Title: Model based approaches to array CGH data analysis
Speaker: Sohrab Shah
Department of Computer Science, University of British Columbia

DNA copy number alterations (CNAs) are genetic changes that can produce adverse effects in numerous human diseases, including cancer. CNAs are segments of DNA that have been deleted or amplified and can range in size from one kilobases to whole chromosome arms. Development of array comparative genomic hybridization (aCGH) technology enables CNAs to be measured at sub-megabase resolution using tens of thousands of probes. However, aCGH data are noisy and result in continuous valued measurements of the discrete CNAs. Consequently, the data must be processed through algorithmic and statistical techniques in order to derive meaningful biological insights. We introduce model-based approaches to analysis of aCGH data and develop state-of-the-art solutions to three distinct analytical problems.

In the simplest scenario, the task is to infer CNAs from a single aCGH experiment. We apply a hidden Markov model (HMM) to accurately identify CNAs from aCGH data. We show that borrowing statistical strength across chromosomes and explicitly modeling outliers in the data, improves on baseline models.

In the second scenario, we wish to identify recurrent CNAs in a set of aCGH data derived from a patient cohort. These are locations in the genome altered in many patients, providing evidence for CNAs that may be playing important molecular roles in the disease. We develop a novel hierarchical HMM profiling method that explicitly models both statistical and biological noise in the data and is capable of producing a representative profile for a set of aCGH experiments. We demonstrate that our method is more accurate than simpler baselines on synthetic data, and show our model produces output that is more interpretable than other methods.

Finally, we develop a model based clustering framework to stratify a patient cohort, expected to be composed of a fixed set of molecular subtypes. We introduce a model that jointly infers CNAs, assigns patients to subgroups and infers the profiles that represent each subgroup. We show our model to be more accurate on synthetic data, and show in two patient cohorts how the model discovers putative novel subtypes and clinically relevant subgroups in two patient cohorts of two types of lymphoma.