
TimeLineCurator:
Interactive Authoring of Visual Timelines from Unstructured Text

Johanna Fulda, Matthew Brehmer, and Tamara Munzner Member, IEEE

Fig. 1: The browser-based visual timeline authoring tool TimeLineCurator, showing a timeline of Scandinavian pop music, where each
colour corresponds to a country; access the interactive timeline at http://goo.gl/0bHlvA.

Abstract— We present TimeLineCurator, a browser-based authoring tool that automatically extracts event data from temporal refer-
ences in unstructured text documents using natural language processing and encodes them along a visual timeline. Our goal is to
facilitate the timeline creation process for journalists and others who tell temporal stories online. Current solutions involve manually
extracting and formatting event data from source documents, a process that tends to be tedious and error prone. With TimeLineCu-
rator, a prospective timeline author can quickly identify the extent of time encompassed by a document, as well as the distribution
of events occurring along this timeline. Authors can speculatively browse possible documents to quickly determine whether they are
appropriate sources of timeline material. TimeLineCurator provides controls for curating and editing events on a timeline, the ability
to combine timelines from multiple source documents, and export curated timelines for online deployment. We evaluate TimeLineCu-
rator through a benchmark comparison of entity extraction error against a manual timeline curation process, a preliminary evaluation
of the user experience of timeline authoring, a brief qualitative analysis of its visual output, and a discussion of prospective use cases
suggested by members of the target author communities following its deployment.

Index Terms—System, timelines, authoring environment, time-oriented data, journalism.

1 INTRODUCTION

Event timelines are an effective way to present stories and provide
context to an audience. The initial motivation for our work was the
use of timelines by journalists for presentation, but they are common
in many other domains including medicine, history, education, and law
enforcement.

• Johanna Fulda is with the University of Munich (LMU). Email:
mail@johannafulda.de.

• Johanna Fulda, Matthew Brehmer, and Tamara Munzner are with the
University of British Columbia. E-mail:
{jfulda,brehmer,tmm}@cs.ubc.ca.

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of
publication xx Aug. 2015; date of current version 25 Oct. 2015.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

When presented alongside an accompanying text, a timeline pro-
vides a succinct overview for the article in the form of a temporal
index that indicates the chronological extent of the article, as well as
the number and distribution of events across this extent; a chronolog-
ical understanding is achieved through the use of a spatial metaphor.
Interactive visual timelines such as those employed by the Timeline
iOS application [62] or by the New York Times1 offer an immediate
overview of an article’s chronology and a means for the reader to ori-
ent herself within this chronology as she reads.

Despite the prevalence of stories with a fundamentally temporal
structure, visual timelines are scarce; there are many articles2 that sim-
ply list events in a chronological order without providing any visual
overview of their chronology or the temporal distribution of events.

Why are visual timelines so uncommon? Based on the first author’s
experience working in the graphics department of a major German
news publication, as well as interviews with journalists, we know that

1For example, see Timeline: The Higgs, From Theory to Reality [10]
2See these timelines about Edward Snowden [19] or flight MH370 [39].

http://goo.gl/0bHlvA


the timeline authoring process is too difficult: it is tedious, error-prone,
and time-consuming.

Journalists are accustomed to working with daily or weekly dead-
lines; this constraint is not conducive to the time-consuming manual
creation of visual timelines using illustration tools, or to the creation
of formatted event lists required by template-based timeline genera-
tion tools [29, 44]. Furthermore, there is often little guarantee that a
timeline generated via either means will be visually compelling or of
benefit to the reader. As this benefit can only be gauged after the time-
line is created, the significant time investment is often deemed to not
be worth it. Finally, another use of a timeline is to provide additional
background context for a story, including events that may not appear in
the accompanying text article; locating and browsing additional source
documents for these timelines can be very time-consuming.

For prospective authors willing to devote time to timeline genera-
tion, the creation process can be highly unsatisfying. They may be un-
aware of appropriate tools, or these tools may be difficult to integrate
into an existing work environment; for instance, many journalists can-
not install software on their computers without support from a central
IT authority. Even browser-based tools may deliver results that are not
simple to incorporate into the newsroom’s content management sys-
tem, or results that do not adhere to the publication’s style guidelines,
leading to issues that cannot be resolved without coding experience.

We propose an alternative to manual illustration or tools that require
structured event data: the TimeLineCurator approach is illustrated in
Figure 2. We use natural language processing to automatically ex-
tract temporal information from unstructured text input. We explicitly
assume that this extraction provides results that are not perfect, but
are good enough to provide scaffolding for interactive visual curation
to accelerate the timeline authoring process. The output is a curated
timeline.

Fig. 2: An abstract representation of TimeLineCurator’s pipeline: (i) un-
structured text input; (ii) an authoring environment; (iii) curated timeline
output.

Contributions: Our primary contribution is TimeLineCurator, the
web-based visual timeline authoring system shown in Figure 1. It
allows for the fast and easy creation of a structured temporal event
dataset from unstructured document text, combining imperfect natural
language processing and “human in the loop” authoring. With Time-
LineCurator, an author can speculatively browse a document’s tem-
poral structure; she can quickly rule out documents as unsuitable for
timelines within seconds, or interactively curate suitable documents
to refine an event set within minutes, receiving constant visual feed-
back throughout the curation process. Our secondary contribution is a
Timeline Authoring Model, which we use to position TimeLineCurator
relative to other timeline generation approaches in terms of goals and
tasks.
Outline: We begin by discussing related work in Section 2 and our
design process in Section 3. In Section 4 we present our Timeline Au-
thoring Model and the architecture and processing pipeline of Time-
LineCurator. Section 5 contains an overview of the interface and ratio-
nale for our design choices. We evaluate TimeLineCurator in five ways
in Section 6. We discuss our results in Section 7 and present possible
directions for future work. Section 8 summarizes our contributions.

2 RELATED WORK

Our discussion of relevant previous work includes visualization au-
thoring tools, tools for generating visual timelines from structured
event data, and techniques that leverage natural language processing,
entity extraction, and metadata extraction from text documents.

2.1 Visualization Authoring Tools

For almost every level of expertise there exist ways to create visu-
alizations. Visualization authoring tools that require higher levels of
technical expertise provide more options for customization.
General purpose tools for visualization presentation: Popular and
accessible tools such as Tableau [60] and ManyEyes [67] provide the
means to generate, share, and publish visualizations without having
to write any code. However, these tools expect structured data; it is
difficult to generate visualizations from unstructured text data without
wrangling the data into a structured form. In addition, these tools do
not explicitly support the generation of visual event timelines. For ex-
ample, ManyEyes offers a set of general-purpose visualizations and
there is no visualization for event-based data within its repertory. Al-
though Tableau is sufficiently customizable that the visual appearance
of a timeline can be achieved with elaborate data transformations, this
task is clearly not one of its primary design targets.
Custom visualization authoring environments: Visual authoring
tools such as Lyra [55] and iVisDesigner [50] are more expressive, al-
lowing the author to compose visualizations with multiple layers and
annotations. It is thus feasible to produce a custom visual timeline,
once again assuming that the event data is already in a structured form.
Since environments like Lyra and iVisDesigner provide more options
for customization and typically require more time to learn, they are
less suitable for fast and easy authoring than a specialized tool, such
as those that are specific to timeline authoring.
Authoring tools for journalists: narrative visualization authoring en-
vironments such as Ellipsis [54] and VisJockey [32] specifically tar-
get journalists. With these tools, journalists can compose narrative
sequences of common visualizations depicting structured quantitative
data; visual event timelines are not explicitly supported. Narratives au-
thored with VisJockey [32] further allow readers to trigger visualiza-
tion transitions with inline links in an accompanying text article, simi-
lar to the linking between the New York Times’ interactive timelines
and corresponding sections of their accompanying articles. Time-
LineCurator also relies on a linking between visualization elements
and corresponding sections of a text document, but these links are
established via natural language processing, whereas with VisJockey,
these links are established manually by the author.

2.2 Timeline Visualizations from Structured Event Data

Assuming the data is already available in a structured form, there are
several tools for generating timelines; some of these target specific
application domains, while others are domain-agnostic.
Tools for timeline analysis: Though we focus primarily on time-
lines as a presentation tool, timeline visualizations are also often used
for data analysis. TimeSlice [76] is a domain-agnostic analysis tool
that affords the faceted browsing of timelines containing many events;
these timelines are generated from structured event data. In the medi-
cal domain, LifeLines [47] and its descendants are also used for analy-
sis, wherein an analyst can summarize and compare patient treatment
timelines comprised of event types specific to the treatment context;
these events are recorded via manual data entry by medical staff. Law
enforcement tools such as Criminal Activities Network [9] are used
for data analysis such as identifying crime patterns and discovering
criminal associations, and are once again suitable only for structured
domain-specific data. Social media analysts also use timelines for de-
tecting events, trends, and anomalies, relying on structured social me-
dia data [7]. TimeLineCurator does not require structured event data
and is portable across application domains.
News timelines: In an ephemeral online news environment, timelines
are a popular way to convey an evolving story or to provide con-
text. For example, Google News Timeline [21] automatically aggre-
gates news stories from several thousand sources and organizes them
chronologically, while Evolutionary Timeline Summarization [75]
generates timelines based on a user query and identifies the “rele-
vance, coverage, coherence, and diversity” of that query inside many
time-stamped articles. However, both of these approaches return lists



of events rather than visual timelines, and treat an entire document
as a single entity characterized by the document creation time; finer-
grained temporal information from within the document is ignored.
Timeline authoring tools: Many simple and accessible timeline au-
thoring tools exist. Examples include TimeRime [28], Dipity [12],
Tiki-Toki [68], and Timeglider [40]. Some of these tools allow an au-
thor to add single events to an initially empty timeline one at a time,
while others provide the ability to connect to RSS, Twitter, or other ser-
vices that provide structured time-stamped data. Some of these tools
are easy to use, but not at all customizable.

The customizable tools most relevant to our current work are SIM-
ILE’s Timeline [29], ProPublicas’s TimelineSetter [48], WNYC’s Ver-
tical Timeline [3], and TimelineJS [44] from the Northwestern Uni-
versity Knight Lab. These tools require structured event data as input;
they generate timelines that can be embedded in websites. Advanced
users can also make changes to the underlying code and adjust it to
suit their needs. However, the author must first assemble and format a
spreadsheet, JSON dataset, or a correctly-formatted CSV file contain-
ing event data. TimelineJS [44] is perhaps the most widely-used time-
line authoring tool used in newsrooms today. The timeline creation
process is straightforward: beginning with a Google Spreadsheet tem-
plate, an author can fill in this spreadsheet with events, each of which
requires a date or date span, a title, a description of the event, and, op-
tionally, a link to an image, video, or other form of embeddable media.
Publishing the spreadsheet generates a visual timeline automatically.
We compare the experience of assembling and generating timelines
using TimelineJS to that of TimeLineCurator in Section 6.1.

2.3 Extracting Time Expressions from Unstructured Text

TimeLineCurator incorporates a form of Natural Language Process-
ing (NLP) known as information extraction, or more specifically, en-
tity extraction, a process that identifies predefined words or phrases
inside unstructured text that represent names, locations, organizations,
and dates. In particular, we focus on dates. The TimeML specifica-
tion language for temporal information extraction [49] defines how to
annotate events and temporal expressions inside unstructured text. It
became the international standard in 2009 (ISO-TimeML) and is used
by most current approaches.
Syntax-based recognition: Environments such as Tango [64] and
TARSQI (Temporal Awareness and Reasoning Systems for Ques-
tion Interpretation) [65] offer environments that automatically add
TimeML markup to news articles. Temporal entity extraction is typi-
cally accomplished with hand-engineered deterministic rules that use
regular expressions and pattern interpretation to detect signal words
referring to anything temporal. Further improvements to these recog-
nition approaches enable normalization of the recognized temporal
expressions with respect to a Document Creation Time (DCT). For
instance, the value of yesterday can be resolved to one day before the
DCT. Examples include TempEx Tagger [37], SUTime [8], Heidel-
Time [59], and TERNIP [43]. TimeLineCurator uses the Python-based
TERNIP system in its natural language processing pipeline. TERNIP
uses the TARSQI extraction engine [65] for recognition; TERNIP also
normalizes temporal expressions using a rule engine.
Context-dependent semantics: Approaches that consider only the
syntax of entities ignore the surrounding context and can lead to mis-
interpretation or ambiguities. Newer approaches that incorporate ma-
chine learning use context-dependent semantic parsing for entity ex-
traction; examples include learning contextual rules from question-
answer pairs [31] or the use of various forms of weak supervision [2].
In contrast to these general-purpose systems, UWTime [33] is the first
context-dependent model for semantic parsing that handles the spe-
cial case of temporal expressions, where the additional step of nor-
malization is required. Using the combination of hand-engineered and
trained rules, it considers the tense of a governing verb to determine
if the temporal expression refers to the future or the past, and it deter-
mines if a four-digit number refers to a year depending on the context.
Incorporating the Java-based UWTime system into TimeLineCurator
as an alternative to TERNIP would be interesting future work.

2.4 Visualizations from Unstructured Text

TimeLineCurator brings together visual timeline authoring with natu-
ral language processing. This section discusses previous projects that
similarly combine visualization with natural language processing.

Topic discovery and analysis: Thematic analysis of many text docu-
ments is a popular area of research. Tools such as Serendip [1] lever-
age natural language processing to permit thematic analysis for doc-
uments at different scales, from individual passages to documents to
entire corpora. Meanwhile, a number of tools [14, 15, 16, 26, 34, 35]
extract topics and keywords while also considering each document’s
creation time, allowing the analyst to observe topic changes over time.
These tools do not extract temporal information in the unstructured
text of documents; rather, they use bag-of-words models or more com-
plex algorithms to determine the importance of words, word combina-
tions, or topics. Furthermore, these tools are intended for data analysis
rather than authoring or presentation.

Storyline visualization: To explain the evolution inside complex sto-
ries that have various side stories and intertwining threads, Shahaf et
al. developed a methodology called ”metro maps” [57]. They find
salient pieces of information within a document collection and place
them on a visual map. Wikipedia articles are a popular source for vi-
sualizing freeform text as well [45]. For example, LensingWikipedia
attempts to visualize human history through Wikipedia’s annual event
summary pages over the last 2000 years [63]. Authoring, however, is
not supported in any of these environments.

Entity extraction and visual analytics: Visual analytics systems
such as Jigsaw [22, 58] integrate entity extraction with visualization to
show detected entities such as dates from unstructured text documents
in several ways. However, the use of Jigsaw entails a high learning
curve [23, 30], requires desktop installation, and is again intended for
data analysis rather than presentation.

Date entity extraction is more accessible in TimeLineCurator than
in previous work, since our tool is browser-based, is intended for fast
timeline authoring rather than data analysis, and can ingest any un-
structured text.

3 PROCESS

TimeLineCurator was created through an iterative refinement process
with multiple rounds of requirements gathering, designing, proto-
typing, and deployment, following standard practice in visualization.
TimeLineCurator is an authoring system that targets a broad set of user
communities, rather than a very focused set of target users as in a typ-
ical visualization design study [56]. We identified journalists as one
obvious potential user community, though we also gathered feedback
from digital humanities and policy researchers throughout this design
cycle.

3.1 Initial Requirements and Prototyping

Our initial requirements gathering was primarily based on the first au-
thor’s experience working in the graphics department in a major Ger-
man newspaper, and our assessment of existing systems as discussed
in Section 2. We quickly built an initial prototype in order to test our
ideas, and steadily refined it based on feedback from potential users.

3.2 Deployment and Collecting Community Feedback

We first demonstrated an early version of TimeLineCurator to a jour-
nalism professor and a policy researcher; both had a need to present
timeline data to readers and were familiar with TimelineJS. Shortly
after, we deployed TimeLineCurator online3 and publicized it locally
to faculty at the University of British Columbia Journalism School
and to members of a local Hacks/Hackers Meetup group. We also
publicized it more broadly to our extended professional network via
email and Twitter. Interest in TimeLineCurator then grew following

3http://www.cs.ubc.ca/group/infovis/software/
TimeLineCurator/

http://www.cs.ubc.ca/group/infovis/software/TimeLineCurator/
http://www.cs.ubc.ca/group/infovis/software/TimeLineCurator/


publicity at the 2015 NICAR conference for computer-assisted report-
ing [11, 24, 36, 74]. We were also able to gather feedback and in-
formation about use cases from several prospective timeline authors
who contacted us with feature requests and questions. Section 6.5 dis-
cusses the full set of use cases that we learned about from all of these
prospective constituencies. In addition to these direct contacts, we also
could indirectly gauge interest based on increasing traffic to the Time-
LineCurator site, with several thousand visits and many hundreds of
unique users trying out the freely available tool.

3.3 Identifying TimeLineJS Limitations
TimelineJS [44] is perhaps the most popular tool for creating and pre-
senting interactive timelines online. Despite its popularity, we iden-
tified several limitations by gathering feedback from several current
users of TimelineJS who we came into contact with as part of the
deployment process described above. We refer to the authoring pro-
cess with TimelineJS as structured creation, which involves a signifi-
cant amount of human time and effort while extracting and formatting
structured event data. We discuss this process further in Section 4, and
we compare the experience of authoring timelines using TimelineJS to
that of TimeLineCurator in Section 6.1.

We identified several drawbacks to how TimelineJS presents a time-
line to the reader (as shown in Figure 5f), which informed the design
of presentation-ready timelines exported from TimeLineCurator, de-
scribed in Section 5.6. A TimelineJS widget presents a zoomable
and scrollable interactive timeline that invites the reader to progress
through the timeline with linear navigation from one event to another,
beginning with the first event in the timeline.

TimelineJS does not provide an initial overview of the temporal
distribution of events: on opening, the horizontal timeline view is cen-
tered on a specific date and only a small region is visible. By default
this first date corresponds to the earliest event in the timeline; while
the user can explicitly navigate by zooming out, it is not possible to
simply set the start view to show the entire timeline. Moreover, clut-
ter and occlusion is a significant issue: glyphs representing individual
events are displayed along a narrow axis spanning the bottom of the
timeline, and the event labels placed above this axis overlap in regions
where multiple events events occur.

4 TIMELINE AUTHORING MODEL

In this section, we introduce several timeline authoring tasks, and
we compare how these tasks are accomplished using existing manual
drawing and structured creation approaches to how these tasks are car-
ried out using TimeLineCurator. These differences are summarized in
Table 1. We also define several goals that a timeline authoring system
should address.

Browse Extract Format Show Update
Manual Drawing high high none high high
Structured Creation high high high low low
TimeLineCurator low none none low low

Table 1: Comparing the human time and effort required to perform the
five tasks encompassed by our Timeline Authoring Model with previous
approaches and with TimeLineCurator.

4.1 Timeline Authoring Tasks
The timeline generation process begins with browsing source doc-
uments, where the author looks for event information. Browsing is
defined as a form of search in which the locations of potential search
targets are known, but the identity of the search targets may not be
known a priori [6]. During this period, the author might identify and
extract events by highlighting or annotating relevant passages in doc-
uments, adding events to a list, sketching a timeline on paper or with
Post-it notes on a wall. To transfer these events to a digital medium,
the author must decide how to format the events, and determine how
to show or encode them. Finally, in some instances, an author up-
dates the timeline: events may be added, edited, or deleted to reflect
new information, such as in the case of an evolving news story.

Fig. 3: Comparing the sequence of timeline authoring tasks: timeline
curation (indicated by the orange shaded areas) occurs later with Time-
LineCurator. Tasks in GRAY UPPER-CASE LETTERS are automated;
all other tasks are performed by the author.

Manual drawing: When satisfied with the results of the browsing
and extracting process, the author can manually draw a timeline us-
ing an illustration program: event formatting is not required. Showing
the timeline can be very time-consuming. While standard graphic de-
sign tools can be used for building a temporal scaffold, events must be
added to the timeline manually one at a time. A positive feature of this
approach is that the author has a significant amount of creative license
when performing this task. As a result, manual drawing can lead to
intricate and engrossing timelines, such as xkcd’s “Movie Narrative
Charts” [41]. However, the manual illustration approach to timeline
generation is clearly inappropriate for evolving stories, as updating
the timeline with additional events may require rescaling the whole
timeline, or readjusting and redrawing significant portions of it. The
result of the manual drawing process is most likely a static graphic,
used for print products or as a graphical element in a digital medium.
Structured creation: Several alternatives to manual timeline illustra-
tion exist. However, these approaches produce timelines that cannot be
easily customized, or require a programming ability beyond a typical
author’s skill set. Structured timeline generation tools like Timeline-
Setter [48] and TimelineJS [44] require that event items are formatted
in a structured table of dates with event descriptions. Provided with
structured event data, showing the timeline is performed quickly, as
timeline rendering is performed by the program or tool. Updating the
timeline is also straightforward, as the author only needs to add more
formatted events to the structured event dataset and the timeline will be
updated automatically. For evolving news stories, structured creation
is a much more viable approach than manual drawing.

4.2 Requirements for a Visual Timeline Authoring System

Automate extraction and formatting: A new approach to timeline
authoring should strive to reduce or eliminate the need to manually ex-
tract and format event data. Randall Munroe, the author of xkcd, has
remarked that he drew his “Movie Narrative” timelines [41] manually
not out of preference, but because no existing tool could automatically
extract event timelines from movie scripts [42]; automatic generation
of these timeline visualizations is now possible [61], however this ap-
proach requires structured event data.
Accessible integrated system: Recent advances in natural language
processing allow for the extraction and formatting of temporal refer-
ences from unstructured text [43]. However, natural language process-
ing packages and tools require installation and programming ability;
furthermore, they do not visualize their results. A timeline author-
ing tool should therefore be accessible: it should be browser-based to
avoid the need to install any software, and it should provide a flexible
means to import unstructured text. It should also be easy to learn and
use, appealing to authors without a highly developed technical skill
set; in other words, it should require no programming or third-party
software. We acknowledge the existence of standalone information
extraction software, and that individuals acquainted with them might
prefer to use these tools rather than TimeLineCurator’s integrated tem-
poral reference extraction. However, these individuals are not our tar-
get audience.



Visual feedback during curation: A timeline authoring tool should
provide intermediate visual feedback when browsing, showing, and
updating event data, as indicated in Figure 3. When programming a
timeline from scratch, or when using an existing timeline authoring
tool such as TimelineJS [44] or others mentioned in Section 2.2, there
is no intermediate visual feedback during the authoring process; the
hazards of delayed feedback have been noted previously [66]. Without
intermediate visual support, it is difficult to determine whether creat-
ing a timeline is worth the effort.

Accelerate process: Finally, an ideal tool should accelerate the au-
thoring process: an author should be able to curate events from suitable
documents in minutes, and rule out unsuitable documents in seconds.

Summary: Our new tool, TimeLineCurator, was developed to over-
come these difficulties. With manual drawing and structured creation
approaches, timeline curation was accomplished by iterating between
the browse and extract tasks; with TimeLineCurator, timeline curation
is a visual process, swapping the order of the browse and show tasks
while automating the extract and format tasks, as indicated in Figure 3.
TimeLineCurator also explicitly supports the browsing of events from
multiple documents simultaneously, allowing, for instance, the author
to compare multiple sources discussing the same subject or comparing
subjects that do not obviously relate but might have influenced one an-
other. Finally, updating a timeline with TimeLineCurator is easy, and
does not require editing the source documents.

4.3 Architectural Instantiation

We now discuss the concrete instantiation of this authoring model
through the data processing pipeline of TimeLineCurator, as illustrated
in Figure 4.

An author begins with an empty timeline, and can populate the
timeline by uploading unstructured document text. TimeLineCurator
extracts events from this text using natural language processing tech-
niques; it first recognizes absolute temporal references such as “Octo-
ber 30, 2014” or “2010” using the Python library TERNIP [43], which
is based on a large set of regular expressions. In addition to single
dates, durations are also extracted, such as the reference “from 2 Sept
2014 to 31 Mar 2015”. TERNIP also normalizes all relative temporal
references such as “yesterday”, “since Tuesday” or “next year”, giving
them a value relative to the document creation time. When this nor-
malization does not result in a concrete date or span, the expression is
categorized as a vague date and assigned the value “????”. In many
cases these are genuinely non-specific temporal expression like a du-
ration (“99 days”) or an interval (“monthly”) that do not belong on a
timeline; in other cases, these are expressions that TERNIP failed to
extract correctly but can be curated by the author to a meaningful date
or span. Next, TimeLineCurator formats the set of extracted dates into
structured JSON, which also includes the sentence containing each
temporal reference and its location within the source document.

Given this structured format, TimeLineCurator then shows the
timeline, encoding individual events as well as event spans along the
timeline axis; vague dates are not shown on the timeline, but are pre-
sented to the author separately. At this point, the author can update
the timeline events, including those associated with vague dates; she
can add, delete, merge, edit, or change their granularity up to the level
of minutes. This entire process can be repeated any number of times
with additional unstructured text. When ready to present, the author
can export the timeline, and at any time, the author can save the state
of an edited timeline to resume editing later.

Implementation: The back end of the pipeline that provides the data
handling for the extract and format tasks is implemented in Python.
The front end that supports the show, curate, update, and present
tasks is implemented in D3.js [4] and AngularJS [20]. The system
is hosted on the Heroku cloud application platform [27], which runs
the Python code on the server side. The micro web application frame-
work Flask [18] links together the server-side Python script with the
client-side HTML, JavaScript and CSS code.

Fig. 4: Processing pipeline for TimeLineCurator.

5 INTERFACE AND DESIGN RATIONALE

TimeLineCurator is a web-based single-page multiple-view authoring
application that can be used to produce and export embeddable visual
timeline widgets. The interface has four panels coordinated through
linked highlighting and navigation, depicted in Figures 1 and 5: the
Timeline Visualization at the top, the List View on the lower left, the
Document View in the lower middle, and the Control Panel on the
lower right. These panels are initially empty, as in Figure 5a. Fig-
ure 5b shows the dialog window where the author pastes unstructured
text, or a URL to it, and sets the date corresponding to “today” in the
document; if left unspecified, the current date is used as the document
creation time. The initial set of automatically extracted events then
populates the interface, as shown in Figure 5c.

5.1 Timeline Visualization View

The Timeline Visualization view provides an information-dense global
view with no occlusion and minimal navigation, an approach similar
in spirit to the previous work of Variant View [17]. Figures 1 and 5d
show examples with many stacked and dodged glyphs, providing an
overview where the temporal distribution of events is visible even in
densely populated areas of the timeline. There is no zooming or hor-
izontal scrolling: the size of the discrete events is fixed and the entire
horizontal axis is shown at all times.

As a result, the author always has an overview of the full time range.
Vertical scrollbars appear when the events overflow the available ver-
tical space, as a backstop solution to ensure that arbitrarily dense time
distributions can be curated. Typically, the final curated version of the
timeline exported for presentation does not require vertical scrolling.

The horizontal time axis is scaled automatically to the range of time
encompassed by the active events, and will update if any addition,
removal, or editing of an event changes that range. The document
creation time is indicated on the axis as a vertical dashed line labeled
’today’.

An event corresponding to a single date is encoded as a circle l,
while an event span with a beginning date and an end date is encoded
as a connecting bar of variable length flanked by triangles �–�. Vague
dates corresponding to possible events, based on temporal references
like “the day after” or “summer” are encoded as a square n and shown
outside the horizontal range of the timeline axis, in the upper right cor-
ner of this view, as in Figure 5c. Events are coloured by hue according
the six possible tracks (llllll), and this base univariate colour
palette was selected from ColorBrewer [25]. Glyphs corresponding to



events that have already been edited are more saturated than those cor-
responding to unedited events (l vs. l), for a bivariate palette with
12 colors in total. By default, events from each successive document
text pasted into TimeLineCurator are assigned to a different track, but
the author can override this behaviour by explicitly selecting a colour
track when loading a new document (Figure 5b). Having multiple
colour tracks can assist the author in comparing timelines from multi-
ple documents. Finally, hovering over an event reveals its title.

5.2 List View
Fast scanning across many events is supported through the List View.
Multiple sort options support browsing and linear navigation accord-
ing to multiple different criteria. This view lists all of the events and
vague dates; each list entry is comprised of an event glyph, a date, and
an event title. Initially, the first five words of the sentence from which
the event was extracted is assigned as the event’s title.

Events can be sorted according to the location within each docu-
ment, by event type (l, �–�, or n), by event status (l or l4, where
the 4 in addition to saturation redundantly encodes that an event has
been edited), by track (llllll), by date, or by event title.

Events deleted from the timeline remain in the list; their deleted
status is represented by crossing out the list item, changing the row
background colour to grey, and reducing the glyph’s alpha value.

5.3 Document View
The Document View supports the growing trend in journalism of link-
ing original source documents to online news media, as with tools
such as DocumentCloud [13], following the demands for more trans-
parency and involvement of the readers [51]. In addition to supporting
the curation process for authors, the Document View allows readers of
the curated timeline to see the relationships between events and corre-
sponding sentences in source documents. This panel displays original
unstructured document text, where all recognized temporal references
are highlighted in orange. The control bar at the top is coloured ac-
cording to the assigned track and allows the author to toggle between
which document is shown, while the : button adds a new document.

5.4 Control Panel
The Control Panel on the bottom right allows the author to edit an
event selected in any of the other three views, as shown in Figure 5d.
She can modify the date of an event, turn a single event into a span, or
vice versa; she can also edit the title and description for an event by
clicking on either of these fields.

By default, the event description is the sentence from which the
event was extracted. When a vague date is given a concrete date, its
corresponding glyph is moved to its appropriate place in the timeline
visualization and becomes more saturated. The author can also delete
the event, reassign the event to another colour track, or add media such
as image to it. Finally, the author can add new single events manually.

5.5 View Coordination and Navigation
Event selection is propagated as linked highlighting across all views,
with selected events highlighted in black, as shown in Figure 1. In the
Document View, events can be selected by clicking on any sentence
that includes a temporal reference. Navigation is also linked across the
views; when clicking on an event in the Timeline Visualization View,
the List View and Document View will scroll to the corresponding
sections of the list and document, respectively. Keyboard arrow keys
and paging buttons in the Control Panel will iterate through events
using the current sort order of the List View.

5.6 Presentation and Export
When the author is satisfied with her curated timeline, she can export
the timeline so that it can be shared online. Vague events are not ex-
ported. We provide two ways for an author to present their timeline.
The TimeLineCurator presentation view is a read-only version very
similar to the editing interface, as shown in Figure 5e. The timeline is
hosted on a shareable unique URL. Coordinated navigation and selec-
tion across the views remain the same; the Control Panel is replaced

with an Event Details panel, in which any image media associated with
an event is shown.

A timeline can also be exported as a TimelineJS [44] widget that
can be downloaded and embedded on the author’s site, as shown in
Figure 5f. We provide TimelineJS export capability because of its
popularity, despite the drawbacks discussed in Section 3.3.

6 RESULTS

We evaluate TimeLineCurator in several ways. We benchmark its cor-
rectness in terms of text extraction quality. We also compare its user
experience to the structured creation approach. We present instances
where TimeLineCurator is used to rule out documents that contain lit-
tle or no interesting temporal information, and we present examples
of curated timelines and provide before and after images to show the
changes made in the curation process. Finally, we discuss preliminary
feedback from target users.

6.1 Extraction Error Benchmark
Our first benchmark is primarily intended to gauge the quality of the
automatic extraction compared to manual extraction of temporal infor-
mation from unstructured text, and is narrow in scope.

The automated extraction process involved uploading unstructured
document text into TimeLineCurator and systematically checking ev-
ery extracted event to verify that it was recognized correctly; we also
determined if incorrectly extracted dates required editing or deletion.
The manual extraction process involved reading the original document
text and performing manual data entry, copying all temporal references
and their surrounding sentences into a spreadsheet in the structured
format required for TimelineJS input. In this initial benchmark, the au-
thor’s judgement was restricted to simply judging whether the expres-
sion correctly indicated a single event or a date range. No judgement
was used about whether an event was interesting enough to merit in-
clusion on the timeline, and event titles or descriptions were not edited.

The benchmark datasets were three Wikipedia articles4 and two re-
cent news articles5; the two news articles were added to a single time-
line. Figure 6 shows the quality assessments of TimeLineCurator’s
temporal expression extraction compared against the gold standard of
manual extraction. These results indicate that most of the dates were
identified correctly (an average of 65%), though some needed curation
via editing or deletion (an average of 29%), and a small fraction were
not extracted (an average of 6%). These results confirm that automatic
extraction is a good match with our expectations: the true positive rate
is reasonable but far from perfect, and the false negative rate is low.
Thus, we deem that scaffolded curation is a viable approach to time-
line authoring.

Fig. 6: The results of the benchmark tests, which compares the gold
standard manual creation of an event set with the automated event ex-
traction of TimeLineCurator.

This benchmark also yielded qualitative insights on the kinds of ex-
pressions that were incorrectly extracted. Incorrectly identified dates
often were time spans, which can be expressed in many different ways
in prose. For example, in “The family again went to Vienna in late
1767 and remained there until December 1768” [72], two separate
dates were extracted, but the author combined them into one time
span during manual curation. Another reason for incorrectly extracted
events were temporal expressions that implicitly refer to a previously

4The history of Facebook [70], the biography of pop musician Sam
Smith [71], and the biography W. A. Mozart [72].

5Both pertained to the topic of net neutrality [38, 53].



(a) Initially, the timeline is empty. Annotations in orange demarcate the four main
views: Timeline View, List View, Document View, and Control Panel.

(b) Unstructured text is added via a popup dialog. Optionally, the document cre-
ation time can be specified below the input field.

(c) A timeline immediately after importing text, with many vague and uncurated
dates. General timeline information can be modified when no event is selected.

(d) Event dates, title, and description can be adjusted when an event is selected,
it can also be assigned to another track, enriched with images, or deleted.

(e) The curated timeline can be exported; the presentation view is a read-only
version of the editing interface.

(f) The curated timeline can also be exported using the open-source tool Time-
lineJS [44].

Fig. 5: A walkthrough of the TimeLineCurator curation process. We demonstrate this process using unstructured document text from the “The Fall”
section of the Wikipedia article on the Berlin Wall [69]. The resulting timeline can be accessed at http://goo.gl/SU1faP.

http://goo.gl/SU1faP


named date rather than explicitly containing a year. The natural lan-
guage processing misses these expressions because it only considers
the immediate context and incorrectly ties them to the document’s cre-
ation date. The result is that historical texts incorrectly have many
dates assigned to “today” despite only containing dates from the dis-
tant past. Another source of false positives are temporal expressions
that are used as names and do not refer to a specific event, such as Tay-
lor Swift’s album title “1989” or the TV Show “Last Week Tonight”.

Events that were missed by the automatic extraction were often
those which referred to another event, such as “six days after the site
launched” or possessive statements, such as “last week’s vote”. In
some cases these were extracted as vague dates, and in others they
were missed completely. Currently, the year recognition is limited
to Anno Domini years with four digits; references such as “13,000-
12,000 BC” are not handled.

This benchmark was conducted by one of the authors who was very
familiar with the system. We chose this approach because this bench-
mark scenario required a meticulous comparison between automatic
and manual extraction that does not occur during the actual timeline
authoring process.

Moreover, this benchmark scenario focused solely on the verifica-
tion and correction of event dates and did not involve any editorial
judgment, such as deciding which events to include in the timeline
and how to embellish these dates with interesting event titles and de-
scriptions. However, we conjecture that the complete curation process
with TimeLineCurator is easier and preferable to the tedious manual
structured creation approach.

To address this conjecture, we conducted a second benchmark with
a more realistic approximation of the authoring process and an arms-
length group of participants.

6.2 User Experience Comparison
The second form of evaluation involved the observation of behaviour
that more closely approximates a real timeline authoring process. We
recruited six arms-length participants from our department who were
unaffiliated with the project and asked them to create coherent time-
lines. We provided them with short text articles and asked them to
make editorial judgements about each event they encountered; they
were also asked to curate event titles. Each author curated two time-
lines: first, one using manual structured data entry as required by
TimeLineJS [44] and second, one using TimeLineCurator.

They were directed to curate the timeline until they were fully
satisfied and felt that it was ready to be exported. All participants
strongly preferred TimeLineCurator’s visual authoring environment to
the structured data entry required by TimelineJS, and they found work-
ing with TimeLineCurator to be highly engaging. Every user encoun-
tered at least some difficulties with the structured editing approach
despite having a strong technical background. One participant even
abandoned the structured editing approach completely after a few min-
utes because it was so tedious. The curation time from start to finish
across participants is not directly comparable because the scope of the
editorial judgment performed during the curation process varied con-
siderably between them. This informal comparison of user experience
provided encouraging qualitative evidence that the design goals of our
authoring system were met.

6.3 Speculative Browsing
The ability to quickly rule out unsuitable documents using Time-
LineCurator is a major strength of the system. Figure 7 shows three
examples of timelines where the author was able to quickly decide that
the document is not a suitable source for an engaging timeline. This
decision was made in under 15 seconds in all of these cases, with most
of that time devoted to copying, pasting, and waiting for extraction;
once the timeline is visible, the decision is essentially immediate.

6.4 Curated Examples
We generated and curated many timelines during the course of this
project, including the Berlin Wall timeline documented in Figure 5 and
the timeline of W. A. Mozart’s biography shown in Figure 8. We also

Fig. 7: Timelines extracted from two news articles [52, 73] and a report
from a science press release site [46]. All three do not contain much
temporal information and thus can quickly be ruled out as a suitable
basis for an interesting timeline.

created a gallery of curated timelines6, exported with both TimelineJS
and with TimeLineCurator’s presentation view.

6.5 Use Cases

In addition to evaluation conducted in our lab where the usage scenario
was specified a priori, we also gathered feedback based on real use
cases from current and prospective timeline authors from several user
communities including journalism.

Solicited potential users: We conducted semi-structured interviews
with eight people: seven journalists and one policy researcher. Four of
these individuals already had experience creating interactive timelines
and provided us with feedback about the strengths and limitations of
currently available timeline tools. Two of these individuals had pre-
existing plans to use a timeline authoring tool in an upcoming project.

When we presented TimeLineCurator to these individuals and
asked them to try it out, their reaction was very positive and they re-
marked that it was very easy to use. They enjoyed the approach of
extracting temporal event data from unstructured document text, and
that they no longer had to start start with an empty spreadsheet and
add every event manually one at a time. The immediate visual feed-
back during the authoring process was also highly appreciated.

One journalist said: “For the less geeky journalists who might be
scared of timelines, this is a brilliant super-easy way to see what it
might look like” and that TimeLineCurator might be a good way to
“break the barrier between the artiste writer and the data journalist”.

We asked these individuals to speculate about possible kinds of sto-
ries that might benefit from accompanying timelines: these included
the unfolding of political scandals, how amendment bills proceed in
government, and biographies. They also proposed several use cases
that we had not previously considered, such as using TimeLineCurator
for data analysis rather than timeline authoring for presentation. One
idea involved using TimeLineCurator with court documents when re-
porting on a trial to better understand the context of a criminal or legal
case. Another possible use case is fact-checking during investigative
analysis. Typically, details are verified through two reliable sources
before publication. A journalist that we spoke to imagined that Time-
LineCurator might accelerate fact-checking for temporal events and
finding mismatches between sources. Finally, a third use case involved
using TimeLineCurator to prepare for interviews, to quickly catch up
the subject’s biography or background.

6http://cs.ubc.ca/group/infovis/software/
TimeLineCurator/#examples

http://cs.ubc.ca/group/infovis/software/TimeLineCurator/#examples
http://cs.ubc.ca/group/infovis/software/TimeLineCurator/#examples


Fig. 8: A timeline of composer W. A. Mozart’s biography [72], both before and after curation. The resulting timeline can be accessed at http:
//goo.gl/2JikND.

Unsolicited current users: In contrast to the ideas above that are po-
tential use cases for prospective users of TimeLineCurator, we can also
report on use cases from people in different communities who already
used TimeLineCurator for their own projects after it was deployed and
publicized. One author was a digital humanities researcher who cre-
ated a timeline to see the historical development of deaf churches in
England. Another author was a user experience professional who cre-
ated a timeline to accompany the profile of his company.

7 DISCUSSION & FUTURE WORK

TimeLineCurator offers a new way of exploring the temporal struc-
ture of a document in order to make the process of creating timelines
enjoyable rather than arduous. We designed the system under the as-
sumption that entity extraction through natural language processing
is decent but not perfect, and can serve to support human-in-the-loop
curation. Moreover, even if the extraction were perfect and all date
events and spans were extracted correctly, there are still many subtasks
involved in timeline curation that will need nuanced human judgement
for quite some time. In addition to the core question of selecting which
events are interesting to tell a particular story, there are many editorial
choices in writing the title and description text that accompanies the
event. Deciding whether to add media and finding relevant imagery is
also a very nuanced question that benefits from human judgement, at
least in the near future. Although we originally designed it to help au-
thors create presentations, it may well serve for analysis tasks such as
fact-checking, which also involves the exercise of human judgement.
To support fact-checking, one possible extension to the Timeline and
List Views involves encoding the certainty or uncertainty of events.

In designing the Timeline View, we opted for simplicity over ex-
pressiveness. Other visual encodings of time may be more appropriate
for highlighting periodic events or for summarizing uneven distribu-
tions of events spanning centuries, millennia, or longer. The ability to
toggle between alternative encodings could be beneficial.

The vast majority of feedback we received from interviews and
from the broader community approved the general idea of Time-
LineCurator. Many requests for improvement pertained to the auto-
mated event extraction. Our design goal was to use existing tools that
are known to be imperfect, but it would be both useful and straight-
forward to incorporate newer techniques such as context-dependent
semantics as toolkits become more widely available [33]. Also, mov-
ing to a natural language processing toolkit that supports multiple
languages would allow for the use of TimeLineCurator outside of
English-speaking countries.

Integrating TimeLineCurator into Overview [5], an open-source
system for investigative journalism that supports the analysis of large
collections of documents, would open up further use cases for both
analysis and presentation. Overview integration would also provide
DocumentCloud [13] support for accessing online document reposito-
ries, for further utility to the journalism community.

8 CONCLUSION

We presented TimeLineCurator, a visual timeline authoring system
that recognizes temporal expressions within unstructured document
text. It accelerates the event-extraction process and fulfills two broader
tasks. First, it enables authors to create polished timelines from inter-
esting documents within only a few minutes. Second, it enables spec-
ulative browsing, which lets authors eliminate temporally uninterest-
ing documents from consideration within seconds. TimeLineCurator

can be used by a broad community of authors including those with-
out a strong technical background, because it is easily accessible, has
a simple user interface, and does not requiring any programming. It
lowers the access barrier for timeline creation for a broad set of po-
tential authors, including journalists, who would like to work visually
rather than via manual data entry into spreadsheets. TimeLineCura-
tor can directly create two forms of curated timelines: the popular
TimelineJS [44] and our own presentation format that provides an
information-dense overview. Moreover, the resulting set of curated
events can be exported as a structured dataset, opening up further pos-
sibilities beyond these two currently-supported presentation formats.
Interviews and community feedback provided evidence that the Time-
LineCurator approach of scaffolded curation built on top of imperfect
automatic entity extraction provides useful and appealing functionality
in several application domains.

ACKNOWLEDGMENTS

We thank the journalists and students who provided feedback. Thanks
to F. Escalona and J. Romero for development assistance. Thanks to C.
Skelton and N. Diakopoulos for publicizing TimeLineCurator within
the journalism community. We also thank M. Borkin, A. Crişan, E.
Hoque, S.-H. Kim, and N. Mahyar for their feedback on the paper.

REFERENCES

[1] E. Alexander, J. Kohlmann, R. Valenza, M. Witmore, and M. Gleicher.
Serendip: Topic model-driven visual exploration of text corpora. In Proc.
IEEE Conf. Visual Analytics Science and Technology (VAST), pages 173–
182, 2014.

[2] Y. Artzi and L. Zettlemoyer. Weakly supervised learning of semantic
parsers for mapping instructions to actions. Trans. Assoc. Computational
Linguistics, 1:49–62, 2013.

[3] Balance Media and WNYC/J.Keefe. Vertical Timeline.
http://github.com/jkeefe/Timeline.

[4] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven docu-
ments. IEEE Trans. Visualization and Computer Graphics (Proc. Info-
Vis), 17(12):2301–2309, 2011.

[5] M. Brehmer, S. Ingram, J. Stray, and T. Munzner. Overview: The design,
adoption, and analysis of a visual document mining tool for investigative
journalists. IEEE Trans. Visualization and Computer Graphics (Proc.
InfoVis), 20(12):2271–2280, 2014.

[6] M. Brehmer and T. Munzner. A multi-level typology of abstract visual-
ization tasks. IEEE Trans. Visualization and Computer Graphics (Proc.
InfoVis), 19(12):2376–2385, 2013.

[7] J. Chae, D. Thom, H. Bosch, Y. Jang, R. Maciejewski, D. S. Ebert, and
T. Ertl. Spatiotemporal social media analytics for abnormal event detec-
tion and examination using seasonal-trend decomposition. In Proc. IEEE
Conf. Visual Analytics Science and Technology (VAST), pages 143–152,
2012.

[8] A. X. Chang and C. D. Manning. SUTime: A library for recognizing and
normalizing time expressions. In Proc. Intl. Conf. Language Resources
and Evaluation (LREC), pages 3735–3740, 2012.

[9] H. Chen, H. Atabakhsh, C. Tseng, B. Marshall, S. Kaza, S. Eggers,
H. Gowda, A. Shah, T. Petersen, and C. Violette. Visualization in law
enforcement. Proc. Extended Abstracts ACM SIGCHI Conf. Human Fac-
tors in Computing Systems (CHI), pages 1268–1271, 2005.

[10] J. DelViscio and D. Overbye. The Higgs, from theory to reality. The New
York Times, Mar. 4, 2013. http://goo.gl/Y8MaKC.

[11] N. Diakopoulos. From words to pictures: Text analysis and visualization,
Mar. 5 2015. Presentation at NICAR 2015: http://t.co/kfqbTBzjI6.

[12] Dipity. http://dipity.com/.
[13] DocumentCloud. http://documentcloud.org/.

http://goo.gl/2JikND
http://goo.gl/2JikND


[14] W. Dou, X. Wang, R. Chang, and W. Ribarsky. ParallelTopics: A proba-
bilistic approach to exploring document collections. In Proc. IEEE Conf.
Visual Analytics Science and Technology (VAST), pages 231–240, 2011.

[15] W. Dou, X. Wang, D. Skau, W. Ribarsky, and M. X. Zhou. LeadLine:
Interactive visual analysis of text data through event identification and
exploration. In Proc. IEEE Conf. Visual Analytics Science and Technol-
ogy (VAST), pages 93–102, 2012.

[16] W. Dou, L. Yu, X. Wang, Z. Ma, and W. Ribarsky. HierarchicalTopics:
Visually exploring large text collections using topic hierarchies. IEEE
Trans. Visualization and Computer Graphics (Proc. VAST), 19(12):2002–
2011, 2013.

[17] J. A. Ferstay, C. B. Nielsen, and T. Munzner. Variant View: Visualizing
sequence variants in their gene context. Trans. IEEE Visualization and
Computer Graphics (Proc. InfoVis), 19(12):2546–2555, 2013.

[18] Flask: Microframework for Python. http://flask.pocoo.org/.
[19] M. Gidda. Edward Snowden and the NSA files – timeline. The Gaurdian,

Aug. 21, 2013. http://goo.gl/hdj2PY.
[20] Google. AngularJS. https://angularjs.org/.
[21] Google. News Timeline. http://news.google.com/.
[22] C. Görg, Z. Liu, J. Kihm, J. Choo, H. Park, and J. Stasko. Combining

computational analyses and interactive visualization for document explo-
ration and sensemaking in Jigsaw. IEEE Trans. Visaulization and Com-
puter Graphics (TVCG), 19(10):1646–1663, 2013.

[23] C. Görg, Z. Liu, and J. Stasko. Reflections on the evolution of the Jigsaw
visual analytics system. Information Visualization, 13:336–345, 2014.

[24] L. Groeger. Making timelines, Mar. 2015. Blog post:
http://goo.gl/AIfGCu.

[25] M. Harrower and C. A. Brewer. Colorbrewer.org: An online tool for
selecting colour schemes for maps. The Cartographic Journal, 40(1):27–
37, 2003.

[26] S. Havre, E. Hetzler, P. Whitney, and L. Nowell. ThemeRiver: Visualiz-
ing thematic changes in large document collections. IEEE Trans. Visual-
ization and Computer Graphics (TVCG), 8(1):9–20, 2002.

[27] Heroku Cloud Application Platform. http://heroku.com/.
[28] Hoppinger BV. TimeRime. http://timerime.com/.
[29] D. F. Huynh. SIMILE Timeline. http://simile-widgets.org/timeline/.
[30] Y. A. Kang and J. T. Stasko. Examining the use of a visual analytics

system for sensemaking tasks: Case studies with domain experts. IEEE
Trans. Visualization and Computer Graphics (Proc. VAST), 18(12):2869–
2878, 2012.

[31] T. Kwiatkowski, E. Choi, Y. Artzi, and L. Zettlemoyer. Scaling seman-
tic parsers with on-the-fly ontology matching. In Proc. Conf. Empirical
Methods in Natural Language Processing (EMNLP), pages 1545–1556,
2013.

[32] B. C. Kwon, F. Stoffel, D. Jäckle, B. Lee, and D. A. Keim. VisJockey:
Enriching data stories through orchestrated visualization. In Proc. Com-
putation + Journalism Posters, 2014.

[33] K. Lee, Y. Artzi, J. Dodge, and L. Zettlemoyer. Context-dependent se-
mantic parsing for time expressions. In Proc. Conf. Assoc. Computational
Linguistics (ACL), pages 1437–1447, 2014.

[34] Y. Liu, S. Barlowe, Y. Feng, J. Yang, and M. Jiang. Evaluating ex-
ploratory visualization systems: A user study on how clustering-based
visualization systems support information seeking from large document
collections. Information Visualization, 12(1):25–43, 2013.

[35] D. Luo, J. Yang, M. Krstajic, W. Ribarsky, and D. Keim. EventRiver:
Visually exploring text collections with temporal references. IEEE Trans.
Visualization and Computer Graphics (TVCG), 18(1):93–105, 2012.

[36] S. Machlis. Tools & tutorials from NICAR15, Mar. 2015. Blog post:
http://goo.gl/JHVOvJ.

[37] I. Mani and G. Wilson. Robust temporal processing of news. In Proc.
Conf. Assoc. Computational Linguistics (ACL), pages 69–76, 2000.

[38] G. A. Manne. Opinion: The FCC’s net neutrality victory is anything but.
Wired, Mar. 3, 2015. http://goo.gl/wFSOJf.

[39] M. Martinez. Timeline: Leads in the hunt for Malaysia Airlines Flight
370 weave drama. CNN U.S. Edition, Apr. 7, 2014. http://goo.gl/XJcQBu.

[40] Mnemograph LLC. Timeglider. http://timeglider.com/.
[41] R. Munroe. xkcd: Movie narrative charts. http://xkcd.com/657/.
[42] R. Munroe. Lecture at “See, Think, Design, Produce”, Aug 7. 2014.

Seattle, WA.
[43] C. Northwood. TERNIP: Temporal Expression Recognition and Normal-

isation in Python, 2010. https://github.com/cnorthwood/ternip.
[44] NU Knight Lab. TimelineJS. http://timeline.knightlab.com/.
[45] S. Nunes. WikiChanges, 2008. http://sergionunes.com/p/wikichanges/.

[46] Phys.org. Mathematicians solve 60-year-old problem, Mar. 23, 2015.
http://goo.gl/jKRwM0.

[47] C. Plaisant, B. Milash, A. Rose, S. Widoff, and B. Shneiderman. Life-
Lines: Visualizing personal histories. In Proc. ACM SIGCHI Conf. Hu-
man Factors in Computing Systems (CHI), pages 221–227, 1996.

[48] ProPublica. TimelineSetter. http://propublica.github.io/timeline-setter/.
[49] J. Pustejovsky, J. M. Castano, R. Ingria, R. Sauri, R. J. Gaizauskas,

A. Setzer, and G. Katz. TimeML: Robust specification of event and tem-
poral expressions in text. In Fifth Intl. Wkshp. Computational Semantics
(IWCS), 2003.

[50] D. Ren, T. Hollerer, and X. Yuan. iVisDesigner: Expressive interactive
design of information visualizations. IEEE Trans. Visualization and Com-
puter Graphics (Proc. InfoVis), 20(12):2092–2101, 2014.

[51] S. Rogers. Hey wonk reporters, liberate your data! Mother Jones, Apr.
24, 2014. http://goo.gl/cbhgtk.

[52] C. Rumaitis del Rio and A. Brown. How dealing with climate
change is like playing cricket. The Guardian, Mar. 23, 2015.
http://goo.gl/YLkmSx.

[53] D. Rushe. Net neutrality activists score landmark victory in fight to gov-
ern the internet. The Guardian, Feb. 26, 2015. http://goo.gl/9cD2V2.

[54] A. Satyanarayan and J. Heer. Authoring narrative visualizations with
Ellipsis. Computer Graphics Forum (Proc. EuroVis), 33(3), 2014.

[55] A. Satyanarayan and J. Heer. Lyra: An interactive visualization design
environment. Computer Graphics Forum (Proc. EuroVis), 33(3), 2014.

[56] M. Sedlmair, M. Meyer, and T. Munzner. Design study methodology:
Reflections from the trenches and the stacks. IEEE Trans. Visualization
and Computer Graphics (Proc. InfoVis), 18(12):2431–2440, 2012.

[57] D. Shahaf, C. Guestrin, and E. Horvitz. Trains of thought: Generating
information maps. In Proceedings of the 21st international conference
on World Wide Web, pages 899–908. ACM, 2012.

[58] J. Stasko, C. Görg, and Z. Liu. Jigsaw: supporting investigative analysis
through interactive visualization. Information visualization, 7(2):118–
132, 2008.

[59] J. Strötgen and M. Gertz. Multilingual and cross-domain temporal tag-
ging. Language Resources and Evaluation, 47(2):269–298, 2013.

[60] Tableau. http://tableau.com.
[61] Y. Tanahashi and K.-L. Ma. Design considerations for optimizing sto-

ryline visualizations. IEEE Trans. Visualization and Computer Graphics
(Proc. InfoVis), 18(12):2679–2688, 2012.

[62] Timeline for iOS, web. https://timeline.com/.
[63] R. Vadlapudi, M. Siahbani, A. Sarkar, and J. Dill. LensingWikipedia:

Parsing text for the interactive visualization of human history. In Proc.
IEEE Conf. Visual Analytics Science and Technology (VAST) Poster Com-
pendium, pages 247–248, 2012.

[64] M. Verhagen, R. Knippen, I. Mani, and J. Pustejovsky. Annotation of
temporal relations with Tango. In Proc. Intl. Conf. Language Resources
and Evaluation (LREC), 2006.

[65] M. Verhagen, I. Mani, R. Sauri, R. Knippen, S. B. Jang, J. Littman,
A. Rumshisky, J. Phillips, and J. Pustejovsky. Automating temporal an-
notation with TARSQI. In Conf. Assoc. Computational Linguistics Poster
Proceedings, pages 81–84, 2005.

[66] B. Victor. Drawing dynamic visualizations, Feb. 2013. Lecture at Stan-
ford University. http://vimeo.com/66085662.

[67] F. Viégas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.
ManyEyes: A site for visualization at internet scale. IEEE Trans. Vi-
sualization and Computer Graphics (TVCG), 13(6):1121–1128, 2007.

[68] Webalon. Tiki-Toki. http://tiki-toki.com/.
[69] Wikipedia. Berlin Wall. http://goo.gl/GtHKW7.
[70] Wikipedia. Facebook: History. http://goo.gl/aKRKvr.
[71] Wikipedia. Sam Smith (singer). http://goo.gl/dF4Gzm.
[72] Wikipedia. Wolfgang Amadeus Mozart. http://goo.gl/BEKzXw.
[73] J. Wolfers. Fewer women run big companies than men named John. The

New York Times, Mar. 2, 2015. http://goo.gl/W8qrtT.
[74] C. Wu. NICAR 2015 slides, links & tutorials, Mar. 2015. Blog post:

http://goo.gl/MFbXXF.
[75] R. Yan, X. Wan, J. Otterbacher, L. Kong, X. Li, and Y. Zhang. Evolu-

tionary timeline summarization: A balanced optimization framework via
iterative substitution. In Proc. ACM SIGIR Conf. Information Retrieval,
pages 745–754, 2011.

[76] J. Zhao, S. M. Drucker, D. Fisher, and D. Brinkman. TimeSlice: Inter-
active faceted browsing of timeline data. In Proc. ACM Conf. Advanced
Visual Interfaces (AVI), pages 433–436, 2012.


	Introduction
	Related Work
	Visualization Authoring Tools
	Timeline Visualizations from Structured Event Data
	Extracting Time Expressions from Unstructured Text
	Visualizations from Unstructured Text

	Process
	Initial Requirements and Prototyping
	Deployment and Collecting Community Feedback
	Identifying TimeLineJS Limitations

	Timeline Authoring Model
	Timeline Authoring Tasks
	Requirements for a Visual Timeline Authoring System
	Architectural Instantiation

	Interface and Design Rationale
	Timeline Visualization View
	List View
	Document View
	Control Panel
	View Coordination and Navigation
	Presentation and Export

	Results
	Extraction Error Benchmark
	User Experience Comparison
	Speculative Browsing
	Curated Examples
	Use Cases

	Discussion & Future Work
	Conclusion

