involve either a single machine, or m machines operating
in parallel. In the case of parallel machines, each machine has the same function.
We consider three cases: identical parallel machines in which each processing time
is independent of the machine performing the operation; uniform parallel machin-
es in which the machines operate at different speeds but are otherwise identical;
and unrelated parallel machines in which the processing time of an operation
depends on the machine assignment.

There are three main types of multi-stage systems. All such systems that we
consider contain m machines, each having a different function. In a flow shop with
m stages, each job is processed on'machines 1,...,m in that order. In an open shop
each job is also processed once on each machine, but the machine routing (that
specifies the sequence of machines through which a job must pass) can differ
between jobs and forms part of the deeision process. In a job shop each job has
a prescribed routing through the machines, and the routing may differ from job
to job.

2.2 Job characteristics

The processing requirements of each job j are given: for the case of a single
machine and identical parallel machines, p; is the processing time; for uniform
parallel machines, the processing time on machine i may be expressed as pilu;
where ; is the speed of machine i; for the case of unrelated parallel machines,
aflow shop and an open shop, p,; is the processing time on machine i; and for a job
shop, p;; denotes the processing time of the ith operation (which is not necessarily
performed on machine i).

In addition to its processing requirements, a job is characterized by its
availability for processing, any setup requirements on the machine, any depend-
ence on other jobs, and whether interruptions in the processing of its operations
are allowed. The availability of each job j may be affected by its release date
r;, which is the time that it becomes available for processing, or by its deadline Jj,
which specifies the time by which it must be completed.

Suppose that job j is sequenced immediately before job k on machine i.
Then, after job j has completed processing on machine i, a job setup time Lk
may be necessary before job k can start on i. If job k is scheduled first on
machine i, the setup time required is t,,,. Sometimes similar jobs share a setup.
Specifically, suppose that jobs are partitioned into F families according to the
similarity of their production requirements so that no setup on a machine is
required between two consecutively sequenced jobs of the same family. The
Jfamily setup time on machine i when a job of family g is immediately preceded
by a job of family f is s, ., or S;04 If there is no preceding job. If, for each k, we
can write ¢, = t,,, =t, for all jobs j # k, or if, for each g, s, 19 = Siog = 5;, for all
f #¢ in the case of families, then the setup times on machine i are sequence
independent.
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Job dependence arises when there are precedence constraints on the jobs. Ifjob
j has precedence over job k, then k cannot start its processing until j is completed.
Some scheduling models allow preemption: the processing of any operation may
be interrupted and resumed at a later time. However, we restrict our attention to
nonpreemptive scheduling.

2.3 Optimality criteria

For each job j, a due date d; and a positive weight w; may be specified. Given
a schedule, we can compute for job j: the completion time C;; the lateness L;=
C;—d;; the earliness E;=max{d;— C;0}; the tardiness T,=max{C;—d;,0};
and the unit penalty U;=1if C;>d, U;=0 otherwise.

Some commonly used optimality criteria involve the minimization of: the
maximum completion time C,, =max;C;; the maximum lateness L, =
max; L;; the total (weighted) completion time 33;(w;)C;; the total (weighted)
tardiness 3°;(w;) T;; the (weighted) number of late jobs 3°;(w)) U;; or the total
(weighted) earliness 3°;(w)) E;; where each maximization and each summation is
taken over all jobs j.

In some situations there is a setup cost, either in addition to or instead of
a setup time. This is an example where it may be appropriate to adopt a compos-
ite objective which requires a weighted sum of two or more criteria to be

minimized.

2.4 Three-field representation

It is convenient to adopt the representation scheme of Graham et al. [1979]. This
is a three-field descriptor «|f8]y which indicates problem type: « represents the
machine environment, § defines the job characteristics and y is the optimality
criterion.

Let o denote the empty symbol. The first field takes the form & = «, a,, where o,
and «, are interpreted as follows:

e a,6{>P,Q,R,F,0,J}
—a; = ©: a single machine
— o, = P: identical parallel machines
— o, = Q: uniform parallel machines
—a, = R: unrelated parallel machines
— o, = F:a flow shop
— o, = O: an open shop
—o, = J: a job shop
o a,e{o,m}
— &, = °: the number of machines is arbitrary
— o, = m: there are a fixed number of machines m

We note that for a single-machine problem «, = ° and a, = 1, whereas «, # ° and
, # 1 for other problem types. \
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The second field B < {8, B,, B3, B} indicates job characteristics as follows:

o Bie{or;}
— B1 = °: no release dates are specified
— B, =r; jobs have release dates
o Bre{e,d;}
— B, = °: no deadlines are specified
— B, =d;: jobs have deadlines

o Bief{oty,t), S;gsSs)
- B3 = o: there are no setup times
— B3 =t;,: there are general job setup times
— B3 =t;: there are sequence independent job setup times
- B3 = s, there are general family setup times
— B3 = s there are sequence independent family setup times

o p.e{o, prec}
— B4 = °: no precedence constraints are specified
— B4 = prec: jobs have precedence constraints

Lastly, the third field defines the optimality criterion, which involves the
minimization of

V€ {Cmax’ Lmax’ Z (WJ) Cj’ 2 (wj) Tj’ Z (Wj) Uj, Z (wj) EJ}

Furthermore, as indicated in Section 2.3, it is sometimes appropriate to adopt
a composite objective, one component of which may be a setup cost.

2.5 Some examples

Toillustrate the three-field descriptor and to indicate the combinatorial nature of
some scheduling problems, we present six examples.

1 |¥ w;U; is the problem of scheduling jobs on a single machine to minimize
the weighted number of late jobs. An optimal solution can be assumed to have the
property that the on-time jobs are sequenced first in nondecreasing order of their
due dates, then the late jobs are sequenced in an arbitrary order after all the
on-time jobs [Moore, 1968]. Thus, a partition of jobs into those that are on time
and those that are late defines a solution.

1]s;| 3 w;C;is the problem of scheduling families of jobs on a single machine to
minimize the total weighted completion time, where a sequence independent
setup time is necessary whenever the machine switches to processing jobs from
a different family. Jobs within each family should be sequenced in nondecreasing
order of p;/w; (SWPT order) [Monma & Potts, 1989]. Thus, a solution is
obtained by merging the ordered lists of jobs for the different families.

Pm|r;| 3 C; is the problem of scheduling jobs with release dates on a fixed
number m of identical parallel machines to minimize the total completion time.
After being assigned to machines, a sequence of jobs is required for each machine.
Thus, a schedule is constructed using combined assignment and sequencing.
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R | C,,,, is the problem of scheduling jobs on an arbitrary number of unrelated
parallel machines to minimize the maximum completion time. A solution is
specified by an assignment of jobs to machines; the order in which jobs are
processed on a machine is immaterial.

F2|prec| 3. w;T; is the problem of scheduling jobs with precedence constraints
in a two-machine flow shop to minimize the total weighted tardiness. Since there
exists an optimal schedule in which the same processing order is used on both
machines [Conway, Maxwell & Miller, 1967], a schedule is obtained by se-
quencing the jobs.

J || C,ax 18 the problem of scheduling a job shop to minimize the maximum
completion time. It is a multisequencing problem; implicit in a schedule is
a sequence of operations on each of the machines.

3 APPLYING LOCAL SEARCH

3.1 Representation of solutions

For most applications of local search to scheduling problems, there is a natural
way to represent the solutions. In a sequencing problem the natural representa-
tion of a solution is a permutation of the integers 1,...,n; for an assignment
problem it is a list of the machines to which the respective jobs are assigned. In
many cases there are, as we shall see, corresponding natural ways to define both
a neighborhood structure and the operators required for a genetic algorithm. In
this situation, a local search method can be applied as a ‘black-box’ technique,
with the user required only to choose the algorithm parameters. If we wish to
incorporate some problem-specific knowledge, this can sometimes be achieved
by making a nonstandard choice of neighborhood structure, or by restricting the
solutions that are allowed. Alternatively, a different representation for solutions
of the problem may be more convenient.

One example of an alternative representation occurs for the problem
P || 3 w,T; of scheduling identical parallel machines to minimize total weighted
tardiness. It is clear that, in an optimal solution, the workload assigned to
different machines should be balanced; solutions in which some job starts after
another machine has completed all its processing can be discarded. By using a list
scheduling method, a list of jobs in priority order can be used to define a schedule
as follows. The first unscheduled job in the list is scheduled on the machine that
first becomes idle; this process is repeated until all jobs are assigned to machines.

We can give a more formal description of these ideas by distinguishing between
the set & of feasible (or restricted) solutions to the scheduling problem and some
set % of representations upon which the local search will be performed. We use
G to denote the map from £ to & which corresponds to the method that is used to
generate a solution from its representation. If there is just one way to represent
any possible schedule, so that G is injective, it will make little difference whether
we work with 2 or &. In this case it is possible to translate the description of the
algorithm from one set to the other without essential difference; so a neighbor-
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hood structure in % implies a neighborhood structure in &, and similarly, genetic
crossover and mutation in # can be translated into corresponding operators in
&. On the other hand, if G is not injective, so that a single solution may have
several representations, it will not be possible to translate the local search
procedure into its equivalent in .%.

Returning to the problem P||Y w;T;, the natural representation is a list of
processing orders, where each processing order defines the sequence of jobs
assigned to the corresponding machine. The restricted set & of solutions is the set
of lists of processing orders which produced a balanced schedule, as defined
above. The set of all lists of job priority orders provides us with a priority
representation &, and G is the list scheduling method. In this case G is not
injective, as a single solution may have several representations in %.

A more complex way to use the idea of representation is to view a schedule as
arising from the application of some rule or map H to data D. Here a representa-
tion of a schedule § is specified by a pair (D, H), with H(D) = S. Then the set #
is given by some subset of 2 x #, where 2 is a domain of possible data and #
is a set of possible maps. We need # to be chosen in such a way that H(D) is
a feasible schedule for every (D, H)e &. Storer, Wu & Vaccari [1992] suggest that
o is formed from a collection of heuristics appropriate to the problem at hand,
and that 2 consists of different perturbations of the input data. It is natural to
allow variations in just one of the two components of a representation, so we
perform a local search either on s alone or on 9 alone.

If we perform a local search on a set of heuristics 5, the heuristics are effectively
the different representations of the solutions. There are many different possible
ways to define such a representation. For example, consider a single-machine
sequencing problem where a variety of different ‘basic’ heuristics could be applied
(such as scheduling in order of nondecreasing due dates or of nondecreasing
processing times). Composite heuristics can then be constructed by allowing
a different heuristic rule to be applied at each position in the sequence.

If a local search is performed on a set 9, which contains perturbations of the
input data D, we must specify a fixed heuristic H. In a sequencing problem, for
example, H might be the SWPT heuristic. This can be applied to input data with
perturbed weights and processing times to generate a sequence of jobs. The
sequence associated with a particular perturbation is then evaluated with respect
to the original data D.

3.2 Neighborhood search

Neighborhood search algorithms include descent, simulated annealing, thresh-
old accepting, and tabu search. The starting point for a neighborhood search
method is the choice of neighborhood structure; this determines which pairs of
solutions are regarded as adjacent to each other, and hence the moves that are
allowed. Different neighborhoods have different properties, which may make
them more or less suitable depending on the particular problem at hand. It is
worth mentioning three in particular.
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First, neighborhoods differ in size, i.e., in the number of neighbors for a single
solution. Small neighborhoods are preferable from the point of view of the speed
at which the local search proceeds. If the neighborhood is too small, however, the
final solution may be of poor quality.

Second, neighborhoods differ in the ease with which new solution values can be
computed. Neighborhood search techniques really come into their own when
a move to an adjacent solution allows a rapid update of the objective function
value, rather than a complete recalculation.

Third, the underlying topology of the neighborhood structure significantly
affects the quality of solutions generated by a neighborhood search algorithm.
We can think of the definition of a neighborhood as giving rise to an objective
function surface. Specifying which pairs of solutions are neighbors implies
a distance measure between solutions (the number of moves necessary to travel
between them). If we could position the possible solution points in a plane so that
the distances were correctly represented, then the local search procedure would
move around on the surface generated by assigning objective function values as
the vertical component at each solution point. A local optimum with respect to
the neighborhood definition would then correspond to a local optimum in
a classical continuous optimization sense. If the surface were very bumpy, there
would be many local minima and a local search procedure might have trouble
locating a good solution; on the other hand, if the surface were nicely behaved,
a neighborhood search procedure could easily move downhill to find a very good
solution. Among the different neighborhood structures for a particular problem,
we prefer one for which the associated objective function surface is reasonably
smooth. Unfortunately, however, it is difficult to define an easily computable
measure of smoothness.

3.3 Genetic algorithms

The picture is more complicated for genetic algorithms than for neighborhood
search. As with all local search methods, we first need to decide on how solutions
are to be represented (usually in the form of a string). Secondly, a method is
required to produce new solutions from two ‘parent’ solutions using some
type of crossover operation. Although crossover is often regarded as a mec-
hanical process that is performed on the string representation, a broader inter-
pretation may be assumed. For example, a crossover operation might involve
performing a sequence of moves in some suitably defined neighborhood on one
of the parent solutions, where the characteristics of the other parent indicate
which moves are candidates for consideration. After reversing the role of the two
parent solutions, the process is repeated to produce another new solution.
Thirdly, a suitable implementation of mutation is needed. Mutation can usually
be thought of as a move to a random neighbor of the current solution, within
some appropriately defined neighborhood. The process of generating new solu-
tions using crossover and mutation applied to a suitable string is known as
recombination.



370 11 Machine scheduling

A representation and a crossover method have to be selected together. There
is often a choice between a simple representation which implies a complex
crossover mechanism, and a complex representation for which a simple cross-
over method can be applied. The aim is to enable two parent solutions to combine
to produce a new solution that has good features from both parents. Thus,
crossover should try to preserve as many as possible of the elements of the parent
solutions that are thought to be important in determining the quality of a solu-
tion. These are the so-called building blocks from which a new solution can be
generated.

3.4 Neural networks

The natural approach when tackling a scheduling problem using a neural
network is to adopt the methodology of Hopfield & Tank [1985]. Essentially, the
problem is represented as one of constraint satisfaction.

In the Hopfield-Tank model, the outputs of the neurons, which are usually in
the range zero to one, are used to define a solution. Thus, the problem should be
represented by variables that take the value zero or one, so a zero-one program-
ming formulation is useful. The ‘system dynamics’ of the network provide
changes of state so that an energy function is decreased until it reaches a local
minimum. An appropriate energy function includes the objective function for the
scheduling problem, to which penalty costs corresponding to the constraints are
added. The design of the network influences the success in obtaining a global
minimum of the energy function.

Zero-one (or integer) programming formulations are available for most
scheduling problems. Moreover, it is straightforward to convert these formula-
tions into an energy function that can be used in the neural network. Thus, we
shall not deal explicitly with these issues.

3.5 Feasibility

As pointed out in Section 2, the set of feasible schedules for a problem may be
restricted by certain characteristics of the jobs, such as deadlines or precedence
constraints. In other cases, we may know some structural properties of an
optimal solution a priori, and it may be advantageous to treat this structural
knowledge as an effective constraint on the schedules that we consider. In either
circumstance, there are essentially four possible ways to proceed:

o Exclusion. Infeasible solutions are never considered, either because they are
never generated or because they are always discarded. In neighborhood search
it may be possible to employ some mechanism to ensure that only those
neighbors that represent feasible solutions are generated. Alternatively, an
infeasible neighbor can be discarded immediately it is generated. In a genetic
algorithm, infeasible solutions are excluded by ensuring that the representation
of schedules matches precisely those solutions we wish to consider.
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e Penalization. Infeasible solutions are allowed but are penahzed by adding
a penalty cost to the objective function.

e Repair. After an infeasible solution has been generated, it is changed or
repaired so that it becomes feasible. Thus, a method is required to find a feasible
solution that retains the essential characteristics of the infeasible solutlon
which has been generated.

e Translation. A repair mechanism can be used differently by regarding it as
a translator; the original infeasible solution is left unaltered but is assigned an
objective function value based on its feasible (translated) version. The local
search is carried out on possibly infeasible solutions. In general different
solutions may yield the same translated solution.

In neighborhood search, the simplest strategy to adopt is exclusion. It is
implemented either by using some mechanism in the neighbor generation
procedure to ensure that only feasible solutions are produced, or by discarding an
infeasible solution immediately it is generated. For tightly constrained problems,
however, to pass from one side of an infeasibility barrier to the other, so that
- another part of the solution space can be searched, may be difficult or impossible
under exclusion. A penalty function approach may perform better. The repair and
translation strategies should be used with caution because of the computational
expense associated with applying the repair mechanism. Translation has the
advantage that, like penalization, it allows an infeasibility barrier to be crossed.

For genetic algorithms, the exclusion strategy may be inappropriate because of
the unavailability of a representation of solutions which avoids infeasibility.
A penalty function approach is possible since a standard selection mechanism
eliminates high-cost solutions. Alternatively, repair or translation strategies can
be used. A possible advantage of translation is that the genetic information in the
infeasible solution is left undisturbed, and could reemerge fruitfully in some later
generation.

4 NEIGHBORHOOD STRUCTURES AND RECOMBINATION
OPERATORS

Most scheduling problems fall into one of thtee types, according to their natural
solution space representation. Some problems have solutions that are just
a sequence of jobs; some problems have solutions that are assignments of jobs to
machines, where a sequence of the assigned jobs may also be specified for each
machine; and some problems have solutions that are multisequences—a set of
sequences of operations, one for each machine. Our discussion also includes
problems in which the natural representation is a partition of jobs into two
subsets and the merging of ordered lists of jobs. Other natural representations of
solutions do exist, but they occur less frequently. In this section, for each type of
natural representation of solutions, we discuss alternative representations, give
different neighborhoods for neighborhood search algorithms, and suggest vari-
ous recombination operators for genetic algorithms.
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4.1 Sequencing problems

There are many machine scheduling problems in which solutions are most
naturally represented by stating the order, or sequence, in which the jobs are
processed. Most of the single-machine problems that we discuss in this chapter
are of this type.

Representation

The natural representation for sequencing problems is a permutation of the
integers 1,...,n. However, there are other useful representations, three of which
are given below. :

In a start time representation, the start time of each job is specified. Applying
local search operators to this representation is unlikely to produce feasible start
times. Nevertheless, there is an obvious repair/translation mechanism: sequence
the jobs in nondecreasing order of the start times resulting from the application of
the local search operators.

If there are precedence constraints on the jobs, many sequences are infeasible.
To overcome this drawback, we can use a priority representation, which is
a priority order of jobs. A job becomes available when all of its predecessors are
sequenced. We construct a feasible solution by selecting the first available
unsequenced job in the priority order, and sequencing it next. Similar priority
representations can be defined when there are release dates or deadlines; the
essential difference is how availability of jobs is defined.

For scheduling problems of a sequencing nature, the crucial decisions may
relate to whether one job is sequenced before or after another. This suggests an
ordered pair representation that records, for each possible pair of jobs, which job
comes before the other in the sequence. Thus, a sequence of six jobs
(B,E, F, C, A, D) could be represented by a 15-element binary string as follows:

AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF
6 6 100 1 1 1 1 1 0 0 0 0 1

Here the 0 against AB represents the fact that 4 does not appear before B in the
sequence, whereas the 1 against BC indicates that B is sequenced before C. After
applying local search operators to such a binary string, there is little likelihood
that the result is a feasible solution. Nevertheless, this is not a problem if, as
suggested in Section 3.5, a repair or translation operator is applied to the string.
Suppose that we construct a directed graph G from the string in which vertices
correspond to the jobs 1,...,n, and for each pair of jobs j and k there is an arc
(J, k), or (k, j), according to whether or not the string specifies that j precedes k.
The ‘best’ repair/translation operator would find an acyclic subgraph of G con-
taining a maximum number of the arcs of G, which defines a sequence. However,
since this acyclic subgraph problem is NP-hard —feedback arc set is NP-hard
[Karp, 1972]-it is more appropriate to apply a constructive heuristic. For
example, a greedy heuristic may be used: select a job for the first unfilled position
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in the sequence such that this decision causes as few arcs as possible in G to
be deleted.

Neighborhoods

Consider first the natural representation for a sequencing problem. We give four
possible neighborhoods below; each is illustrated by considering a typical
neighbor of the sequence (4, B,C,D,E, F, G, H) in a problem where there are
eight jobs labeled A4,..., H.

e Transpose. Swap two adjacent jobs. Thus, (4, B, D, C, E, F, G, H) is a neighbor.
e Insert. Remove a job from one position in the sequence and insert it at an-
" other position (either before or after the original position). Thus,

(A,E,B,C,D,F,G,H) and (4, B,C, D, F, G, E, H) are both neighbors.

e Swap. Swap two jobs that may not be adjacent. Thus, (4, F, C, D, E, B, G, H) is
a neighbor.

o Block insert. Move a subsequence of jobs from one position in the sequence
and insert it at another position. Thus, (4, D, E, B, C, F, G, H) is a neighbor.

This terminology is not universally adopted: shift is sometimes used instead of
insert, and interchange instead of swap. Moreover, there are othér possible more
complex neighborhoods. For example, by analogy with the neighborhood struc-
tures that are frequently used for the traveling salesman problem, we can define
k-opt neighborhoods that move (and possibly reverse) more than one subsequ-
ence in the schedule.

As indicated in Section 3, size is an important consideration when choosing
between neighborhoods. In calculating the neighborhood sizes, we must avoid
double counting; for example, starting from (4, B, C, D, E, F, G, H), inserting job
B after job C has the same result as inserting job C before job B. With n jobs to be
sequenced, the neighborhood sizes are n — 1 for transpose; (n — 1) for insert;
n(n — 1)/2 for swap; and n(n + 1)(n — 1)/6 for block insert. The neighborhood
with the smallest size is not necessarily preferred because the topology of the
solution space also influences our choice.

Another factor that affects the choice of neighborhood is the computational
effort required to evaluate a neighbor. For many single-machine problems,
a rapid update of the objective function is possible. Consider, as an example, the
problem 1]} T; of minimizing total tardiness on a single machine. Suppose that
we start with the sequence (1,...,n). Then, to calculate the effect of inserting job
j in position k (k > j), we note that the tardiness T, of job ], for I=j+1,...,k, is
reduced by min{p;, T, }, whereas the lateness for job j is increased by >k j+1Pr
Since the tardiness of the other jobs is not altered, the change in total tardiness is
easily computed. Similar arguments are possible for the other neighborhoods we
have given.

For the priority representation mentioned above, exactly the same neighbor-
hoods can be used. For the start time and ordered pair representations, it is more
natural to consider changes to one or more elements of the representation, rather
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than moving elements around. Thus, for example, a neighborhood for the start
time representation can be obtained by allowing a single start time to change,
with some limit imposed on the maximum increase or decrease. A natural
neighborhood for the ordered pair representation is obtained by allowing up to
two of the binary elements in the string to change (from 0 to 1, or vice versa).

Recombination

We first consider a natural representation of solutions in which each string
is a permutation of the integers 1,...,n. For sequencing problems there are
many methods of combining two solutions to produce two new solutions. We
describe three of them below. Each of our descriptions relates to crossover
operations that are defined by two randomly selected crossover points. For
corresponding one-point crossovers, a single crossover point is randomly chosen
and, by implication, a second point occurs at the beginning or the end of the
sequence. '

In a partially matched crossover, two positions are picked at random and the
sections or subsequences of the two sequences between these positions are then
interchanged element by element. This is much easier to describe with an
example. Suppose we start with sequences

nn=ABC|DEFG|HIJ
n,=CHG|AIDB|JFE

The two strings change places between the crossover points, and outside the
crossover points the reverse changes are made in order to maintain valid
sequences. We obtain

ny=FGC|AIDB|HEJ
n,b=CHB|DEFG|JAI

Here A is swapped with D and then D with F, to give the first element in ny. Bis
swapped with G to give the second element, and so on.

The insertion crossover is a version of the crossover operation which has been
used successfully by Miihlenbein and coworkers for the traveling salesman
problem [e.g., Miihlenbein, Gorges-Schleuter & Krimer, 1988]. Two positions
are picked at random and the sections or subsequences between these points are
then inserted into the other sequence at one of the point where an element in the
subsequence occurs (the choice being made randomly). Elements in the inserted
subsequence are removed from the other places where they occur, and the gaps
closed up. If we take 7, and =, as above, this crossover might produce

ny=|AIDB|CEFGHJ
n,=CHAI|DEFG|BJ

We have inserted the substring from =, in place of 4 in #,, and the substring from
7, in place of D in x,. The end result is that a subsequence from one parent is
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inserted into the other, with the remaining elements in the sequence occurring in
the same order as before.

A reorder crossover picks two positions at random, as before, and then the
subsequences between them are reordered to match the order of the elements
in the other sequence. If we take 7, and =, as above, this crossover might
produce

#,=ABC|GDFE|HIJ
7,=CHG|ABDI|JFE

These three types of crossover can also be applied to the priority representation
in which the priority order is a sequence of jobs. For start time and ordered pair
representations, a standard crossover can be used before applying the necessary
repair/translation operators.

4.2 Assignment and partitioning problems

There are several scheduling problems whose solution can be viewed as an
assignment of the jobs to machines. One example given in Section 2 is the
problem R|C,,,, which requires jobs to be assigned to unrelated parallel
machines to minimize the maximum completion time. Another example involv-
ing assignment is P || L,,,, in which jobs are to be scheduled on identical parallel
machines to minimize the maximum lateness; once an assignment of jobs to
machines is decided, the optimal schedule on each machine can be obtained by
sequencing jobs in EDD order (nondecreasing order of due dates) [Jackson,
1955].

Some single-machine scheduling problems require jobs to be partitioned into
two sets. An example is 1 || X w; U}, in which jobs are to be scheduled on a single
machine to minimize the weighted number of late jobs. A partition of jobs into
those which are late and those which are on time is sufficient to determine
a schedule. The partition is constrained because not all subsets of jobs can
be scheduled on time. Another example of a partitioning problem is 1|d; =
d|Y (w;E;+w;T)),in which jobs with a common due date d are to be scheduled
on a singlée machine to minimize the total weighted earliness plus total weighted
tardiness. Assume thatd > ¥ ; p;. Baker & Scudder [1990] generalize the proper-
ties of an optimal schedule derived by Kanet [1981] for unit weights. Specifi-
cally, there is no idle time between jobs, and one job completes at time d.
Furthermore, jobs that are completed no later than time d are sequenced in
order of nonincreasing p;/w; (longest weighted processing time or LWPT
order) and jobs completed after time d are sequenced in order of nondecreasing
p;/w; (SWPT order). Thus, a solution is specified by a partition of the jobs into
those that the completed no later than time d and those that are completed after
time d.

A partitioning problem is obviously a special case of an assignment problem,
and it is convenient to treat the two types of problems together.
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Representation

Suppose that we have a problem in which n jobs are to be assigned to m machines.
The natural representation for an assignment problem is a set of m lists, where
each list contains the jobs assigned to one particular machine. Equivalently, this
representation can be a single list containing the respective machine assignments
of the n jobs.

As in the case of sequencing problems, we can also adopt a priority representa-
tion. To obtain an assignment of jobs to machines from the priority order, list
scheduling is applied. More precisely, whenever a machine becomes idle, the next
job on the priority list is scheduled on that machine. Since the priority representa-
tion is a sequence of jobs, the neighborhoods and recombination operators of
Section 4.1 are applicable.

Neighborhoods

For the natural representation of solutions to assignment problems, we give three
possible neighborhoods:

® Reassign. Remove a job from one machine and reassign it to another.

e Swap. Swap two jobs from different machines by reversing their machine
assignments.

® 2-Reassign. Remove either one or two jobs and reassign them to different
machines.

More generally, we could define a k-reassign neighborhood which allows the
reassignment of up to k jobs. Neighborhood sizes are n(m — 1) for reassign and
nm— 1) [1 4 (n— 1) (m — 1)/2] for 2-reassign. For swap, the maximum possible
neighborhood size occurs when jobs are evenly divided between the machines.
Thus, an upper bound on the neighborhood size is [ n/m] 2m(m — 1)/2.

It may be preferable to reduce the neighborhood size using an exclusion
mechanism. We define a job to be critical if any small delay to its start time causes
an increase in the objective function value. As an example, for R||C,,.., jobs on
a most heavily loaded machine are critical for the maximum completion time
objective. To obtain an improved solution, some critical job must be assigned to
adifferent machine. Thus, we define the critical reassign, critical swap, and critical
k-reassign neighborhoods, to be subsets of the original neighborhoods in which
at least one critical job is moved to another machine.

Neighbors for assignment problems can often be evaluated quickly if appropri-
ate values for the current solution are stored. For example, consider the problem
P|| 3 w;C; of scheduling jobs on identical parallel machines to minimize the total
weighted completion time. Given an assignment of jobs to machines, the jobs on
each machine are sequenced in SWPT order. Suppose that jobs 1,...,k, are
sequenced in this order on some machine i,, and jobs k,, ..., n are sequenced in
this order on another machine i,, and we wish to calculate the effect of removing
jobjfrom machine i, (wherej < k,) and reassigning it on machine i ,. Assume that,
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in the new SWPT ordering on machine i,, job j is sequenced immediately after job
I (where k, <1< n). The total weighted completion time of jobs j +1,...,k; on
machine i, decreases by p; Tk j+1 Wi the total weighted completion time of jobs
I+ 1,...,nonmachine i, increases by p; 3} _,, ; w;, and the weighted completion
time of job j decreases by w; (X4} p, — X }= 4, P) (Which may be negative). Since
the weighted completion time of other jobs is unaltered, the change in the total
weighted completion time is easily computed if, for the current schedule, partial,
sums of weights and processing times on each machine are available. A similar
efficient recompuation of the total weighted completion time is also possible for
the swap and 2-reassign neighborhoods.

Recombination

Consider the natural representation of solutions. The application of genetic
algorithms in this case is particularly easy, since a string representation is
immediately available by listing for each job the machine to which it is assigned.
Then crossover can be carried out using a standard one- or two-point method. In
contrast to sequencing problems where standard crossover operations fail to
yield a sequence, any list of machine numbers defines a possible assignment. It is
worth noting, however, that the operation of the genetic algorithm will be affected
by the order of the elements in the string. The jobs that are placed close together
on the string are more likely to retain their relationship with each other under the
standard crossover operation. Unfortunately, in most such problems, it is very
hard to see what might be an appropriate ordering of the jobs. One option is to
use a different form of crossover operation. Using the uniform crossover, two
solutions can be mated by choosing randomly at each point in the string which
parent should provide the element for the child string. The other child is obtained
by making the opposite choice at each point. This will make the order of the
elements in the string unimportant. If we think of genetic algorithms as working
with building blocks, out of which good solutions can be put together, then the
building blocks will be just the individual job assignments.

43 Combined assignment and sequencing problems

There are several problems in which an assignment of jobs to machines and
a sequencing of the jobs on the machines are both necessary (e.g., the problem
P|r;|X C; of scheduling jobs with release dates on m identical parallel machines
to minimize the total completion time). Since they contain elements of pure
sequencing and assignment problems, generalizations of some of the approaches
discussed above are appropriate.

Representation

The natural representation of solutions is a set of m ordered lists, where each list
contains the sequence of jobs assigned to one particular machine.
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Kanet & Sridharan [1991] suggest a start time representation which specifies,
for each job, a vector containing its machine assignment and start time. Local
search can be applied to this list of vectors in much the same way as for the start
time representation of a sequencing problem, except that changes in job assign-
ments are possible as well as changes in start times. As before, a repair/translation
procedure is necessary for the start times obtained from the local search opera-
tors: for each machine the assigned jobs are sequenced in nondecreasing order of
these start times.

Since the priority representation for pure assignment problems uses list sched-
uling to create a schedule, it also provides a valid representation for our
combined assignment and sequencing problems. The neighborhoods and recom-
bination operators of Section 4.1 can be applied to the priority sequence.

Neighborhoods

For a natural representation of solitions, the neighborhoods described for the
pure sequencing problems can be generalized. Thus, insert removes a job from its
current position on some machine and inserts it in a different position, either on
the same machine or on a different machine. Also, jobs on the same or on different
machines can be interchanged using swap.

Recombination

It is difficult to specify a method for recombination when the natural representa-
tion is adopted. For the start time representation, however, it is straightforward
to apply crossover to lists of vectors. As pointed out in Section 4.2, different job
orderings give different lists, and it is difficult to select a list that is suitable if
standard one- or two-point crossover is used. However, uniform crossover avoids
the need to choose a job ordering.

4.4 Multisequencing problems

Most multi-stage scheduling problems, such as a flow shop and job shop, require
operations to be sequenced on several machines, so we call them multisequencing
problems.

Representation

We first describe a natural representation. Flow shop and job shop schedules are
defined by a set of sequences, one for each machine. For the open shop, in
addition to a sequence for each machine, the solution must also specify a machine
routing for each job. Due to the interrelationships between the different se-
quences, the obvious generalizations of the approaches outlined in Section 4.1 are
likely to be ineffective. For example, suppose that the insert neighborhood is used
for some flow shop problem in which different sequences of jobs are allowed on
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different machines. If a job is moved from one of the initial positions on a machine
to one of the final positions, then the resulting schedule is likely to be of poor
quality unless corresponding adjustments are made to the sequences on other
machines. Now consider a job shop problem. If job j has to be processed first by
machine 1 and then by machine 2, and job k is processed by these two machines in
the reverse order, we cannot have a schedule in which k comes before j on
machine 1 and k comes after j on machine 2. A simple-minded approach may
therefore prove infeasible. Similar disadvantages of ineffectiveness and infeasibil-
ity also occur for the open shop.

A priority representation helps to counter these drawback. For the flow shop and
job shop a priority order of operations is given for each machine. An operation
becomes available when the previous operation on the same job is completed.
When a machine becomes idle, an available operation with highest priority is started
(or if there is none, the first operation to become available is scheduled next, ties
being broken by the priority rule). This always creates a nondelay schedule.
Although there may be no optimal nondelay schedule, this approach can still be
effective in generating near-optimal solutions. Furthermore, this potential loss of
optimality can be overcome by modifying the heuristic to generate active rather than
nondelay schedules (an active schedule is one in which no operation can be pro-
cessed earlier without delaying the start of another operation). For the open shop
we can use a similar representation. Suppose that we specify for each machine a
priority order for the jobs, and for each job a sequence of machines that defines its
route. A schedule can then be constructed using the same method as for a job shop.

Neighborhoods

The priority representation rather than the natural representation of solutions is
generally recommended for the reasons indicated above. Using the priority
representation of solutions for the flow shop or job shop, it is straightforward to
apply neighborhood search. Since the priority order on each machine is a se-
quence, it is possible to use one of the neighborhoods given in Section 4.1 for pure
sequencing problems, such as insert or swap. Similarly, for the open shop,
a neighborhood is defined by allowing a change in either one of the priority
orders or in one of the job route sequences.

It is also possible to use a natural representation for the flow shop or job shop,
but using an exclusion mechanism of the type introduced in Section 4.2, as
proposed by Van Laarhoven, Aarts & Lenstra [1992]. Consider the minimiza-
tion of the maximum completion time. As in Section 4.2, we define an operation
to be critical if any small delay to its start time causes an increase in the objective
function value. Furthermore, a maximal sequence of critical operations is called
a critical path, and a corresponding maximal subsequence of critical operations
on the same machine is called a block. To obtain an improved solution, some
critical operation must start earlier by a suitable reordering of the operations in
a block. If the transpose neighborhood is used for each of the sequences,
a neighbor is considered only if two operations in the same block are swapped,
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other neighbors are excluded. We refer to this neighborhood as critical transpose.
It is shown by Van Laarhoven, Aarts & Lenstra that any solution obtained by
critical transpose is feasible. A further restriction of this neighborhood is moti-
vated by the observation that no improvement in the solution results by
a reordering of the operations of a block if the first operation still precedes the
others in the block and the last operation also remains at the end. The critical end
transpose neighborhood is a restricted version of the critical transpose neighbor-
hood in which the first or last operation of a block is transposed. Similarly, we
define the critical end insert neighborhood as a restricted version of insert in
which an operation is removed from a block and placed immediately before the
first or immediately after the last operation in the block. For other optimality
criteria, this type of exclusion approach is likely to be less effective because the
number of critical operations is larger.

Under a natural representation, a machine reschedule neighborhood can be
adopted for flow shop and job shop problems. In this neighborhood a machine is
selected for rescheduling, but the processing order on the other machines remains
fixed. A solution (either optimal or heuristic) of the resulting single-machine
subproblem provides the new schedule. For the open shop, a similar approach
can be used to reschedule a machine or to reroute a job through the machines.
A more general k-machine reschedule neighborhood allows the rescheduling of up
to k machines; this can be achieved by considering a k-machine subproblem, or
by some sequence of k single-machine subproblems.

Recombination

For flow shop, job shop, and open shop problems, the priority representation can
be used for genetic algorithms. In each case a solution is represented by a set of
sequences and one of the methods of Section 4.1 can be used.

4.5 Merging ordered lists of jobs

Sometimes a problem with a more complex solution structure arises because we can
deduce some properties of an optimal solution, and it is advantageous to restrict
the search to solutions which have these required characteristics. An example of this
phenomenon occurs for the problem 1|s 12 w;C; in which families of jobs with
associated sequence-independent setup times are to be scheduled on a single machine
to minimize the total weighted completion time. This can be viewed as a se-
quencing problem. Since jobs within each family must be sequenced in a SWPT
order [Monma & Potts, 1989], it can also be regarded as a problem of merging
ordered lists of jobs, where each ordered list contains all the jobs in one family.

Representation

Since we know the order in which the jobs within a single family are to be
processed, the natural representation of a schedule is obtained by simply indi-
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cating the family of the job at each position in the schedule. Thus, we can
represent a schedule for a problem with five jobs in each of three families by
a string of the form (4,C,C,A,A,A,B,B,B,C,C,C, B, A, B), where A, B, and
C are the families.

It is sometimes the case that we can deduce further properties of an optimal
schedule. In particular, if we decide on how each family is split up into batches,
where a batch contains jobs that are to be scheduled contiguously, then we may
determine the sequence of these batches. For example, in the problem
1|s;|3 w;C;thereisa generalized SWPT rule which applies to complete batches
as well as to individual jobs. This allows an alternative batch-based representa-
tion, which is obtained by using a binary string to mark the positions in each
family at which a new batch begins. The schedule above is described by three
binary strings (1, 1,0,0,1),(1,0,0, 1,1),(1,0, 1,0,0), where each string corresponds
to a single family. If the jobs of family A are numbered 1,..., 5, then the first string
(1,1,0,0, 1) indicates that the jobs of A are split into three batches that contain job
1,jobs 2 to 4, and job 5, respectively. Each of the binary strings must start witha 1,
so we could omit the first element in each. Note also that the same schedule could
arise from more than one set of binary strings; although we may choose to start
a new batch at a particular position among the jobs from one family, the
mechanism for sequencing the batches could schedule two batches of the same
family consecutively.

Neighborhoods

Using the natural representation, it is necessary to retain the same number of
elements, of each type in any changed string. This makes it appropriate to use the
same type of neighborhoods as for ‘the natural representation of sequencing
problems (transpose, insert, swap, etc.). For this approach, some of the possible
moves will not alter the resulting schedule (e.g., swapping two jobs of the same
family). For each of the three neighborhoods transpose, insert, and swap, it is
straightforward to specify the neighbors that will yield a different schedule and
then to restrict attention to these neighbors.

One class of neighborhoods in the batch-based representation is defined by
changing one or more elements in the solution representation (0 to 1, or vice
versa). Once we have taken account of the fixed 1 at the start of each family’s
binary string, all other binary strings represent feasible schedules.

Recombination

If we use a natural representation, the following methods of performing a cross-
over operation are possible. First, we could use a version of one of the crossovers
used for a pure sequencing problem. However, this approach effectively ignores
the special structure of the merged strings problem. An alternative is to use
a standard one- or two-point crossover operation followed by a transla-
tion/repair mechanism to obtain the correct number of elements from each
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family. It is more satisfactory, however, to use a batch-based representation. In
this case we can concatenate the strings for different families into a single string
and then use a standard crossover operation.

5 SINGLE-MACHINE PROBLEMS

In this section we indicate how local search can be applied to a variety of
single-machine scheduling problems. We exclude from our discussion pro-
blems of minimizing the maximum completion time; most problems of this
type are polynomially solvable, so local search is inappropriate. For the other
optimality criteria, we briefly review the main results and, where appropriate,
provide a guide to problem ‘hardness’ by indicating the size of problem for which
the best currently available (enumerative) algorithm can generate an optimal
solution.

Since many single-machine scheduling problems require jobs to be sequenced,
the guidelines given in Section 4.1 are especially useful.

5.1 Maximum lateness

The problem 1| L,,,, is solved in O(n log n) time by Jackson’s earliest due date
(EDD,) rule [Jackson, 1955]: jobs are sequenced in order of nondecreasing due
dates. When there are precedence constraints, Lawler [1973] shows there exists
an optimal schedule in which a job that has the largest due date among those with
no successors is processed last. Repeated application of this result yields an
optimal schedule for 1|prec| L___in O(n?) time. Although Lenstra, Rinnooy Kan
& Brucker [1977] show that 1|r | L., is strongly NP-hard, branch-and-bound
algorithms are able to solve largle instances. For example, Carlier [1982] solves
10000-job problems using an ingenious branching rule and lower bounds
obtained by allowing preemption. Monma & Potts [1989] show that 1]s 7l Loy iS
solvable by dynamic programming in O(F2n?F ) time (where F is the number of
families), and Bruno & Downey [1978] prove NP-hardness in the ordinary sense
for arbitrary F.

We now discuss the design of local search algorithms for the problem
L|r;| L, The problem is of special interest since various algorithms for the job
shop problem J || C,,, are based on solving a subproblem which is equivalent to
L|r;| L,,. The search for an optimal solution to 1|r;| L, can be restricted to
active schedules, in which no job can be scheduled earlier without delaying the
start of another job. Suppose first that a natural representation of solutions as
asequence is adopted, so that there is a corresponding schedule in which each job
is processed as early as possible subject to its release date and the machine
availability. One of the approaches of Section 4.1 can be applied, and a re-
pair/translation procedure used if a nonactive schedule is generated. An alterna-
tive and possibly preferable approach is to use a priority representation. We
construct an active schedule by processing next the first unscheduled job in the
priority order for which its start time is strictly smaller than the earliest possible
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completion time among all jobs that can be processed next. The methods of
Section 4.1 can be applied to this priority order.

For 1|s,| L,,,, Monma & Potts [1989] show that jobs within each family are
sequenced in EDD order. Thus, the problem requires the merging of ordered lists
of jobs, where each list contains all jobs of a family in EDD order. Moreover, by
associating a due date with each batch, the EDD rule can be applied to sequence
the batches. Thus, the approaches of Section 4.5 that use a batch-based represen-
tation can be applied.

5.2 Total weighted completion time

The basic problem 1||3° w;C; is solved in O(n log n) time by Smith’s shortest
weighted processing time (SWPT) rule [Smith, 19567 jobs are sequenced in order
of nondecreasing ratios p;/w;. In the case that jobs have unit weights and have
deadlines, Smith generalizes the SPT rule (the shortest processing time rule,
which is a special case of the SWPT rule) by showing that, among jobs j for which
d;>X"_, p. a job with the largest processing time is processed last. Repeated
application of this result yields an optimal schedule for 1|d;{>" C; in O(n log n)
time. Most other extensions of the basic model are strongly NP-hard, including
1|r;| 3 C; [Lenstra, Rinnooy Kan & Brucker, 1977], 1|prec| 3. C; [Lawler, 1978;
Lenstra & Rinnooy Kan, 1978] and 1|d;|> w;C; [Lenstra, Rinnooy Kan
& Brucker, 1977]. Although Ahn & Hyun [1990] and Ghosh [1994] show that
1|s,|¥ C; and 1|s;| > w;C; are solvable by dynamic programming in O(F 2nf)
time, the complexity of these problems is open when F is arbitrary.

Branch-and-bound algorithms proposed by Chu [1992] and Belouadah,
Posner & Potts [1992] for 1|r;|3C; and 1|r;| 3 w;C; are capable of solving
instances with up to 100 and 40 jobs, respectively. Both algorithms rely heavily on
dominance rules to restrict the search. The design principles of local search
algorithms for 1|r;| L ,,, given in Section 5.1 can also be used for 1|r;[ 3 (w))C;.
Thus, a natural representation of solutions can be used with a repair/translation
mechanism applied to generate active schedules, or a priority representation can
be adopted and the active schedule generation procedure of Section 5.1 used to
create a schedule from the representation.

For 1|c7j|ijC ; the branch-and-bound algorithms of Posner [1985] and
Potts & Van Wassenhove [ 1983] solve instances with up to 40 jobs. Suppose that
a natural representation of solutions is adopted. Infeasible sequences can dis-
carded in neighborhood search. It is also possible to enforce the deadline
constraints using a penalty function approach. A priority representation may
alternatively be adopted. To construct a feasible sequence from a priority order,
among jobs j for which 67, =Y 7_, Dw the job that is nearest to the end of the
priority order is processed last. Repeated application of this rule yields the
required feasible sequence.

We now consider the problem 1|prec| 3. w;C;. Computational results obtained
by Potts [1985a] with his Lagrangean-based branch-and-bound algorithm show
that instances with 100 jobs can be solved. Potts also proposes a descent
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algorithm, which uses a block insert neighborhood on the natural representation
of solutions and in which infeasible solutions are discarded. However, other
neighborhood search algorithms can be designed. For example, the precedence
constraints can be enforced using a penalty function approach. Another option is
to use an ordered pair representation: by applying a suitable repair/translation
mechanism, the resulting solution is guaranteed to be feasible (the greedy
heuristic of Section 4.1 for the acyclic subgraph problem can be modified to
ensure that all precedence constraints are satisfied).

For 1|s;|> w;C; Mason & Anderson [1991] derive a branch-and-bound
algorithm which relies mainly on dominance rules to restrict the search. Their
computational resultsfor 1|s;| 3" C;indicate that instances with up 30 jobs can be
solved. Recall from Section 4.5 that the problem can be regarded as one of
- merging lists, where each list contains the jobs of a family in SWPT order.
Adopting a natural representation of solutions, Ahn & Hyun [1990] propose
a descent algorithm for 1|s,| 3° C; which uses the block insert neighborhood. By
restricting the choice of blocks, it is possible to ensure that jobs within each family
aresequenced in SWPT order. Mason [1992] proposes a genetic algorithm which
uses the batch-based representation. Crauwels, Potts & Van Wassenhove [1997]
design various neighborhood search algorithms. In multistart descent, simulated
annealing, and threshold accepting, they use the block insert neighborhood of
Ahn & Hyun, and the two latter methods use temperatures and threshold values
that follow a periodic pattern. Their tabu search algorithm uses the restricted
insert neighborhood, and a tabu list of length 7 stores the job that is inserted and
prevents it from moving again. In a computational comparison of Mason’s
algorithm with these neighborhood search algorithms, Crauwels, Potts & Van
Wassenhove find that all five methods generate solutions of high quality. Based
on solution quality and computation time, tabu search is preferred to the other
methods. These results are presented in Section 8.1.

Herrmann & Lee [1995] propose a genetic algorithm for the problem
1\d, 874l 22 Cj, which is shownrby Bruno & Downey [1978] to the NP-hard. They
use a representation which consists of binary encoding of perturbations of the
original deadlines. To obtain a solution from the representation, a backward
scheduling heuristic is used which aims to minimize the time spent on setups and
to process the longer jobs as late as possible. The resulting schedule is not
guaranteed to be feasible with respect to the original (or the perturbed) dead-
lines. Thus, a penalty function approach is used to drive the solution towards
feasibility.

Laguna, Barnes & Glover [1991] propose tabu search algorithms for
1|2 w;C; + ¥ c, in which there are general job setup costs and the objective is
to minimize the total weighted completion time plus the total setup cost. They
adopt a natural representation of solutions as a sequence, and compare a restrict-
ed version of the swap and insert neighborhoods which prohibits moves that
change the position of a job by more than n/2. By storing partial sums of weights
and processing times for the current sequence, candidate moves can be eva-
luated in constant time. For a swap move that interchanges the jobs in positions
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j and k, where j <k, the tabu list entry prevents the first of these jobs from
occupying the first j positions. After an insert move, the job that is removed and
inserted in another position is stored on the tabu list and prevented from moving
again. Computational results with tabu lists of length 7 indicate that the insert
neighborhoods yields better quality solutions than the swap neighborhood.
However, a slight improvement is observed, especially for larger problems, if
a combined swap and interchange neighborhood is adopted. This approach is
extended by Laguna, Barnes & Glover [1993] to the problem 1[t,|3> w;C;
+ X ¢, in which there are job setup times and costs. Glover & Laguna [1991]
and Laguna & Glover [1993] use ‘target analysis’ to develop an improved
algorithm for 1||X w;C; + X c;. Target analysis is a technique which ‘learns’
heuristic rules that are appropriate for a class of problems. In this case, whenever
the tabu search algorithm is forced to make a nonimproving move, an attempt is
made to diversify the search by penalizing neighbors according to the frequency
with which, in previous iterations, the same job pair has been swapped or the
particular insert job is placed just before the same job. Results indicate that this
modified tabu search algorithm is superior to the original version.

Arizono, Yamamoto & Ohta [1992] propose a neural network approach for
1]t;| X C;(although they work with the equivalent problem 1|¢,d;=d|3 Ej,in
which jobs have a common deadline). Their model uses the output of a neuron to
define whether or not a job occupies a particular position in the sequence.

5.3 Total weighted tardiness

For many years the complexity of 1]|3 T; remained open. In a recent paper,
however, Du & Leung [1990] show that the problem is NP-hard in the ordinary
sense. Lawler [1977] shows that it is pseudopolynomially solvable by deriving an
omn*y ; ;) algorithm, which is based on decomposition. More precisely, a job
with the largest processing time partitions the problem into two subproblems:
jobs with the smallest due dates are sequenced before this partition job, and the
remaining jobs are sequenced after it. A search is performed for the optimal
position of the partition job. Using a dynamic programming algorithm of
Schrage & Baker [1978] to solve subproblems, Potts & Van Wassenhove [1982]
develop this decomposition approach to solve instances with up to 100 jobs.

Lawler [1977] and Lenstra, Rinnooy Kan & Brucker [1977] show that
1| X w;T); is strongly NP-hard. Successful enumerative algorithms rely heavily
on elimination criteria of the type derived by Emmons [1969] and Rinnooy Kan,
Lageweg & Lenstra [1975], which give conditions under which certain jobs can
be assumed to precede others in the search for an optimal schedule. The
branch-and-bound algorithm of Potts & Van Wassenhove [1985], which uses
a relatively weak but quickly computed lower bound, can solve problem instan-
ces with up to 40 jobs. A survey of algorithms is given by Abdul-Razaq, Potts
& Van Wassenhove [1990].

There are various descent and simulated annealing algorithms which use
natural representations of solutions as sequences and employ one of the neigh-
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borhoods of Section 4.1. The algorithm of Wilkerson & Irwin [1971] for 1 12 T;
resembles a descent algorithm that applies the transpose neighborhood to
‘the EDD sequence. Chang, Matsuo & Tang [1990] also consider descent
algorithms for this problem. They show that the ratio of total tardiness given
by a descent algorithm to the minimum total tardiness (for instances in which
the minimum total tardiness is positive) can be arbitrarily large if the transpose
or swap neighborhood is used, although the ratio is finite for the insert neighbor-
hood.

Matsuo, Suh & Sullivan [1987] apply simulated annealing to 1|3 w;T;. In
their algorithm the probability of accepting a worse solution is 1ndependent of the
objective function values. Based on computational results with the transpose
neighborhood, they find that a systematic search of the neighborhood outper-
forms a random search and that the use of a good initial sequence accelerates
the process of finding a near-optimal solution. Potts & Van Wassenhove
[1991] compare descent and simulated annealing algorithms with other special-
purpose heuristics for 1Y T; and 1|3 w;T;. For descent and simulated
annealing, they use the swap nelghborhood and impose a strict limit on run times.
The descent method performs surprisingly well relative to simulated annealing
for both the unweighted and weighted problems if moves to solutions with the
same objective function value are accepted (which commonly occur if two early
jobs are mterchanged) For 1|3 T;, however, a special-purpose decomposition
heuristic is slightly superior. On the other hand, a finely tuned simulated
annealing algorithm that employs a descent routine gives the best results for
HZw,T,

Crauwels, Potts & Van Wassenhove [1996] propose various local search
algorithms for 1|3 w;T;. For the natural sequence representation, the swap
neighborhood is used in multistart descent, simulated annealing, threshold
accepting and taken search methods. A novel partition representation uses
bmary strings, where each element indicates whether the corresponding job
is on time or late. To convert the partition representation into a sequence,
a procedure is used which first sequences those jobs that are indicated as on
time in EDD order. Any job that cannot be completed by its due date in this
EDD sequence is removed, and is subsequently regarded as late. Then, where
possible, late jobs are scheduled between the on-time jobs, provided this does
not make them finish before their due dates, and finally any remaining late
jobs are scheduled at the end of the sequence in SWPT order. Lastly, descent
is applied to the resulting sequence, where the descent method uses the trans-
pose neighborhood of Section 4.1. For the partition representation, neighbor-
hood - search algorithms use the reassign neighborhood and a genetic
algorithm uses a modified version of the recombination operator of Section
4.2. Computational tests for problems with up to 100 jobs are used to compare
the performance of the algorithms. The best-quality solutions are obtained
with the genetic algorithm that uses the partition representation, and with
the two tabu search algorithms that use the sequence and partition representa-
tions.
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5.4 Weighted number of late jobs

To specify a solution of the problem 1 || 3. w; U , it is sufficient to partition the jobs
into two subsets: those which are on'time and those which are late. A schedule is
constructed from the partition by sequencing first the on-time jobs in EDD order,
then the late jobs are sequenced arbitrarily after all on-time jobs. For 1|3 U ;an
algorithm of Moore [1968] solves the problem in O(n log n) time: jobs are added
in EDD order to the end of a partial schedule of on-time jobs, and if the addition
of job j results in it being completed after time d, a job in the partial schedule with
the largest processing time is removed and deemed to be late.

The problem 1||> w;U; is shown by Karp [1972] to be NP-hard in the
ordinary sense. However, it is pseudopolynomially solvable, since Lawler
& Moore [1969] propose a dynamic programming algorithm that requires
O(nY; p) time. Potts & Van Wassenhove [1988] present an O(nlog n) procedure
that solves the linear programming relaxation of a natural integer programming
formulation of 1| Y. w,U;. The resulting lower bounding scheme has two uses:
first in reduction tests that are designed to eliminate jobs from the problem, and
second in a branch-and-bound algorithm. In comparative computational tests,
Potts & Van Wassenhove solve problems with up to 1000 jobs using the
algorithm of Lawler & Moore and with their branch-and-bound algorithm.

Since 1| X w,;U, is a partitioning problem, the local search approaches of
Section 4.2 are applicable. However, an arbitrary partition may not yield a
feasible subset of on-time jobs, so it is appropriate to suggest a repair/translation
procedure. We propose the following method which is a variant of Moore’s
algorithm. If some job j is completed after time d;, selected jobs in the partial
schedule up to and including job j are removed and deemed to be late until either
job j is on time or j itself is removed: at each stage the job k to be removed is
chosen so that p,/w, is as large as possible.

5.5 Total weighted earliness and tardiness

Most research that considers earliness as an optimality criterion also includes
a tardiness component. A thorough survey of this area of scheduling is given by
Baker & Scudder [1990]. One widely studied modelis 1|d; =d| X (w;E; + w;T}),
in which jobs have a common due date d. For the case of unit weights, Hall,
Kubiak & Sethi [1991] show that this problem is NP-hard in the ordinary sense,
and they propose an O(nY ; p;) pseudopolynomial dynamic programming algo-
rithm. As indicated in Section 4.2, Baker & Scudder show that the following
results of Kanet [1981] generalize to the case of arbitrary weights: there is no idle
time between jobs, and jobs that are completed no later than time d are sequenced
in LWPT order, whereas jobs completed after time d are sequenced in SWPT
order. This latter result is known as the V-shaped property. If d >3 ; p;, Kanet
derives an O(n log n) algorithm for 1|d; =d| Y (E; + T;) by showing that the job
in position [n/2] completes at time d, and by assigning jobs in nonincreasing
order of processing times alternately to the first and last unfilled position in the
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sequence. Closely related to these earliness—tardiness problemsis 1|3 (C; — C)?,
where C is the average completion time, for which the objective is to minimize
the completion time variance. Eilon & Chowdhury [1977] show that the V-
shaped property holds in this case, although this result does not extend to
LI X wi(C;— C)? [Cai, 1995]. Moreover, these problems are NP-hard in the
ordinary sense, but 1Y (C;— C)* is pseudopolynomially solvable [Kubiak,
1993], and 1| X w;(C; — C)* is open with respect to pseudopolynomial solv-
ability,

Any problem in which the V-shaped property holds can be treated as one of
partitioning. Thus, the approaches of Section 4.2 are applicable. Mittenthal,
Raghavachari & Rana [1993] propose a simulated annealing algorithm which is
applicable when the V-shaped property holds. Adopting the natural representa-
tion, they use the reassign neighborhood and a restricted swap neighborhood in
which the only jobs that are eligible for interchange are adjacent pairs in an
SPT ordering. Their algorithm first applies two descent procedures, the first of
which uses the reassign neighborhood and the second uses the restricted swap
neighborhood, and then applies simulated annealing with the restricted swap
neighborhood. Computational results for 1| X (C; — C)? with instances contain-
ing up to 20 jobs show that the algorithm generates an optimal solution for each
test problem. Lee & Kim [1995] propose a parallel genetic algorithm for
1|d;=d|3 (w;E; + w;T;) which also uses the natural representation for par-
titioning problems. Note, however, that the job identified to finish before or at
time d may actually be completed after time d when a schedule is constructed, and
vice versa. Rather than a standard mutation operator, Lee & Kim suggest
recalculating the binary values in the string according to which jobs are actually
late. Parallel implementation is carried out by arranging a number of subpopula-
tions in a ring. Each subpopulation evolves independently of the others, except
that the best solution in each subpopulation is communicated to each of the two
neighboring populations. Computational results with the genetic algorithm,
using population sizes that vary between 100 and 200, show that the average
deviation of the solution value from the optimum is less than 0.25% for 40-job
problems. Gupta, Gupta & Kumar [1993] propose a genetic algorithm for
1|X w;(C; — C)? in which they adopt a natural representation of solutions as
a sequence and use the partially matched crossover described in Section 4.1.

For 1|3 (w;E; + w;T;) an optimal schedule may include machine idle time
between jobs. However, for a given processing order of jobs, procedures of Garey,
Tarjan & Wilfong [1988] and Davis & Kanet [1993] can be used to construct an
optimal schedule. Thus, solutions can be represented as sequences, and the local
search methods of Section 4.1 are applicable. Yano & Kim [1991] adopt this
approach by using the transpose neighborhood in their descent algorithm.
Computational results for problems with up to 20 jobs in which the weights are
proportional to the processing times of the respective jobs indicate that their
algorithm consistently generates an optimal solution.

Woodruff & Spearman [1992] propose a tabu search approach for a variant of
the problem 1 |Jj,s gl 2 W;E; +3 ¢, in which there are general family setup
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times and costs. In this variant there is a selection process whereby some jobs are
eligible for rejection, although this incurs a cost. By not allowing machine idle
time, a representation of solutions as a sequence is adopted. The insert neighbor-
hood is used, and a translation mechanism is applied to reject those eligible jobs
that are completed after their deadlines.

6 PARALLEL-MACHINE PROBLEMS

In this section, we consider the application of local search to the scheduling of
identical, uniform and unrelated parallel machines. As in Section 5, we review the
main results and, where possible, give an indication of problem ‘hardness’ based
on the performance of enumerative algorithms. Our discussion excludes the
extensive research on worst-case analysis of approximation algorithms.

In our description of local search methods, it is convenient to picture a two-
stage solution procedure: jobs are assigned to machines in the first stage, and each
individual machine is scheduled in the second stage. For some problems, such as
P|C,..» Q| C...and R| C,,,, this second stage is trivial since job sequences do
not affect the objective function. Other problems permit a simple polynomial
algorithm for the second stage, so they can be viewed as pure assignment
problems. Examples for unrelated parallel machines (which also hold for the
corresponding problems with identical and uniform machines) include R||L,,,,,
for which the EDD rule solves the single-machine problems, R || 3> w;C , for which
the SWPT rule is used, and R || Y. U, for which Moore’s algorithm is used. For
a third category, which includes R||> w;T;, combined assignment and se-
quencing decisions are necessary.

For the pure assignment problems, the approaches given in Section 4.2 can be
applied; Section 4.3 provides guidelines for combined sequencing and assignment
problems. Our discussion is restricted to natural representations of solutions; we
are not aware of any research on parallel-machine scheduling problems in which
other representations are used.

6.1 Identical parallel machines

A generalization by Conway, Maxwell & Miller [1967] of the SPT rule allows the
problem P |3 C;to be solved in O(n log n) time. For other optimality criteria, the
situation is gloomy. Bruno, Coffman & Sethi [1974] and Lenstra, Rinnooy Kan
& Brucker [1977] show that P2|| ¥ w;C; and P2|C,,, are NP-hard in the
ordinary sense; this implies the NP-hardness of P2| L, and P2| 3> U,

Finn & Horowitz [1979] propose a descent method for P || C,,,, which requires
O(nlog m) time. Jobs are reassigned from a most heavily loaded to a least heavily
loaded machine. A more sophisticated descent algorithm is suggested by Franga
et al. [1994]. They use a combined critical reassign and critical swap neighbor-
hood, as described in Section 4.2. A partitioning of jobs according to the
similarity of their processing times is useful in selecting neighborhood
moves. Hiibscher & Glover [1994] propose a tabu search algorithm for P| C,_,,,.
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They replace the original maximum completion time objective function by

7Ly (H;— H)?, where H; is the total processing time assigned to machine i and
H= 2.j=1 Pj/m represents the ideal machine load. A combined critical reassign-
ment and critical swap neighborhood is used, where the job to be reassigned, or
one of the jobs to be swapped, is moved from the most heavily loaded machine
to a machine with load less than H. After a job is moved from a machine, a tabu
list entry prevents a job with the same processing time from moving to this
machine. However, some tabu list entries are periodically activated and deac-
tivated with the aim of diversifying and intensifying the search. A further special
feature is the use of ‘influential diversification’, which is a device that modifies the
current solution when no improvement in the best solution is observed for a long
period. Here two machines are selected that have a surfeit and deficit of long
jobs, and these long are redistributed uniformly between this pair of machines.
Computational results for problems with up to 50 machines and 2000 jobs
indicate that the algorithm generates solutions with a makespan that is very
close to H, and that influential diversification is beneficial in detecting these
solutions.

Among the various branch-and-bound algorithms for P|¥ w ;C; the ap-
proach adopted by Belouadah & Potts [1994] in which lower bounds are
obtained by a Lagrangean relaxation of machine capacity constraints appears
best; problems with up to 20 jobs and 8 machines can be solved. Barnes & Laguna
[1993] use the combined reassign and swap neighborhood of Section 4.2 in a tabu
search algorithm for P||3 w ;C;. By storing partial sums of processing times and
weights on each machine in the current schedule, the total weighted completion
time of a neighbor is evaluated in constant time. A tabu list of length 8 contains
jobs which are forbidden to move from their current machine assignments; the
job changing its machine assignment in a reassign move, or one of the jobs
changing its assignment in a swap move, is stored at each iteration. In an attempt
to diversify the search, swap moves are forbidden (except for the first few
iterations) if they do not reduce the total weighted completion time. Computa-
tional results indicate that the algorithm consistently generates optimal solutions
for problems with up to 4 machines and 30 jobs.

The problem P|¢7j| > w;E; is equivalent to Plr;| X w;C; provided that the
deadlines are sufficiently large. Laguna & Gonzalez Velarde [1991] propose
a tabu search algorithm for the former problem, although our description of their
work refers to Plr;| X w ;C;. For this combined assignment and sequencing
problem, they use a combination of the transpose, swap, and insert neighbor-
hoods described in Section 4.3. To limit the size of the neighborhood, two jobs
may be swapped or one job inserted after another job, only if the pair of jobs have
similar release dates. Their tabu list, which they suggest should have length
l_\/;_l + 5, contains jobs that are forbidden to move under a transpose, swap or
insertion. After an insert move is executed, the corresponding job is placed on the
tabu list, whereas after a transpose or swap move, the job experiencing the larger
reduction in weighted completion time is stored. A special feature when no
improving move is possible is that job j is forced to move, where jis chosen to have
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the largest weighted completion time among jobs that are not on the tabu list. The
authors suggest that, when the tabu search algorithm terminates, a branch-and-
bound algorithm for 1|r;| 3 w;C; can be applied to each of the m machines to
optimally schedule the jobs currently assigned to those machines.

Hou, Ren & Ansari [1990] report some preliminary work on a genetic
algorithm for P|prec|C,,,,. They use a set of strings, one for each machine, to
represent a solution. They also restrict solution strings by using a ‘height’ concept
based on the maximum length chain of predecessors for a job. This is also used in
the crossover mechanism to ensure that only feasible solutions are generated.
A similar approach is used by Hou & Li [1991] for a related problem arising in
the scheduling of flexible manufacturing systems in which the transport system
between machines (using automated guided vehicles) must also be scheduled.

Motivated by the problem P|C,,,, Hellstrom & Kanal [1992] propose
a neural network approach which attempts to find a schedule in which all jobs are
completed by a given threshold value. The output of a neuron determines
whether or not a job is assigned to a particular machine.

6.2 Uniform parallel machines

A further refinement by Horowitz & Sahni [1976] to the generalized SPT
algorithm for P|| 3 C; allows the problem @ || 3° C; to be solved in O(n log n) time.
The NP-hardness for other optimality criteria follows from the corresponding
results for identical parallel machines.

Lo & Bavarian [1992] compare simulated annealing algorithms for Q| le Crax
The deadline constraints are enforced using a penalty function approach. The
problem is treated as one of combined assignment and sequencing, and the insert
neighborhood is used.

6.3 Unrelated parallel machines

The problem R || X C,; is formulated by Horn [1973] and Bruno, Coffman & Sethi
[1974] as a weighted bipartite matching problem; hence it is solvable in on®)
time. As for uniform machines, the NP-hardness results given in Section 6.1 for
identical machines imply NP-hardness for the corresponding unrelated machine
problems.

Using a lower bound based on a surrogate relaxation, the branch-and-bound
algorithm of Van de Velde [1993] solves instances of R || C,,,, with up to 200 jobs
and four machines. Hariri & Potts [1991] propose a descent algorithm for
R| C,,, in which both the critical reassign and critical swap neighborhoods
of Section 4.2 are used. With a suitable implementation, the objective function
value of a neighbor can be computed in constant time. Computational results of
Hariri & Potts indicate that this descent algorithm generates better-quality
solutions than various two-phase heuristics [Potts, 1985b; Lenstra, Shmoys
& Tardos, 1990], which use linear programming in their first phase to schedule
most of the jobs. Hariri & Potts also report on initial experiments which indicate
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that a more complicated neighborhood structure has little effect on solution
quality. Glass, Potts & Shade [1994] propose simulated annealing and tabu
search algorithms based on the critical reassign and critical swap neighborhoods.
They also describe a genetic algorithm which uses the natural recombination
operators suggested in Section 4.2, and a corresponding genetic descent algo-
rithm in which the descent algorithm of Hariri & Potts is applied to each solution
in every population. Computational results show that the standard genetic
algorithm performs poorly relative to the other three algorithms which are
roughly comparable. These results are presented in Section 8.2.

Kanet & Sridharan [1991] consider the problem R|r » Uikl 2 f;(C;)in which the
objective function is an arbitrary convex function of job completion times. They
report preliminary work using a start time representation in a genetic algorithm
with the recombination operator which is described in Section 4.3.

7 MULTI-STAGE PROBLEMS

In this section we consider the application of local search to flow shop, open shop,

and job shop problems. As is the case in most studies, the main focus of our

discussion is on problems with the maximum completion time objective. Many

local search algorithms for F|C,,, 0| C,,. and J| C...x are easily adapted to

other optimality criteria. We follow the same format as in the two previous -
sections by reviewing the complexity results and commenting on problem

‘hardness’ by referring to the performance of the best currently available branch-

and-bound algorithms.

Permutation flow shops in which each machine processes the jobs in the same
order are sequencing problems, so Section 4.1 provides guidelines for the design
of local search methods. More generally, flow shops, open shops, and job shops
are multisequencing problems to which the approaches of Section 4.4 can be
applied.

7.1 Flow shops

For F| C,,,, Conway, Maxwell & Miller [1967] observe there exists an optimal
schedule with the same processing order of jobs on the first pair of machines and
the same order on the last pair of machines. Thus, for F2 | Craxand F3| C_ itis
sufficient to consider permutation schedules in which each machine processes the
jobs in the same order. Johnson [1954] gives an O(n log n) algorithm for
F2||C,,,.: the jobs with p, j S P,jare sequenced first in nondecreasing order of Py
the remaining jobs are then sequenced in nonincreasing order of p, ;- Garey,
Johnson & Sethi [1976] show that F3|| Conax 18 strongly NP-hard. Although
permutation schedules are not guaranteed to provide optimal solutions for
Fm| C,,, when m>4, we follow a tradition in the literature and henceforth
concentrate on the permutation flow shop, ie., finding the best permutation
schedule.
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The best available branch-and-bound algorithms are those of Lageweg,
Lenstra & Rinnooy Kan [1978] and Potts [1980], which compute lower bounds
by solv1ng two-machine subproblems using Johnson’s algorithm. Their perform-
ance is not entirely satisfactory, however: they experience difficulty in solving
instances with 15 jobs and 4 machines. Strong NP-hardness for F2| L, and
F2||3. C;is established by Lenstra, Rinnooy Kan & Brucker [1977] and Garey,
Johnson & Sethi, respectively, and NP-hardness in the ordinary sense for
F2|s;|C,,,, is established by Kleinau [1993] for the case of an arbitrary number
of families F.

-For heuristics that do not employ neighborhood search, the O(mn?) insertion
method of Nawaz, Enscore & Ham [1983] is best for the permutation flow shop
F|C,,,; Taillard [1990] gives a derivation of its complexity. The insertion
method builds a sequence by adding a job in the best position to the current
partial sequence until it produces a complete sequence. Rather surprisingly, it
outperforms the descent algorithm of Dannenbring [1977], Wthh is based on the
transpose neighborhood.

Various local search methods are available for the permutation flow shop
F||C,,,. They each use a natural representation of solutions as a sequence.
Simulated annealing algorithms are proposed by Osman & Potts [1989] and by
Ogbu & Smith [1990]. Both approaches compare the insert and swap neighbor-
hoods; the insert neighborhood performs better in computational tests. Ogbu
& Smith attribute this to the comparatively large size of the neighborhood,
whereas Osman & Potts suggest it may depend upon the objective function. In
the algorithm of Ogbu & Smith, the probability of accepting a worse solution is
independent of the objective function values, whereas Osman & Potts use
a standard acceptance probability. An evaluation of these two approaches by
Ogbu & Smith [1991] finds they give similar results, although the algorithm of
Osman & Potts is marginally more effective.

Tabu search algorithms are proposed by Widmer & Hertz [1989], Taillard
[1990], Reeves [1993b], and Nowicki & Smutnicki [1996b]. Widmer & Hertz
use the swap neighborhood, adopt a tabu list of length 7 that prevents either of
the interchanged jobs returning to its previous position, and search the complete
neighborhood before making a move to the best neighbor (a best improve
acceptance strategy). Taillard suggests an improvement to each of the key
components in the method of Widmer & Hertz. Based on computational tests, he
claims that the insert neighborhood is better than swap, that a tabu list contain-
ing values of C___is superior to one storing forbidden positions for jobs, and that
a first improve acceptance strategy making the first move which reduces the
maximum completion time is slightly better than the best improve acceptance
strategy. Taillard also derives a method for evaluating all insert neighbors in
O(mn?) time (although to evaluate any one of the (n —1)* neighbors requires
O(mn) time). Reeves proposes the use of a restricted version of the insert
neighborhood in which a specific subset of jobs is eligible for insertion at each
iteration. The best computational results are obtained for subsets containing six
jobs that are created by a random partition of the original set of jobs. After all
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subsets are considered, new subsets are created by random partitioning. The
algorithm has a tabu list of length 7 that prevents the inserted job returning to its
previous position, and uses a best improve acceptance strategy on the restricted
neighborhood.

Nowicki & Smutnicki’s [1996b] tabu search algorithm uses a restricted
version of the insert neighborhood, where the block structure of some critical
path (as defined in Section 4.4) determines the eligible neighbors. A job without
an operation that begins or ends a block may be inserted in the position
corresponding to the end of its block and in the following few positions, or in the
position corresponding to the start of its block and in the previous few positions.
Alternatively, the eligible positions for insertion of a job which has an operation
that ends one block and an operation that starts another block are as follows: the
end of the block that it starts and the following few positions, and the start of the
block that it ends and the previous few positions. A tabu list of length 8 contains
precedence constraints, which are created as follows. For two adjacent jobs in the
original sequence, a tabu list entry defines the second job to be a predecessor of
the first if either the second of these jobs is inserted in an earlier position or the
first job is inserted in a later position. Using ideas from the analysis of Taillard
[1990], together with the observation that the block structure limits the number
of positions to which a job is allowed to more, Nowichi & Smutnicki establish
that all neighbors can be evaluated in O(m?n) time. Another special feature of
their algorithm is a backtracking procedure: when an iteration limit is reached,
the procedure is restarted from the best solution, but with a different neighbor-
hood move to that made previously.

Computational results of Reeves [1993b] indicate that his tabu search algo-
rithm is superior to the simulated annealing method of Osman & Potts and also
to the corresponding tabu search algorithm which uses the full insert neighbor-
hood. The computational results of Nowicki & Smutnicki [1996b] show that
their algorithm generates better-quality solutions than those of Taillard or
Werner [1993] (see below for a description of Werner’s path algorithms) and it
requires much less computation time.

Werner [1993] proposes a class of ‘path’ algorithms for the permutation flow
shop F| C,,,. Each algorithm can be viewed as descent with exploration and
backtracking. A restricted version of the insert neighborhood is used: a neigh-
bor is not considered if it allows the possibility that all critical operations in the
current solution are to remain critical and consequently cannot improve upon
the objective function value. A sequence of restricted insert moves is performed
(they are accepted irrespective of objective function values). If a solution is found
which is better than all of those that are previously generated, a new sequence
of restricted insert moves is initiated from this solution. On the other hand,
after generating a prespecified number of moves, if no improved solution is found,
the algorithm backtracks to the best solution and another sequence of restrict-
ed insert moves is made. The process for selecting a neighbor is quite complicated,
and is based on quickly computed lower bounds for the maximum comple-
tion time. Stochastic versions of the algorithm perform a move to the
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best of a random selection of restricted insert neighbors, and backtracking may
occur when a probabilistic condition is satisfied, rather than after a prespecified
number of moves. Upon termination of this procedure, a descent algorithm based
on the block transpose neighborhood is applied. Computational results indicate
that a stochastic version of this algorithm yields the best-quality solutions, and
this algorithm is superior to the simulated annealing and tabu search methods of
Osman & Potts and Widmer & Hertz.

Reeves [1995] proposes a genetic algorithm which uses the reorder crossover.
In comparative computational results which have the same computation time
limit for each algorithm, the genetic algorithm produces better-quality solutions
than multistart descent and is comparable with the simulated annealing method
of Osman & Potts.

Several of the algorithms for permutation flow shop F || C,,, are tested on the
problems generated by Taillard [1993b], thus enabling some additional compari-
sons to be made. From the various sets of computational results, we conclude that
the tabu search algorithms of Reeves and Nowicki & Smutnicki generate the best
quality solutions: they appear to outperform the simulated annealing algorithm
of Osman & Potts, Reeves’ genetic algorithm, and Werner’s path algorithms. The
current champion is the method of Nowicki & Smutnicki, which exhibits
superiority over Reeves’ tabu search algorithm.

We now discuss research which assumes different optimality criteria. Kohler
& Steiglitz [1975] compare different neighborhoods in descent algorithms for
F2| X, C;,and Krone & Steiglitz [1974] propose a descent algorithm for F || 22 C;
in which permutation schedules are not assumed. Based on the insert neighbor-
hood, the algorithm of Krone & Steiglitz searches for the best permutation
schedule, and then attempts insertions on the individual sequences defining the
processing orders on the different machines. For the permutation flow shop
F|XwC;, Glass & Potts [1996] perform a computational comparison of
multistart descent, simulated annealing, threshold accepting, tabu search, and
two genetic algorithms, one of which applies descent to each solution in every
population. The neighborhood search algorithms each use the swap neighbor-
hood, which performs marginally better than insert in initial experiments. Also,
based on further initial tests, the insertion crossover is used in the first genetic
algorithm, whereas the genetic descent algorithm employs the reorder crossover.
Simulated annealing and the genetic algorithm that incorporates descent gener-
ate the best-quality solutions, and the genetic descent algorithm is slightly
superior. These results are presented in Section 8.3.

In independent studies by Kim [1993] and Adenso-Dias [1992], the tabu
search algorithm of Widmer & Hertz is adapted to the permutation flow shop
problems F|| Y. T; and F|| X w;T;. In the algorithm of Adenso-Dias, the swap
neighborhood is used in the first part of the search; thereafter, insert neighbors
only are considered. To save on computation time, the complete neighborhood
is not searched: a swap is allowed only if the positions of the two jobs are closer
than a threshold value, and a job may only be reinserted in a position that is
closer than a threshold value to its previous location in the sequence. The



396 11 Machine scheduling

threshold value decreases as the search progresses from an initial value of n — 1 to
a final value of 4. Computational results indicate that restricting the neighbor-
hood reduces computation time, without affecting average solution quality.
Cleveland & Smith [1989] compare genetic algorithms for a variant of the
problem F|| 3 (E; + TJ?) in which there are identical parallel machines at each
stage. The problem is regarded as one of sequencing jobs at the first stage: jobs are
processed in order of arrival at subsequent stages.

The permutation flow shop problem F|s/|C,,, is the subject of two studies.
Vakharia & Chang [1990] represent solutions as sequences and propose
a stmulated annealing algorithm that uses a neighborhood based on the trans-
pose of adjacent batches and of adjacent jobs. A genetic algorithm of Whitley,
Starkweather & Shaner [1990] uses a recombination operator, called edge
recombination, which is designed for use with the traveling salesman problem.
They perform computational tests on problems with six machines in which all
jobs from the same family are identical.

Various conclusions can be drawn from some of the studies on neighborhood
search for the permutation flow shop problem. First, insert is the best neighbor-
hood when minimizing the maximum completion time. Second, it is often
advantageous to restrict the search to a subset of the neighbors. Moreover, the
critical operations provide a useful guide as to which neighbors should be
avoided. Third, an efficient computation of the éxact or estimated objective
function value for a neighbor has a substantial effect on the efficiency of the
neighborhood search algorithm.

7.2 Open shops

Gonzalez & Sahni [1976] derive an elegant O(n) algorithm for 02| C,,,, and
show that 03| C_,, is NP-hard in the ordinary sense. We are not aware of any
literature on enumerative algorithms for O|/C,,,. Strong NP-hardness of
02| L,,, and 02| 3 C,is established by Lawler, Lenstra & Rinnooy Kan [1981,
1982] and Achugbue & Chin [1982], respectively.

A problem that is related to the open shop occurs when scheduling jobs for
which a number of process plans are available. The process plan for a job specifies
which machines may carry out each operation and the precedence relations that
exist between operations. Detailed process plans may also include choices on the
tools to be used for particular operations (which will affect setup times). An open
shop thus corresponds to a problem in which there are no precedence relation-
ships between operations and in which each operation can only be performed by
one machine. Bagchi et al. [1991] describe a genetic algorithm for the scheduling
problem with process plans in which the partially matched crossover is used to
handle the priority order between jobs and a type of uniform crossover is used for
the machine and process plan selection. Husbands, Mill & Warrington [1991]
discuss a genetic algorithm in which there are separate populations of process
plans for each part to be made, and also a population of priority orders that define
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a schedule. Each population evolves at the same time, and the individual process
plans are evaluated by simulating their effect when runin conjunction with other
process plans and a particular priority order.

7.3 Job shops

The problem J2||C,,,,, and consequently J2|| L, i shown by Garey, Johnson
& Sethi [1976] to be strongly NP-hard. Strong NP-hardness of 2| X C; is
implied by the corresponding result for the two-machine flow shop. Various
enumerative and heuristic methods for J || C_, employ the following disjunctive
graph formulation. For each operation O;;, there is a vertex with weight p;;. The
precedence between each pair of consecutive operations on the same job is
represented by a directed arc. And there is an undirected edge corresponding to
each pair of operations that require the same machine. Choosing a processing
order on every machine corresponds to orienting the edges to produce a directed
acyclic graph. It is therefore required to find an orientation that minimizes the
length of a longest or critical path, where the length is defined as the sum of
weights of vertices that lie on the path.

The job shop problem J | C,,,, is regarded as one of the hardest in combina-
torial optimization. For example, a classic 10-job 10-machine instance that is
originally given by Fisher & Thompson [1963] has only fairly recently been
solved to optimality by Carlier & Pinson [1989], Applegate & Cook [1991],and
Brucker, Jurisch & Sievers [1994]. Within their algorithms these authors each
consider single-machine subproblems which are obtained by relaxing all edges in
the disjunctive graph that are not yet oriented, except those corresponding to
operations on some selected machine. The resulting problem is equivalent to
1{7;| L,y Where all due dates are nonpositive. For each operation on the selected
machine in this single-machine subproblem, its release date is the length of
a longest path to any predecessor of this operation, and its due date is minus the
length of a longest path from any sucessor.

Many heuristics are based on the use of priority rules, which are surveyed by
Haupt [1989]. Such approaches use a priority rule to select an operation from
a set of candidates to be sequenced next. The candidates may be chosen to create
a nondelay schedule in which no machine idle time is allowed if operations are
available to be processed. There is no guarantee of an optimal solution that is
anondelay schedule, so it may be preferable to generate an active schedule: Giffler
& Thompson [1960] propose a procedure for active schedule generation.
A limited delay schedule offers a useful compromise between nondelay and active
schedules. Although priority rule heuristics are undemanding in their computa-
tional requirements, the quality of schedules that are generated tends to be
erratic.

An effective heuristic method is the shifting bottleneck procedure of Adams,
Balas & Zawack [1988]. It is based on the observation that a schedule can be
constructed by selecting each machine in turn and orienting all of the correspond-
ing edges in the disjunctive graph formulation. The problem of orienting these
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edges is equivalent to solving 1|r;| L ., where previously oriented edges are used
in the computation of release dates and due dates: the branch-and-bound
algorithm of Carlier [1982] computes a solution. The unscheduled (bottleneck)
machine is selected so that the maximum lateness for the corresponding problem
1|rj|L,,,, is as large as possible. After the scheduling of a bottleneck machine by
orienting the corresponding edges, the machine reschedule neighborhood of
Section 4.4 is searched in an attempt to find an improved partial schedule (where
each neighbor requires the solution of 1}r;| L., by Carlier’s algorithm). When
all edges are oriented, a final step of the procedure searches for a further im-
provement by considering one k-machine reschedule neighbor, where k < f
for which a sequence of k instances of 1|r;|L,,,, are solved.

Adams, Balas & Zawack also propose an enumerative version of their pro-
cedure in which several alternatives are considered for the machine that is to be
scheduled next. Various improvements to the original shifting bottleneck pro-
cedure have been suggested. Applegate & Cook [1991] propose variants (Bottle-
k for k=4, 5, 6) in which, for the last kK machines, every possibility is considered
when selecting the machine to be scheduled next. In another procedure (Shuffie),
they use their branch-and-bound procedure to generate a k-machine reschedule
neighbor of the schedule obtained using Bottle-5, where k is quite large (for
example, k = 15 for m = 20).

Dauzére-Péres & Lasserre [1993] observe that the current orientation of some
edges in the shifting bottleneck procedure may create a path between two
operations that require the same machine. In this case the minimum time delay
between the start times of these operations can be computed. Thus, the 1 |71 L pyax
problems that are considered within the shifting bottleneck procedure should
ideally incorporate delayed precedence constraints to account for these delays.
Dauzére-Pérés & Lasserre use a heuristic approach for these single-machine
problems with delayed precedence constraints, whereas Balas, Lenstra &
Vazacopoulos [1995] obtain an exact solution by designing a generalized version
of Carlier’s algorithm. The quality of the solution obtained from the basic shifting
bottleneck procedure of Adams, Balas & Zawack is relatively poor, although its
computational requirements are modest. Its variants each exhibit an improved
performance at the expense of a greater investment in computation time.

Various local search algorithms for J | C,,,,, have been proposed, and they are
reviewed by Vaessens, Aarts & Lenstra [1996]. The neighborhood search
approaches use a natural representation, but with an exclus1on mechanism of the
type outlined in Section 4.4.

Simulated annealing algorithms are the subject of three studies for J|| C,..
First, Van Laarhoven, Aarts & Lenstra [1992] suggest the use of the critical
transpose neighborhood. On the other hand, Matsuo, Suh & Sullivan [1988]
adopt the smaller critical end transpose neighborhood. However, they observe
that complex precedence relations between operations propagate the effect of
alocal change throughout the entire job shop system, and hence a neighborhood
move may lead to deterioration of the objective function value, even when
a superior solution can be obtained by a small number of further moves. Thus, if
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a neighbor yields an inferior solution, further transposes are attempted involving
a predecessor or sucessor of one of the originally transposed operations. Yamada,
Rosen & Nakano [1994] use the critical end insert neighborhood. Their algo-
rithm backtracks to the best schedule that is currently generated whenever 3000
moves are accepted that do not improve the best solution value, and resets the
temperature appropriately. Computational results in these three studies show
that each of the simulated annealing algorithms generates better-quality solu-
tions than those of the shifting bottleneck procedure and its variants. The method
of Yamada, Rosen & Nakano finds better solutions than the other two algo-
rithms, although at considerable computational expense. The best compromise
between solution quality and computation time is offered by the algorithm of
Matsuo, Suh & Sullivan.

Tabu search provides an attractive alternative to simulated annealing for
J||C,,.,- We describe four algorithms. Taillard [1994] adopts the critical trans-
pose neighborhood that is used by Van Laarhoven, Aarts & Lenstra [1992].
Following the transpose of two operations, the tabu list forces these operations to
be sequenced in adjacent positions. Special features of the algorithm include the
replacement of exact evaluations of the maximum completion time of each
neighbor by quickly computed lower bound estimates, a tabu list length that
changes randomly after specified numbers of iterations are performed, and the
use of a penalty function which aims to prevent the repeated transpose of an
operation to earlier positions in the schedule.

Barnes & Chambers [1995] use the framework of Taillard’s method to design
an alternative tabu search algorithm. We highlight the special features of their
approach. To enable the execution of a backtracking procedure, a schedule is
stored if it has a better objective function value than any previously generated
solution. When the algorithm fails to detect an improved solution after a specified
number of iterations, it restarts using the best of the stored schedules as an initial
solution. Several runs are performed from this initial schedule, each with a differ-
ent tabu list length. Following these runs with a given selection of tabu list
lengths, the corresponding initial schedule is removed from the collection of
stored solutions, and further exploration is initiated from the best schedule that is
currently stored.

Dell’Amico & Trubian [1993] use a composite neighborhood consisting of
generalized critical end transpose— which allows the reordering of three critical
operations (one of which must start or end a block)—and critical end insert. Their
algorithm adopts the idea used by Taillard of selecting moves according to
quickly computed lower bounds for the maximum completion time, rather than
performing a full objective function evaluation of each neighbor. They also use
a variable-length tabu list which prevents the reorientation of disjunctive arcs
that are reversed in the previous moves.

Lastly, Nowicki & Smutnicki [1996a] use the critical end transpose neighbor-
hood. Their tabu list also prevents the reversal of the most recent transpose
moves. However, when there is no allowable move, the tabu list is updated by
discarding the oldest entry and adding a duplicate of the most recent entry. Asin
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their tabu search algorithm for the permutation flow shop problem, Nowicki
& Smutnicki incorporate a backtracking procedure: when an iteration limit is
reached, the procedure is restarted from one of the best solutions, but with
a different neighborhood move to that made previously. On the evidence of the
computational results quoted by the different authors, the four tabu search
algorithms are generally superior to simulated annealing and to variants of the
shifting bottleneck procedure. The method of Nowicki & Smutnicki is clearly
superior to the other three methods in terms of both solution quality and
computation time.

Balas & Vazacopoulos [1994] propose a guided local search procedure, which
resembles tabu search with backtracking. The critical end insert neighborhood is
used to construct a sequence of ‘neighborhood trees’, where a feasible solution is
associated with each node of a tree. For any node, each of its immediate
descendants is a neighbor of the corresponding solution. Using lower bound
estimates of the maximum completion time for each neighbor, a given number of
nodes are created for the solutions with the lowest estimates. For a node that
is created by inserting an operation before or after another operation, a preced-
ence constraint is added to prevent the order of this pair of operations being
reversed, and the immediate descendants that are created subsequently each
have a precedence constraint which forces this pair to be sequenced in the same
order as for the parent node. In addition to the restriction on the number of
immediate descendants for each node, a limit is placed on the number of levels
that are explored. After the creation of a neighborhood tree, one of the best
solutions that is generated from a previous tree becomes the root node of a new
tree.

Balas & Vazacopoulos also suggest several hybrids in which guided local
search is embedded in the shifting bottleneck procedure. In the basic hybrid,
instead of searching the machine reschedule neighborhood after a bottleneck
machine is scheduled, a given number of neighborhood trees are generated using
the current (partial) solution from the shifting bottleneck procedure at the root of
the first tree. The best schedule from these neighborhood trees is then used for the
continuation of the shifting bottleneck procedure. The other hybrids extend the
basic version by allowing additional search. This further search is performed by
removing the orientation of edges on certain machines, then constructing a new
schedule using a combination of guided local search and shifting bottleneck
routines. Computational results show that the guided local search procedure is
superior to simulated annealing and variants of the shifting bottleneck pro-
cedure. The hybrid shifting bottleneck/guided local search methods produce
high-quality solutions at reasonable compu- tational expense, and are preferred
to pure guided local search. These hybrids also compare favorably with most of
the tabu search algorithms, although it is not clear whether they are superior to
the method of Nowicki & Smutnicki [1996a].

Genetic algorithms which use a variety of different representations have been
proposed for J || C_.,.. Several of these algorithms use a heuristic-based represen-
tation: a solution is constructed from its representation by applying some
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heuristic method. Storer, Wu & Vaccari [1992] propose the data perturbation
representation described in Section 3.1. A schedule is constructed from the
perturbed data by using SPT as a priority rule to construct a limited delay
schedule in which a small amount of unforced machine idle time is allowed. They
also suggest a heuristic set representation: after partitioning the time horizon
into time windows, each solution is represented by a string, where the entry in
a particular position is the priority rule (chosen from a group of 6) used within
the corresponding time window. Limited delay scheduling converts the repre-
sentation into a schedule. Storer, Wu & Vaccari also consider a hybrid algo-
rithm which uses a representation based on data perturbations and heuristic
sets.

Dorndorf & Pesch [1995] implement a heuristic set representation in which
a string entry is the priority rule (chosen from a group of 12) that is used in the
corresponding iteration when creating an active schedule. A similar approach is
used by Smith [1992]. Della Croce, Tadei & Volta [1995] propose the use of
priority representation, an approach suggested previously by Davis [1985] and
Falkenauer & Bouffouix [1991]. In this representation, each machine has
a sequence that defines its priority order, and a type of insertion crossover is used
in which the inserted subsection of a string is put into the same position that it
previously occupied in the original string. Another limited delay scheduling
procedure is used for generating a schedule from the representation. The algo-
rithm performs better if the scheduling procedure is treated as a repair mechan-
ism, so the priority representation for each machine is replaced by the
corresponding processing order of operations in the schedule that is generated.
A similar approach is used by Yamada & Nakano [1992] who use completion
times to define priorities. For recombination, a set of candidate operations in an
active schedule is found using the procedure of Giffler & Thompson [1960], and
a random choice is made between the two candidates with the smallest comple-
tion time in each parent schedule. After a complete schedule is generated, this
procedure is repeated with the same two parents. Dorndorf & Pesch design
genetic algorithm based on the shifting bottleneck procedure. More precisely,
using a representation that is a sequence of machines, a solution is constructed by
using the representation to define the order in which the machines are scheduled
within the shifting bottleneck procedure.

Three further genetic algorithms are proposed by Pesch [1993]. The first is
based on the observations that a schedule can be constructed by selecting job
pairs in turn, solving the corresponding two-job subproblem, and using the
solution to orjent the edges between operations on these jobs in the disjunctive
graph formulation. The genetic algorithm is used to select the order in which the
job pairs are considered. The second genetic algorithm of Pesch uses a represen-
tation that gives an (artificial) upper bound on each two-job subproblem. For
each subproblem, the upper bound may allow some edges to be oriented on the
basis of consistency tests. A complete schedule is constructed using a similar
approach to that in the algorithm of Yamada & Nakano: the Giffler—Thompson
procedure selects candidate operations, and a selection between candidates is
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based on the two parent schedules. The third genetic algorithm of Pesch is similar
to the second, but uses single-machine subproblems instead of two-job subprob-
lems.

There are also genetic algorithms that do not rely on a heuristic-based
representation. Nakano & Yamada [1991] use a type of ordered pair representa-
tion (see Section 4.1). They employ a standard crossover operation on the
resulting binary strings (with the information corresponding to a single job pair
for different machines making up a single string). A comparison of approaches
based on translation and on repair (which they call ‘forcing’) shows repair to be
more effective. Aarts et al. [1994] perform a computational comparison of several
local search methods. Included in their comparison is a hybrid which incorpor-
ates descent into a genetic algorithm. Recombination in this genetic descent
algorithm is achieved by choosing one of the two parents and then finding two
operations that are eligible for transpose under the critical transpose neighbor-
hood and that have the reverse order in the second parent. These jobs are then
reversed in the first parent, and the whole process is repeated several times.
A descent algorithm, which may use either the critical transpose or the extended
version of the critical end transpose neighborhood, is applied to each newly
generated solution. The performance of the genetic algorithms is variable. The
most effective appears to be the third algorithm of Pesch [1993], which uses
upper bounds on single-machine subproblems to orient edges. Although com-
paring favorably with simulated annealing, it cannot compete with the best
tabu search method or the hybrid shifting bottleneck/guided local search algo-
rithms.

Several of the algorithms for the job shop J| C,,, are tested on the problems
generated by Fisher & Thompson [1963], Lawrence [1984], and Taillard
[1993b]. Vaessens, Aarts & Lenstra [1996] collate the objective function values
generated by the various algorithms and provide standardized computation
times. These results are extended by Balas & Vazacopoulos [1994]. The candi-
dates for champion algorithm are the tabu search algorithm of Nowicki &
Smutnicki [1996a] and the hybrid shifting bottleneck/guided local search algo-
rithms of Balas & Vazacopoulos. Section 8.4 presents the main findings of these
computational studies that compare different approaches.

There are several neural network studies for the problem J|| 3> C; Foo
& Takefuji [1988a, 1988b] propose a model in which the output of neurons
defines precedences between operations. On the other hand, Foo & Takefuji
[1988c] and Zhou et al. [1991] use a formulation in which the output of a neuron
defines the starting time of the corresponding operation.

Some scheduling problems in flexible manufacturing systems have a job shop
structure. Widmer [1991] proposes a tabu search algorithm for a variant of the
problem J| C,, + 3 w;U;. Associated with each operation on every job is
a requirement for certain tools to be loaded in a tool magazine that has limited
capacity. The weighted number of reloadings of the tool magazine forms an
additional component in the objective function. The algorithm uses a natural
representation of solutions and employs the insert neighborhood.
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In common with the permutation flow shop, there emerge some performance-
enhancing features of neighborhood search algorithms for J||C,,.. First, it is
beneficial to restrict the neighborhood so that a critical operation is transposed,
swapped, or inserted. Second, to use computation time efficiently, it may be
preferable to estimate objective function values rather than perform an exact
evaluation. Third, the possibility of backtracking to a previous solution, rather
than always continuing the search from the current solution, allows the search to
be redirected to parts of the solution space with a higher chance of finding
a good-quality solution.

8 COMPUTATIONAL COMPARISONS

There are obvious similarities between different local search methods; even
a genetic algorithm, which contains some unique features, will often be imple-
mented with a pure neighborhood search component. Due to the scarcity of
comparative computational studies for scheduling problems in the literature, it is
not clear which of the various methods is the best. In this section we briefly
summarize four computational studies in which different local search methods
are compared against each other. These studies cover most of the different
problem types that are introduced in Section 4.

When evaluating local search algorithms, there is clearly a trade-off between
the investment in computation time and the quality of solution. To provide a fair
comparison, the same computation time should be allocated to different
methods; otherwise it is difficult to draw firm conclusions. It is usual to measure
the effectiveness of a local search method by the relative (percentage) deviation of
the value of the solution that is generated from the best known solution value (or
from the best known lower bound if such a bound is sufficiently tight). These
deviations are often averaged over several runs of the algorithm on the same
problem or on different problems. Furthermore, maximum deviations are often
used by themselves or in conjunction with averages to give an indication of the
consistency of the heuristic in finding a near-optimal solution.

8.1 Maerging ordered lists of jobs in 1 s/ w,C;

Crauwels, Potts & Van Wassenhove [1997] describe a computational study for
the problem 1|s;|X w;C; in which F families of jobs with associated sequence-
independent setup times are to be scheduled on a single machine to minimize the
total weighted completion time. Recall that a solution procedure requires lists of
jobs, each containing the jobs of a family in SWPT order, to be merged. The
methods on which the computational comparison is performed are multistart
descent (MD), simulated annealing (SA), threshold accepting (TA), tabu search
(TS), and a genetic algorithm (GA), details of which are given below.

e MD. The multistart descent algorithm represents solutions as sequences and
uses a type of block insert neighborhood, as proposed by Ahn & Hyun [1990],
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which guarantees to maintain the jobs within each family in SWPT order.
There are | n/3 | restarts.

e SA. Thesimulated annealing method uses the same representation and neigh-
borhood as in MD. The ‘cooling’ scheme follows a periodic pattern in which
temperatures decrease and increase. Also, descent iterations are performed
between each of these temperature changes. The method is applied to four
different initial solutions, and the best solution is selected.

e TA. The threshold accepting method also uses the same representation and
neighborhood as in MD. The method is implemented in a similar way to SA
with periodic threshold values, and with descent iterations performed between
changes of threshold values. The best solution obtained from four different
starting solutions is chosen.

e TS. Tabu search is implemented with the same representation as in MD, but
uses a subset of the shift neighborhood in which the shifted job can only be
inserted between batches and the SWPT order within families is preserved.
A tabu list of length 7 stores jobs that are forbidden to move. The best solution
obtained from [ n/3] different starting solutions is selected.

e GA. The genetic algorithm, proposed by Mason [1992], uses the batch-based
representation of solutions described in Section 4.5. A further sophistication is
introduced by noting that an optimal solution will contain no very small
batches (in which the total processing is not sufficiently large relative to the
setup). Whenever a new batch is started, a minimum batch size can be
calculated and used to restrict the solutions that are considered. The popula-
tion size is 2n. The best solution from two independent runs is selected.

For different combinations of n and F, Crauwels, Potts & Van Wassenhove
[1997] randomly generate 50 test problems. Computational results for problems
in which setup times have the same distribution as processing times are sum-
marized in Table 11.1. In particular, the number of problems (out of 50) for which
an optimal solution is found (NO), the maximum relative deviation from an
optimal solution value (MRD) expressed as a percentage, and the average
computation time required in seconds (ACT) on an HP 9000/825 are listed for
each algorithm.

It is seen from Table 11.1 that each of the algorithms MD, SA, TA, TS, and
GA generates solutions of high quality. The best results, as measured by
numbers of optimal solutions generated and maximum relative percentage
deviations, are obtained using TS. A further advantage of TS is that it requires less
computation time than the other methods; MD, SA, TA, and GA have similar
performance.

8.2 Assignment of jobsinR| C,__

Glass, Potts & Shade [1994] give a computational comparison of local search
algorithms for the problem R| C,,, of scheduling jobs on unrelated parallel
machines to minimize the maximum completion time. A schedule is specified by
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Table 11.2  Average relative deviations (%) for R || Cppax

20 seconds 100 seconds
m’ n DA SA TS GA GD SA TS GD
5
20 31 0.1 0.8 5.1 0.0 0.0 0.8 0.0
50 3.0 0.7 0.6 6.3 0.5 0.2 0.5 0.1
100 13 0.8 0.5 44 0.7 0.6 0.4 0.2
10
20 6.6 0.1 09 15.0 0.4 0.0 09 0.1
50 4.3 14 0.5 12.5 0.5 0.6 0.5 0.1
100 2.7 1.5 0.2 10.3 L1 0.5 0.1 0.7
20
20 5.5 0.1 04 12.7 04 0.0 04 0.2
50 7.8 0.7 0.4 21.3 1.7 04 0.4 0.9
100 34 2.7 0.3 20.7 22 0.8 0.2 13
50
20 5.8 0.0 0.5 16.2 0.0 0.0 0.5 0.0
50 5.8 0.1 03 19.3 0.3 0.0 0.3 0.1
100 5.7 0.4 0.4 30.2 1.8 0.2 0.3 1.2
Average 4.6 0.7 0.5 14.5 0.8 03 04 0.4

an assignment of jobs to machines. The study compares the following five
algorithms:

e DA. The descent algorithm adopts a natural representation of solutions. The
combined critical reassign and critical swap neighborhood described in Section
4.2 is used, and the algorithm terminates when a local minimum is detected.

e SA. Thesimulated annealing method uses the same representation and neigh-
borhood as in DA. Another feature is the cooling schedule of Lundy & Mees
[1986], which outperforms geometric cooling in initial tests.

e TS. Tabu search also uses the same representation and neighborhood as in
DA. A tabu list of Jength 7 stores values of the maximum completion time.

e GA. The genetic algorithm uses the natural representation suggested in Sec-
tion 4.2, in which each string is a list of machines to which the jobs are assigned.
Recombination consists of performing a two-point crossover and mutating
each element by changing the machine assignment of the corresponding job.
The population size is 100.

e GD. The genetic descent algorithm is a variant of GA in which DA is applied to
each new solution that is generated. The population size is 20.

The earliest completion time (ECT) heuristic of Ibarra & Kim [1977] 'provides
the initial solution for the neighborhood search algorithms DA, SA, and TS.
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Moreover, the initial populations in GA and GD are seeded with two copies of
the ECT solution. For several solutions with the same maximum completion
time, one with the smallest number of machines achieving the maximum machine
load is generally preferred. This preference is incorporated into the acceptance
rule for the neighborhood search algorithms.

Glass, Potts & Shade [1994] generate 20 test problems for various combina-
tions of m and n, where some of the processing time matrices contain rows and
columns that are correlated. The five algorithms are first run using a time limit of
20 seconds on an IBM 3090 computer. Then the more successful algorithms, SA,
TS, and GD, are run using a time limit of 100 seconds. Average relative percentage
deviations from the best known solution values are listed in Table 11.2.

Algorithm GA performs very poorly in this study, even compared with DA,
which uses only a small proportion of the allowed computation time. However,
when descent is incorporated into GA, .we observe from the results for GD that
the algorithm is competitive. This substantiates a widely held belief that, for
a genetic algorithm to yield high-quality solutions, it needs to incorporate
another heuristic or some problem-specific features. With the time limit of 20
seconds, TS performs marginally better than the other algorithms. However,
both SA and GD improve substantially with additional run time, and the
performances of SA, TS, and GD are comparable when the time limit is 100
seconds.

8.3 Sequencing of jobs in F|| 3" w;C,

Glass & Potts [1996] describe a computational study for the permutation flow
shop problem F| 3 w;C;, which requires the minimization of total weighted
completion time. In contrast to the case of minimizing the maximum completion
time, there is no efficient update mechanism for computing the objective function
for a new solution generated by a local search algorithm. The study compares six
local search algorithms, described below. In each case the natural representation

of solutions as a sequence is adopted.

e MD. Multistart descent repeatedly applies descent, using different randomly
generated initial sequences, until a prespecified time limit is exceeded. In initial
experiments with the insert and swap neighborhoods of Section 4.1, swap
yields slightly better results. Thus, the swap neighborhood is adopted.

o SA. The simulated annealing algorithm uses the swap neighborhood. More-
over, a geometric cooling schedule is used since it performs better than the
scheme of Lundy & Mees [1986] in initial experiments.

e TA. Threshold accepting is implemented with the swap neighborhood, and
the threshold value decreases linearly after each iteration. A quadratic decre-
ment of threshold values produces inferior results in initial experiments.

e TS. The tabu search method also uses the swap neighborhood. According to
initial experiments, slightly better results are obtained with a tabu list that
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Table 11.3  Average relative deviations (%) for F || 2w,

m n MD SA TA TS GA GD
4 :
20 0.28 0.21 0.35 0.21 0.77 0.24
30 0.33 0.19 0.22 0.70 1.21 0.15
40 0.64 0.24 0.30 1.09 1.51 0.23
50 0.73 0.37 0.26 1.49 1.64 0.28
10
20 0.16 0.12 0.27 0.35 1.09 0.20
30 0.69 0.50 0.74 1.51 2.03 0.32
40 1.08 0.79 0.95 1.89 232 0.45
50 0.93 0.67 0.95 1.88 2.35 0.48
Average 0.61 0.39 0.51 1.14 1.62 0.29

prevents either of the swapped jobs returning to its original position, compared
with a tabu list that maintains the order between the two swapped jobs. The
former list is adopted, and the tabu list length is dependent on the number of jobs.

® GA. The genetic algorithm employs the insertion crossover. The solutions
obtained in initial experiments with the reorder crossover are inferior. A popu-
lation size of 50 is used.

® GD. The genetic descent algorithm is a variant of GA in which a descent
algorithm with the swap neighborhood is applied to each newly generated
solution to find a local minimum. The reorder crossover is used, which is more
effective than insertion crossover, according to initial experiments. The popula-
tion size is 10.

Glass & Potts [1996] generate 10 test problems for each of the selected values of
m and n. The six algorithms are each run three times on an IBM 3090 computer.
Each run is initialized by randomly generating a sequence or a population, and
has a time limit of 100 seconds. Average relative percentage deviations from the
best known solution values are presented in Table 11.3.

The algorithms that generate the best-quality solutions are SA and GD.
Although SA gives better results for the 20-job problems, GD is generally
superior. This is especially noticeable for the large problems with 10 machines
and 40 or 50 jobs. As in Section 8.2, GA gives the worst results. The performance
of TS is rather disappointing. Algorithms MD and TA both give reasonable
results, although they are inferior to both SA and GD.

8.4 Multisequencing of jobs in J | C,

As observed in Section 7.3, various local search algorithms are available for the
job shop problem J || Crnax- Since most of the computational experiments use
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the same test problems, Vaessens, Aarts & Lenstra [1996] and Balas &
Vazacopoulos [1994] are able to provide a comparison between the quality of
solutions generated by most of the methods. We provide similar computational
results for a selection of algorithms. In addition to choosing a variety of different
types of algorithms, our comparison includes all algorithms which are not
dominated by others in terms of solution quality and computation time in the
results given by Vaessens, Aarts & Lenstra and Balas & Vazacopoulos. The
following algorithms are considered:

SBI1. This method is the enumerative version of the shifting bottleneck pro-
cedure of Adams, Balas & Zawack [1988], which they call SBIIL. The results of
Vaessens, Aarts & Lenstra [1996] show that it is among the most competitive
variants of this type of procedure (excluding those that incorporate guided
local search).

SB2. A hybrid algorithm of Balas & Vazacopoulos [1994], which they call
SB-GLS2, embeds guided local search into the shifting bottleneck procedure.
The guided local search uses the critical end insert neighborhood.

SB3. This is another hybrid of Balas & Vazacopoulos [1994], which they call
SB-RGLSI. It extends the search in SB2 by rescheduling Lﬁj machines using
a combination of guided local search and shifting bottleneck routines.

MD. A multistart descent algorithm of Aarts et al. [1994], which the authors
call MSII2, employs the extended version of the critical end transpose neigh-
borhood, where transposes of predecessor and successor operations are attem-
pted, as proposed by Matsuo, Suh & Sullivan [1988]. The solution quality with
this algorithm is significantly better than obtained with the critical transpose
neighborhood.

SAl. A simulated annealing algorithm of Aarts et al. [1994] uses the critical
transpose neighborhood and adopts the cooling schedule described by Van
Laarhoven, Aarts & Lenstra. Algorithm SA1* is a variant of SA1 in which
a much slower cooling schedule is used.

SA2. A simulated annealing algorithm of Matsuo, Suh & Sullivan [1988],
which the authors call CSSA, uses the extended version of the critical end
transpose neighborhood, and employs an acceptance probability that is
independent of objective function values.

SA3. A simulated annealing algorithm of Yamada, Rosen & Nakano [1994],
which the authors call CBSA, uses the critical end insert neighborhood, and
employs a backtracking procedure.

TA. Threshold accepting, as implemented by Aarts et al. [1994] with the
critical transpose neighborhood and named TAI, uses threshold values that
are multiples of those proposed by Dueck & Scheuer [1990].

TS1. The tabu search algorithm of Barnes & Chambers [1995] uses the
critical transpose neighborhood, and employs a backtracking procedure.
TS2. The tabu search algorithm of Dell’Amico & Trubian {1993] uses a com-
posite neighborhood consisting of generalized critical end transpose and
critical end insert.



410 11 Machine scheduling

e TS3. The tabu search algorithm of Nowicki & Smutnicki [1996a], which the
authors call TSAB, uses the critical end transpose neighborhood, and employs
a backtracking procedure.

o GS. The guided local search procedure of Balas & Vazacopoulos [1994],
which they call GLS/1, uses the critical end insert neighborhood.

e GAl. The genetic algorithm of Della Croce, Tadei & Volta [1995] uses
a priority representation.

e GA2. The first genetic algorithm of Dorndorf & Pesch [1995], which the
authors call P-GA, uses a heuristic set representation.

e GA3. The second genetic algorithm of Dorndorf & Pesch [1995], which they
call SB-GA (40), is based on the shifting bottleneck procedure.

e GA4. The genetic algorithm of Pesch [1993], which the author calls IMCP-
GA, uses a representation that sets upper bounds for single-machine subprob-
lems. The results of Pesch indicate that it is superior to his other genetic
algorithms.

o GD. The genetic descent algorithm of Aarts et al. [1994], which they call
GLS2, uses a descent algorithm which employs the extended version of the
critical end transpose neighborhood.

For some of these algorithms, a single run is performed. However, the perform-
ance of MD, SA1, SA3, TA, TS2, and GD is averaged over five runs of the
algorithm, whereas results for GA3 are averaged over two runs. Moreover, results
for multistart versions of TS3 (with three starts) and GS (with four starts) are also
available. A superscript indicates that the best of several runs from different
starting solutions is selected. For example, TS3? refers to the best of three runs of
algorithm TS3.

We compare algorithms by providing computational results from the relevant
papers for a subset of the test problems of Fisher & Thompson [1963] and
Lawrence [1984]. These instances are chosen to be among the ‘hardest’, and are
therefore able to discriminate between the different algorithms. The instances
considered are FT2 and FT3 of Fisher & Thompson that have m x n equal to
10x 10 and 5x 20 respectively, and those of Lawrence that are of type
A (10 x 10), type B (10 x 15), type C (10 x 20), and type I (15 x 15).

In the computational results that are quoted in the literature, different com-
puters are used and computation times vary from one algorithm to another.
Thus, consideration should be given to both solution quality and computation
time when interpreting these results. Table 11.4 shows (average) values of the
objective function value C,,,. The column OPT gives the optimal value of the
maximum completion time or, when this is not known, the best known solution
value is listed and marked with an asterisk. Also listed for each algorithm is the
average relative deviation (ARD) of the maximum completion time from the best
solution value, expressed as a percentage, where the averages are over the 10 test
problems (or less for some methods because results are unavailable). Vaessens,
Aarts & Lenstra [1996] are able to standardize computation times so that they
are independent of the computer on which the tests are performed. Figure 11.1
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Figure 11.1 Relationship between average relative deviations (%) and standardized
average computation time (in seconds)

depicts the relationship between the standardized average computation time in
seconds, and the solution quality as measured by the average relative deviation
ARD for the various algorithms. We omit MD from Figure 11.1 because of its
large average relative deviation of 14.5%, but results for SA1*, SA3%, TS25, TS33,
and GS* are included, even though they do not appear in Table 11.4.

We first note from Table 11.4 that SB1 generates reasonable-quality solutions,
whereas Figure 11.1 shows that its average computation time is modest. How-
ever, substantial improvements are obtained by including guided local search, as
indicated by the results for SB2 and SB3. MD is clearly uncompetitive. Of the
three simulated annealing algorithms, SA2 performs best when computation time
is limited. However, comparison of SA1 and SA1* in Figure 1t.1 shows that this
type of algorithm can generate very good solutions if sufficient computation time
is allocated. Results also show that the threshold accepting method TA is one of
the least effective algorithms.

The three tabu search algorithms all produce solutions of high quality. Since
the extra computational requirements of TS1 are not rewarded through better-
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quality solutions, TS2 and TS3 are preferred. Moreover, Figure 11.1 shows that
TS3 gives slightly better results than TS2, and TS3? generates solution values that
are extremely close to the optimum. The guided local search method GS
generates reasonable-quality solutions without using excessive computation
time, and these solutions can be improved with a multistart version GS*. Of the
four genetic algorithms, GA4 is superior, and it is also preferred to the genetic
descent algorithm GD. Taking an overview of all results, the tabu search
algorithm TS3, and the multistart version TS3* are among the most competitive
methods. However, high-quality solutions are also obtained with the two hybrid
shifting bottleneck/guided local search methods SB2 and SB3. There is insuffi-
cient evidence at present to make a strong claim for the superiority of TS33 over
SB2 and SB3.

9 CONCLUDING REMARKS

It is apparent from our discussion in the previous sections that local search
techniques are the method of choice for NP-hard scheduling problems when the
problem size makes a branch-and-bound approach (or other enumerative
methods) impractical. Recent work on job shop problems demonstrates the
power of these approaches in producing excellent solutions for intractable
problems. Most studies concentrate on ‘standard’ scheduling models which do
not contain many of the complicating features that are present in practical
situations. Nevertheless, the flexibility of local search techniques enables such
complications to be handled more effectively than with most other approaches.

Recent research with neighborhood search algorithms reveals some useful
innovations. One successful idea is to consider a suitably chosen subset of some
neighborhood, where the choice may be based on some problem-specific features.
Another useful device is to allow backtracking. Using this technique, a sequence
of neighborhood moves is provisionally accepted so that their effect can be
explored, but if no overall improvement in solution value is observed after
a specified number of iterations, the sequence of moves is rejected, and the search
continues from the solution obtained prior to these exploratory moves.

The performance of genetic algorithms tends to be variable. When used as
a ‘black-box’ technique, a genetic algorithm usually fails to generate good-quality
solutions. However, by incorporating some problem-specific knowledge, which
can be achieved by the use of a suitable representation of solutions, or by
embedding a heuristic such as a descent method, the performance of a genetic
algorithm often improves substantially.

We are not aware of any comparative computational studies for scheduling
problems involving neural networks. Moreover, there is no current evidence that
these methods are competitive with neighborhood search or genetic algorithms.

It is appropriate to add some comments on the empirical work that is necessary
when evaluating local search algorithms. For many scheduling applications, we
have found substantial difficulties in drawing firm conclusions on the relative
merits of different methods. It is vital to experiment carefully with respect to
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individual problem characteristics (particularly size), the computation time
allowed, and the method used for generating a starting solution. There are also
difficulties in knowing how much tuning of parameters is appropriate for some
methods. It is remarkably easy to arrive at a faulty conclusion because of
insufficient experimental work.

Finally, although there has been a large amount of research on the application
of local search to scheduling problems, much remains to be done. First, the ideas
we have emphasized in this chapter, such as on different representations of
solutions, provide many possible avenues of research that have yet to be explored.
Second, there is a wide range of different local search techniques, and it is not yet
clear for which problem types the different techniques are most suited. Third, now
that the potential of local search methods has been demonstrated, mainly on
‘standard’ problems, their use should be exploited by applying them to a broad
range of more difficult practical problems.



