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Fig. 1. Automatically generated snippets of the same Observable notebook [3]. (1) Vertical snippet layout with image collage of six
images, and image carousel to scroll through additional content; (2) Existing visualization snippets in commercial products are limited
to a single thumbnail; (3) Horizontal snippet layout; (4) Small minimum image size allows more images to fit in a collage; (5) Table
layout; (6) Large preview snippet minimizes information loss.

Abstract— Visualization collections, accessed by platforms such as Tableau Online or Power BI, are used by millions of people to share
and access diverse analytical knowledge in the form of interactive visualization bundles. Result snippets, compact previews of these
bundles, are presented to users to help them identify relevant content when browsing collections. Our engagement with Tableau product
teams and review of existing snippet designs on five platforms showed us that current practices fail to help people judge the relevance
of bundles because they include only the title and one image. Users frequently need to undertake the time-consuming endeavour
of opening a bundle within its visualization system to examine its many views and dashboards. In response, we contribute the first
systematic approach to visualization snippet design. We propose a framework for snippet design that addresses eight key challenges
that we identify. We present a computational pipeline to compress the visual and textual content of bundles into representative previews
that is adaptive to a provided pixel budget and provides high information density with multiple images and carefully chosen keywords.
We also reflect on the method of visual inspection through random sampling to gain confidence in model and parameter choices.

Index Terms—visualization collections, visualization bundles, result snippets, visual inspection

1 INTRODUCTION

People across organizations and sectors now have access to growing
troves of data and collectively amass large collections of visualization
content. Business intelligence (BI) tools, such as Tableau, Power BI,
Qlik, and Looker, are used daily by millions of people. The primary
artifacts created with these tools are visualization bundles, that combine
multiple visualizations, dashboards, and data sources. Bundling content
to organize, save, and share analysis results is a common practice even
beyond BI tools, through computational notebooks such as Observable
that encompass substantial amounts of diverse visualization content.

When users browse or search collections of visualization bundles,
they regularly need to choose between multiple results and judge their
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relevance. To avoid the time cost of loading and examining in detail
these results one by one, bundles are summarized as compact previews,
which we call snippets. However, existing snippet designs yield poor
information density: they fail to help people judge the relevance of
bundles because they include only one image and a title, falling far
short of communicating the full information content of a bundle that
may include multiple views and dashboards. We engaged with Tableau
product groups and end users to determine that this problem has sub-
stantial real-world impact, and reviewed snippet designs across five
major tools to establish that it is pervasive.

Although guidance exists for snippet design with data types such
as text, images, and video, we are the first to systematically approach
visualization snippet design. We propose a computational pipeline to
compress visualization bundles into representative snippets, providing
visualization system designers with a set of adjustable algorithmic
building blocks. It has many controllable features including the ability
to adapt to a given pixel budget and to create flexible families of layouts
with desired form factors. We also present practical guidance on how
visualization snippet designers can use the pipeline to support many
use cases through concrete examples.



We contribute:
• A set of eight key challenges pertaining to visualization snippets,

and a top-down design framework for visualization snippets with
three levels (page, snippet, images+text) and two categories of
design choices (size/number of elements, visual layout/encoding).

• A computational pipeline for the lossy compression of visual-
ization bundles into snippets, consisting of a set of algorithmic
building blocks to filter, rank, and display visual and textual con-
tent in accordance with an available pixel budget.

We validate the pipeline’s algorithmic building blocks on two kinds
of visualizations bundles, from Tableau Public and Observable, using
quantitative measures, visual inspection, and A/B comparisons. For this
purpose, we also labeled several thousand images to compare human
judgements with model predictions.

As a secondary contribution, we promote a methodology for exten-
sive visual inspection through random sampling. We reflect on the
creation of multiple lightweight visual inspectors, each tuned for one
question or algorithm, that sample a substantial corpus of real-world
data to gain confidence in algorithm and parameter choices.

Inspired by the work of Rogers et al. [52], we include direct links to
research artifacts (SUP1 to SUP7) throughout the paper to transparently
provide an abundance of evidence for our claims and our process.

2 VISUALIZATION COLLECTIONS AND SNIPPETS

We provide a data characterization and describe the collections we
use to assess our work, define snippets in the context of visualization
collections, survey current practices in snippet design, and discuss
our investigation of real-world challenges through engagement with
Tableau product groups. We identify key challenges and present a
top-down framework for snippet generation to address them. We fi-
nally discuss the intended context of use by snippet designers for our
computational pipeline.

2.1 Data Characterization and Sources
We define visualization bundles and collections in general, followed by
a description of two sample collections that we acquired.

2.1.1 Bundles and Collections
Visualization bundles combine single views (charts), dashboards com-
bining multiple views [53], and one or more datasets. We categorize the
content into four groups, while noting that some bundle types contain
only a subset of this information.

Bundle meta-data contains the bundle title, author name, date, and
usage statistics, such as the number of views and likes.

Bundle text is bags of words in each of three categories: 1) text
within views, including chart and axis titles, captions, and titles; 2) data
column names; 3) longer prose text that may be attached.

Bundle images are stored as PNG files, each corresponding to a view
or dashboard. All images conform to the same 4:3 aspect ratio, and
may be cropped or padded with white space to fit those dimensions.

Bundle specification contains additional layout and chart type infor-
mation, for example which views are embedded in a dashboard.

We refer to repositories of manually crafted bundles that can be browsed
on dedicated platforms as visualization collections. The number of
bundles in a collection ranges from hundreds to thousands or more
when shared within an organization, or even millions in special cases
that are open to larger communities, such as Tableau Public.

2.1.2 Data Sources
We used two collections of real-world visualization bundles to develop
and evaluate the proposed computational pipeline.

Tableau workbooks are a widely used type of visualization bundle,
containing all necessary components that are required for loading and
displaying the fully interactive visualizations to users.

We build on our previous work on visualization recommenda-
tion [48], where we extracted bundle data from the XML files of a set of
2910 hand-crafted workbooks randomly sampled from Tableau Public,
a sprawling collection of publicly shared workbooks. Other business

intelligence tools, such as Looker, Qlik, and Power BI, use similar
approaches to bundle visualizations and data sources into workbooks,
reports, or apps, so our findings are generalizable beyond Tableau.

Observable is a reactive computational notebook for data analysis
and visualization, used by a rapidly growing community. A notebook
is made up of a series of cells containing JavaScript code, prose, inter-
active visualizations, and images. This structure follows the paradigm
of literate programming [31] where explanations in natural language
are interspersed with code snippets. Although the use cases related
to computational notebooks may be very different to those facilitated
by BI tools, they exhibit intriguing content similarities; thus we also
consider those notebooks as visualization bundles.

We implemented a Chrome extension to scrape a diverse sample of
178 publicly accessible Observable notebooks. Our tool takes screen-
shots of Canvas and SVG areas, downloads embedded images, extracts
meta-data information, and creates a bag of words from the text found in
Markdown cells. All visualizations are treated as single views because
inferring the composition of dashboards from source code is non-trivial,
and the actual number of dashboards on Observable appears to be very
low (0 in a sample of 40 notebooks). [SUP2] contains the source code
of the scraper and the raw data of our Observable collection.

2.2 Visualization Snippet Usage
We define visualization snippets broadly as compact, representative
summaries of visualization bundles that help users discriminate between
relevant and irrelevant content in visualization collections. Use cases for
snippets within visualization platforms include showing search results,
supporting faceted browsing, and suggesting recommendations. The
form factors vary: many medium-sized snippets can be shown within a
large window as with search results, or a few snippets within a small
region of the screen as with recommendation results, or a single large
snippet may appear upon hover in a large popup window to preview
bundle content with as much detail as possible.

We provide an example scenario to illustrate the search use case for
snippets. A marketing analyst searches the company-wide visualization
collection to check if any colleagues have previously created a report
on product downloads. The collection does have some hierarchical
organization into folders, but that structure does not help them scope
their search. A query results in multiple pages with over a dozen
snippets each. The analyst rules out some bundles as irrelevant from
the title and single image visible from the snippet, but often must open
the bundle to check whether it contains relevant materials. The analyst
spends several minutes opening bundles and clicking through each of
their views, only to realize that they are outdated or concern a different
product, before ultimately locating the desired analysis report.

In the information retrieval process, snippets concern the relevance
prediction step [20] where users predict which items summarized in
a results display align with the current information need before they
open the detailed versions [23]. Opening many visualization bundles
can be a time-consuming and tedious endeavour because of substantial
load, build, and explore times, especially when visualizations contain
many views or are connected to live data streams. Snippets serve as
previews to facilitate the relevance prediction step as surrogates that
avoid loading entire bundles via visualization platforms.

2.3 Embedded Inquiry Within Tableau
This work grew out of collaboration with the Recommendation and
Search product groups at Tableau, following up on our previous investi-
gation on content-based recommendation models for visualizations [48].
Over a period of more than a year, we had conversations regularly with
product managers, machine learning engineers, and UX designers, who
relayed end-user feedback and pain points about many issues to us.

The key realization that motivated this research project is that the
shortcomings of existing snippet designs constitute a significant pain
point for Tableau end users. Specifically, we have substantial evidence
that it is difficult and often impossible for users to judge a bundle’s
relevance based on the given snippet, without opening it. We heard this
idea from multiple people within Tableau. We verified this common
internal perception through direct interviews with external target users.
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Fig. 2. Examples of existing snippets with low information content in their
single images and titles: (1) Tableau Online, (2) Tableau Public.

The first author of this paper joined several interviews with target
users to evaluate a new visualization recommendation model; despite
the intent to focus on the back-end model, participants repeatedly
commented on the presentation of the recommendations that were
shown as visualization snippets, confirming the problem of insufficient
visible information content.

We also observed that visualization authors commonly start from
scratch instead of reusing existing content, even in contexts where
re-use would seem to provide benefits; we conjecture that better snippet
design might combat this tendency by helping authors find relevant
content more easily.

Finally, we noted that when developing new product features, prod-
uct groups either simply re-use existing snippet designs or end up
making custom modifications based on intuition, without systematic
reasoning of how snippets could be explicitly designed to support
platform use cases or user analysis goals.

2.4 Review of Existing Snippet Designs

To ensure generality beyond the particular platform of Tableau, we
informally surveyed the content and layout of existing snippet designs
used in Tableau Online/Public, Power BI, Qlik, Looker, and Observable.
All existing snippet designs show only the bundle title and one image,
and sometimes a few meta-data attributes. In many cases these titles are
not very descriptive and the single image has low information content,
as shown in Fig. 2, so they fail to support users when assessing the
relevance of bundles.

None of the snippet approaches that we surveyed incorporate mul-
tiple images; in all cases a single image thumbnail of a view or dash-
board is selected and cropped automatically. For example, Observable
chooses the first image, SVG, or Canvas element found in a notebook.
Even if a bundle contains useful content, the automatically selected
images may show incomplete draft views or appear empty when scaled
down to a thumbnail size. Only a few tools allow creators to upload
custom thumbnails that may include illustrations that reflect the bundle
context but are not directly related to the data [30]. The thumbnail size
varies substantially between platforms.

In terms of text content, the bundle title is always prioritized, al-
though sometimes significantly truncated. The only approaches that
include a textual description are Tableau Public’s gallery view that
presents human-curated bundles and Qlik’s list view. We note that cre-
ators are frequently unwilling to invest the additional effort of crafting
a description. None of the existing snippet designs include keywords
or other textual information extracted from the bundles such as tags,
despite tagging functionalities in some of the tools. Meta-data attributes
such as author name, date, and number of likes, are included in some
snippet designs but the selection of these attributes differs widely across
platforms.

Snippets are arranged in a uniform grid layout by default in all tools,
except Tableau Public which uses a list layout. The option to choose
between two different layouts is provided in 4 of the 6 platforms. The
snippet size is always the same independent of the bundle content, and
most of the pixel space is devoted to the thumbnail.

Further details are included in [SUP1], and Sec. 5.3 presents A/B
comparisons between existing product snippet designs and the results
of our proposed VizSnippets pipeline.

2.5 Challenges
Our two-pronged investigation led us to identify eight challenges for
snippet generation:
C-OneImage: Limited information content of a single image. A single
image of one view or dashboard provides only a very narrow lens on a
bundle and may not accurately capture the diverse visual content across
multiple views. Blank thumbnail images are surprisingly frequent
within our sample collections.
C-Titles: Limited information content of titles. We learned through
interviews and by reviewing the data samples that short and cryptic
bundle titles pose a challenge across all collections. Uninformative
titles in similar forms such as “sub-2”, “Project 8”, “Final Vis”, and
“Untitled” are seen frequently. Vague titles impede the identification of
relevant content for non-authors, and community-generated content is
particularly messy.
C-Pixels: Limited pixel space. Pixels are a precious commodity that
need to be used as effectively as possible, on the desktop and especially
for mobile. The full content of a bundle can rarely be shown in its
entirety, necessitating compression.
C-SparseText: Limited textual content. The text found in bundles that
are created with BI tools generally consists of fragments of a few words,
such as titles or labels. Although an author might sometimes include
captions or annotations of lengthier text, the amount of available text
is far less than in standard text documents [48]. This challenge is
not directly applicable to Observable computational notebooks, which
commonly include prose with typical grammatical sentences similar to
text documents, for instance when created as instructional guides.
C-Form: Diversity of form factors. The wide variety of use cases
for snippets leads to different form factor requirements, from many
medium-sized snippets in a large window to support quick comparisons
between bundles, to a few small snippets in a small region using mini-
mal screen real estate, to a full-screen view of a single large snippet to
provide a very detailed preview.
C-Complex: Diversity of bundle complexity. The content in the re-
viewed collections ranges from single bar charts to complex bundles
with dozens of views and dashboards. Quantitatively, the bundles in
our Tableau Public collection contain 2.19 dashboards and 4.11 views
on average (the medians are 1 and 3 respectively). Views are often just
building blocks for dashboards or contain auxiliary information.
C-Quality: Diversity of content quality. We found substantial differ-
ences in the quality of information content within bundles: the same
bundle might have empty or incomplete drafts in addition to high qual-
ity finalized content, or many similar images alongside quite different
ones. When summarizing bundles, high quality informative content
should be elevated, while incomplete or empty or similar views and
less informative text should be filtered or downgraded.
C-Goals: Diversity of end-user goals. We identified disparate end-user
goals that could be supported by visualization platforms: collaborate
with colleagues, create portfolios to share work, find out how other peo-
ple did something, get visual inspiration, look up information, and save
all visualizations in one space. These goals may lead to different snip-
pet affordances. For example, images and chart types are paramount for
visual inspiration, but information lookup might require more emphasis
on the underlying data sources of a bundle.

2.6 Design Framework
To address these challenges, we propose a top-down design framework
for snippet generation with three levels and two categories of choices,
shown in Fig. 3. The top level pertains to the layout of a result page,
and choices at this level affect options at the middle level of snippet and
lowest level of images+text (see [SUP4] for all possible combinations).
One category of design choices is the size and number of elements, and
the other pertains to the layout and visual encoding. The computational
pipeline proposed in Sec. 4 fully supports this framework.

We consider snippet generation through the lens of lossy compres-
sion, where the goal is to provide as much detail as possible within a
given pixel budget. Although a very compact snippet that could be used
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within a grid of many snippets is a highly compressed representation of
a bundle, another use case is a full-screen preview of a single bundle
that could capture a substantial fraction of the salient content with
limited loss.

Fig. 3. Design framework for displaying visualization snippets, with three
levels and two categories of choices.

2.7 Intended Framework and Pipeline Usage
We instantiate this design framework with a computational pipeline
that delivers a powerful and flexible infrastructure to visualization snip-
pet designers who want to automatically create snippets with greater
information density than existing designs. We consider snippet de-
signers to be a broad group, encompassing not only UX designers but
others involved in creating or customizing snippets related to visualiza-
tion collections, such as a team working on a recommendation system
wanting to extend snippets to add explanations why something gets
recommended [62].

We anticipate that snippet designers would use this pipeline after
they ascertain the exact requirements for their particular use case. That
characterization would probably require targeted user studies, which we
leave to those designers rather than attempting to conduct any of them
ourselves. Instead, we thoroughly validate the technical underpinnings
and performance of the pipeline and its algorithmic building blocks on
real-world data, and provide actionable recommendations on how it
can be flexibly adapted for different scenarios.

We hope our work encourages the creation of representative snippets
beyond single thumbnails with titles. The diversity of snippet form
factors (C-Form) and end-user goals (C-Goals) reveals that different
use cases would benefit from more specialized designs.

3 RELATED WORK

We now discuss result snippets for a range of content types, and existing
approaches to visualization compression.

3.1 Result Snippets
Our work is informed by previous studies that evaluated snippet repre-
sentations. Result snippets have been investigated for a range of scenar-
ios and content types, such as documents [21, 58, 60], source code [19],
e-commerce products [44], books [40], music [72], videos [55, 68],
images [14], and extensively for websites [5, 20, 28, 33, 39, 61] in the
context of search engine result pages. Although the relative position of
results remains one of the most influential factors for assessing their
relevance [39], the back-end algorithms to find and rank bundle results
are not the objective of this project; instead, our focus is specifically on
the snippet content and its representation.

Several studies examined website snippets that contain thumbnails
only and in combination with text summaries [5, 20, 34], and suggest
that thumbnails used along with text summaries help in reducing errors
when predicting relevance. Capra et al. [9] showed that images pro-
vide only a small benefit in judgment accuracy compared to text-only
snippets. However, they emphasize that image-augmentation helped
measurably in several scenarios when textual components are poor,
which is the case for visualization bundles. Otherwise, the characteris-
tics of a website are significantly different than visualization bundles.

Snippets for videos are particularly relevant for our work. Due to
their intrinsic graphical and temporal nature, videos exacerbate the

need for snippets that offer additional representation facets besides text.
Wildemuth et al. [67] concluded that multi-image compositions or short
video sequences are more expressive and favored by users over single
images. Displaying multiple key frames of a video [24, 67] is similar
in spirit, but different in detail, to the image collage technique that
we propose in Sec. 4.3.5. Collages are composed of several selected
visualizations and dashboards to provide a bird’s eye view on the bundle
content. However, due to completely different semantics, existing
techniques for identifying highlight frames from videos cannot be
directly applied to selecting visualization images from a bundle.

Natural language provides great richness in result snippets and is
used beyond textual documents for other types of media, such as videos
or photographs. Augmenting a snippet with a description or keywords
has been proven effective in previous work [16, 22].

Recent approaches to automatically generate captions for visualiza-
tions are promising but are limited to single views and specific visual
features [1, 35, 43]. In contrast, our goal is to summarize visualization
bundles, with potentially dozens of views, on a high level. The auto-
mated creation of snippets for complex visualization bundles, as we
propose in this paper, has not been studied previously.

3.2 Approaches to Visualization Compression
In the visualization literature, many approaches have been discussed to
compress visual encodings into more compact representations, for ex-
ample, to create overviews, to support comparisons across many items,
or to allow consumption on mobile devices. This body of work spans
across visualization techniques, including trees [37], graphs [4,70], time
series [13], small multiples [7], and infographics [8,38]. In recent years,
there has been a growing interest in responsive visualizations [26, 69].
In contrast, our goal is different from all these approaches. Rather
than adapting visual encodings in response to different screen resolu-
tions, we summarize complex visualization bundles containing existing
images of multiple views and dashboards. The methods discussed
in Sec. 4 are based on selecting from a given set of images; we do not
propose new altered or derived visual encodings.

Most closely related is the work on visualization thumbnails. Heer
et al. [25] proposed to include thumbnails of single views in graph-
ical histories to support the visualization authoring process. Kim et
al. [30] surveyed current practices in creating visualization thumbnails,
specifically for data stories. Our work does not address generating new
thumbnails, but rather provides computational methods for selecting
from a set of existing thumbnails to generate snippets.

4 VIZSNIPPETS COMPUTATIONAL PIPELINE

We propose a pipeline to compress visualization bundles into represen-
tative snippets, that is adaptive to given space constraints (C-Pixels and
C-Form) and other user-defined preferences. The pipeline, illustrated
in Fig. 4, consists of multiple interchangeable algorithmic building
blocks with minimal dependencies. The extraction (green box) and
lossy compression of the bundle content (yellow boxes for images, pink
for text) is completed in an offline preprocessing step. The creation and
arrangement of the snippets (blue box) is determined at run time.

4.1 Visual Inspectors
We developed and evaluated the building blocks iteratively by using
a suite of eight visual inspectors, leveraging an extensive corpus of
real-world data. These lightweight inspectors I1 to I8, shown in Fig. 5
(and [SUP3]), are targeted at specific algorithms or analysis questions
and present results based on random data samples. This type of exten-
sive visual inspection allowed us to gain further confidence in model
choices and parameter settings, beyond standard quantitative analyses.
We elucidate how inspectors informed our decisions throughout the fol-
lowing sections, and reflect on this approach as a generalizable method
to provide guidance and to foster transferability in Sec. 6.

4.2 Page and Snippet Layouts
We support five general page layouts that control how snippets are
arranged: the grid layout divides a page into rows and columns, and
all snippets have a uniform size (fixed width, fixed height); the strip
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Fig. 4. VizSnippets computational pipeline to compress visual and textual content of visualization bundles into representative snippets.

Fig. 5. Overview of visual inspectors that we used to analyze models and parameter settings. High-resolution screenshots are in [SUP3].

layout, also known as masonry layout, divides the page into equal sized
columns (fixed width) with variable snippet heights; the list layout
displays one snippet per row (full width, variable height); the table
layout also shows one snippet per row but meta-data attributes are
divided into separate sortable columns and the snippet height is fixed;
the preview layout allocates all pixels of the page to a single large
snippet. These five layouts support all snippet use cases and form
factors (C-Form) that we identified, and, due to the modularity of the
pipeline, more options can be flexibly added. To optimize the efficacy
of snippets, layout choices should be made according to tasks and
typical bundle characteristics in a visualization collection. We discuss
design rationales and potential usage scenarios for different layouts in
[SUP4]

The initial page layout selection has cascading effects on lower levels
and dictates certain design decisions. For example, the page layout
dictates if a snippet has a variable or a fixed size. With the grid layout,
we can choose a specific snippet size and decide what ratio of pixel
space should be devoted to visual versus textual content (C-Goals).
With the strip layout, the snippet height is variable and depends on
other parameters related to the text and image content (C-Complex).
The actual number of snippets that are visible on screen depends on the
snippet size and the chosen page layout.

We provide three options to arrange the visual and textual content
within a snippet: a vertical, horizontal, or table layout. We deemed
more complex compositions such as wrapping text around images to
be less important for the use cases we identified, but these could be
added in the future. The snippet layout defines the canvas that will
be filled with text and image content. We describe the algorithms for
compressing and displaying the bundle content in subsequent sections.

4.3 Snippet Images
Our investigation confirmed that images are particularly relevant for
visualization snippets. Besides conveying the visual style and helping
users to recognize previously seen content [33, 61], images capture
semantic information. The chart type can indicate underlying data types
or the visualization objective. For instance, maps imply geographic
data and pie charts show part-to-whole relationships.

We now describe the algorithmic building blocks for selecting and
displaying composite images to increase the information content of a

snippet beyond what a single image can convey (C-OneImage). The
yellow boxes in Fig. 4 show the image-related blocks: filter empty
and embedded images, filter nested images, rank images, filter sim-
ilar images, re-rank images to increase diversity, and display image
compositions.

4.3.1 Filter Empty and Embedded Images

In a first step, we filter empty and nearly empty images based on a
dominant colour threshold CT . We convert each image to a list of RGB
pixels (points in 3D space) and use the k-means clustering algorithm to
extract the k dominant colors of an image [57], where k corresponds to
the number of cluster centroids that are used to iteratively assign the
pixels to clusters. We compute the relative size of each cluster, namely
how many pixels of the original image are assigned to each dominant
colour, to determine if a single colour predominates an image, signalling
that it is less informative (C-Quality). A dominant colour threshold
CT of 98.2% led to the highest accuracy for the sample visualization
collections, with k = 5 colours. Further details about determining these
parameters are included in Sec. 5.2.

For visualization bundles that contain dashboards, we avoid rep-
etition by filtering out images of the embedded views that were the
building blocks used to create them. Prioritizing dashboards makes
wise use of available pixel space (C-Pixels). This process is straight-
forward for Tableau data because the views that are embedded in a
dashboard are defined in the bundle specification. All images extracted
from Observable notebooks are treated as single views.

4.3.2 Rank Images

We create an initial ranking of all images within a bundle. In many
cases, the available images do not fit within the allocated pixel budget
so some images are hidden or only revealed after user interaction, as we
will describe in Sec. 4.3.5. Consequently, the order of images is relevant
to increase the explanatory power during the first impression. We divide
the images into two groups: dashboard images and single-view images.

Dashboards are prioritized and sorted by the number of embedded
views and colour diversity. The percentage of the most dominant colour
that we computed earlier is used as a proxy measure for colour diversity.
Through visual inspection with I5 (see Sec. 5.2), we discovered that
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mostly single-colour images are less informative because they mostly
show a background color.

We group all single-view images by chart type, sort the images
within each group by colour diversity, and sort all groups by their
maximum colour diversity. Then we iteratively withdraw one image
from each group until all groups are empty. All the images get assigned
a consecutive number that is used as an initial score. When chart types
are not available, such as in Observable collections, the images are only
sorted by colour diversity.

4.3.3 Filter Similar Images

Bundles frequently include very similar or identical views that should
be filtered (C-Quality). We compute pairwise distances between all
bundle images and filter out those where the distance is below a given
threshold. For determining the distance between images, we compared
three traditional approaches based on hand-crafted visual features, his-
togram of colours (HoC), histogram of oriented gradients (HoG) [18],
and structural similarity index (SSIM) [64], and the more recent ap-
proach of learning visual features and a similarity function through a
Siamese convolutional neural network (CNN) [63]. The performance of
the CNN was comparable with the best hand-crafted feature approach
for this particular task of identifying very similar or identical images,
so we chose the less complex, unsupervised method (HoG). See further
details in Sec. 5.2.

4.3.4 Re-Rank Images to Increase Diversity

After applying the previous steps, similar images might still be ranked
high and close to each other. The chart type specification may not be
available or cannot be detected, or views use the same base chart type.

We propose a re-ranking step using maximal marginal relevance
(MMR) [10] to ensure that the visual diversity of a bundle is conveyed
by a very small number of images. MMR is a greedy, iterative algorithm
that linearly interpolates between the original ranking score of an image
and the diversity to other, already selected images. The algorithm is
typically used in diversity-based text retrieval scenarios [10,47] but has
been also applied to image re-orderings [56].

The MMR algorithm hinges on the similarity model in Sec. 4.3.3
to accurately compare images. First, the top-ranked image is selected
based on the initial score and all remaining images are considered as
candidates. Then, the algorithm iteratively selects the image with the
highest MMR score ŝ := λ · s− (1−λ ) ·MaxSim, terminating when all
candidates have been assigned to the ranking. The relative weight be-
tween the original image score, s, and the maximum similarity, MaxSim,
is specified with a single tunable parameter λ . For example, λ = 1
ranks entirely by s and λ = 0 selects maximally diverse images irre-
spective of the initial ranking described in Sec. 4.3.2. We found that
λ = 0.75 leads to diverse rankings, as suggested in a systematic MMR
evaluation on comment diversification [47].

4.3.5 Display Image Compositions

We propose image collages to show multiple images within a snippet.
A collage is composed of equal-sized images that are displayed in a
uniform grid layout. The number of images depends on the chosen
snippet size (see Fig. 3): (a) for a variable snippet size, designers specify
the number of images and the image size, and the overall collage size
expands accordingly; (b) for a fixed snippet size, designers specify the
minimum image size and the algorithm tries to fit as many images as
possible into the collage.

The construction of the collage layout is based on a grid packing
algorithm that determines the optimal number of images iteratively.
When there are more image slots than images available, the image size
gets increased to make optimal use of the given pixel space (C-Pixels).
Although text within the image is not legible, the chart types and visual
styles can often be identified.

In some cases, the selected images exceed the number of slots within
a collage. Besides merely hiding overflow images, one option is to
create an image carousel that consists of multiple collages and allows
users to scroll through additional content. The supplemental video

[SUP7] shows image collages and carousels in action, and we discuss
limitations and opportunities of multi-image compositions in Sec. 5.4.

4.4 Snippet Text
Our pipeline supports three kinds of text displayed within a snippet:
the bundle title, keywords, and meta-data. All the BI tools that we
reviewed use only the user-specified bundle titles, but our finding that
these titles may not accurately reflect the semantic content of bundles
(C-Titles) leads us to a more sophisticated approach. We argue that a
small set of carefully chosen keywords (or tags) can provide valuable
insights without consuming too much space.

The pink boxes in Fig. 4 show the process for extracting keywords
and displaying text content in a snippet: preprocess text, generated
ordered list of keywords, filter keywords, add calendar years, select
meta-data, and display text content.

4.4.1 Process Text and Extract Keywords
We distinguish between two different bags of words that are extracted
from a bundle and used as input data, taking care to glean all informa-
tion from the limited textual content (C-SparseText). First, the visible
text includes chart and axis titles, sheet names, captions, annotations,
and descriptions. Second, if available, the column names from data
sources are used as additional text data and referred to as hidden text.
This hidden text can provide a useful signal about the bundle con-
tents [48], to address the problem of limited information content of
titles (C-Titles). Both sets can contain human readable text that may,
but does not always, capture meaningful semantic information. The
goal of this process is to select and rank keywords that best represent
the underlying bundle content.

We remove punctuation, strings with less than three characters, num-
bers, and English stop words. We also lemmatize the text and apply a
custom stop-word filter of 349 words we identified by analyzing fre-
quent but non-informative words or phrases in our sample collections.

We use the term frequency-inverse document frequency (TF-IDF)
model [51] on both visible and hidden text to extract keywords. Up to 30
keywords are extracted for each bag of words; this threshold is relatively
high, and in many cases fewer keywords are available.The numerical
TF-IDF-weighted scores of the terms are used for the ranking.

We remove keywords that are included in the bundle title to avoid
repetitions. Although we lemmatize words to capture variant forms of
the same word, very similar keywords may still get selected because
they are not in the lexical database. To increase the diversity of top-
ranked keywords, we compute Levenshtein distances between pairs
of words and filter similar ones [50]. The Levenshtein distance is a
measure for the number of edit-operations that are needed to transform
one word into another. A normalized distance of 0 means that strings
are identical and 1 if strings are completely different. We identified
0.15 as a useful threshold (see Sec. 5.1).

We give precedence to visible text irrespective of the TF-IDF scores,
and compute the distance between those keywords. If the distance
between two words is lower or equal to 0.15, we check the spelling [41]
and choose the alternative that is spelled correctly. We find that this
mechanism significantly improves the quality of keywords. We then
combine the two sets of keywords by iteratively selecting a hidden text
keyword and comparing the distance to already selected keywords until
we have reached the desired threshold.

Finally, we attempt to extract calendar years from the removed set
of numbers and add them back to the keywords. We discovered that
calendar years are commonly mentioned in visualizations but often not
included in the bundle title. We parse the text for four-digit numbers
within the range of 1900 to 2050. We conjecture that this range will
result only in a small number of false positives, based on our informal
manual inspection [SUP5]. We combine sequences of years into single
strings, such as 2019-2021 instead of 2019, 2020, 2021.

4.4.2 Display Text Elements
The core text element is the bundle title specified by the author. The
pipeline supports title truncation on demand, but we note it requires
careful consideration because longer titles are more descriptive. The

https://osf.io/4wz3d/?view_only=32ed23d4c8df4226b26525825f89221e
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titles otherwise remain unchanged because removing stop words or
numbers would likely confuse authors.

The pipeline allows snippet designers to manually choose which
meta-data attributes are relevant for their use case, such as the author,
the number of likes, or recent date of opening.

Adding keywords to snippets follows a similar approach to display-
ing snippet images, where we distinguish between variable-sized and
fixed-sized snippets. The priority of the keywords is predetermined by
their order, as described in the previous section.

When the snippet size is variable, designers specify the number of
keywords that should be displayed. In case of fixed-size snippets, we
fit as many keywords as possible based on the individual title length
and the meta-data attributes. More specifically, we add keywords
successively and verify the size of the snippet bounding box until
the given constraints are reached. This approach is computationally
expensive for many results; for production environments, we suggest to
predetermine the default number of keywords that should be displayed
for specific snippet sizes.

In the table layout, the title and the keywords are displayed in one
column and the meta-data attributes are split into separate columns.
In case of all other layouts, the title, the meta-data, and the keywords
are shown as three horizontal rows in the text area of a snippet. A
high-level parameter controls the font size of the snippet text.

5 RESULTS

We conducted substantial testing on the VizSnippets pipeline during and
after its creation. We now present quantitative and qualitative results
to demonstrate its utility, validate our claims, and discuss trade-offs
related to algorithms and parameter choices. Due to page constraints,
we mainly report results based on the larger Tableau Public collection;
further details related to the Observable notebooks are in [SUP5].

5.1 Snippet Text

We used visual inspectors (I1, I2) and descriptive statistics to analyze
the textual content of bundles and snippets.

We noted that the titles often provide little informative value, con-
firming our early presumptions. The average length of bundle titles
in the Tableau Public collection is 21 characters (median: 18). If we
would apply the same text processing steps on Tableau titles as we do
for other text content, 16% of titles would be empty strings. The sample
Observable titles are significantly longer and contain 31 characters on
average (median: 28).

We examined the raw text content of Tableau bundles using I1,
which indicated that the hidden data column names can serve as useful
auxiliary data but are often less clear than chart-visible text, confirming
our choice to select keywords from visible text first and referring to
hidden text only if room remains. The percentage of correctly spelled
words is 93% for visible text and 88% for hidden text.

For the Levenshtein distance to filter very similar keywords, we
determined the threshold of 0.15 (on a scale from 0-1) through visually
inspecting hundreds of keyword pairs using I2. For larger distances,
words frequently have different meanings, in contrast to smaller differ-
ences that are typos or word variations not captured during lemmatiza-
tion. After applying the filtering steps, the average number of keywords
decreases from 20 to 16 (the median is 13).

In assessing the extraction of calendar years that are not included
in the bundle title, we found that 19.7% of all bundles contain annual
details (within the range of 1900-2050) and visually verified that these
years provide valuable information when comparing multiple bundles,
such as reports covering different time periods. In 67% of cases, none
of the extracted years are mentioned in the bundle title.

5.2 Snippet Images

The average number of extracted images per bundle is 5.3 (the median
is 4). After applying the filtering steps, the average number is only 2.5
(the median is 2), which demonstrates the potential for compressing
visual content with minimal information loss.

5.2.1 Empty Images and Colour Diversity

To evaluate the algorithm for filtering empty and nearly empty images
using a dominant colour threshold, we manually labeled 2600 images
using binary labels. We then tested the accuracy for varying colour
thresholds CT and different numbers of clusters (k = [3,5,7]), where k
corresponds to the number of dominant colours. k = 5 and k = 7 led
to similar results but the performance of k-means clustering decreases
with more clusters. The highest accuracy of 93%, with k = 5, came
from setting CT to 98.5%.

We also used visual inspector I5 to further analyze what type of
images are filtered. If CT is too low, line charts with minimal data ink
may get falsely discarded, while a very high CT may include images that
contain mostly white space and provide no informative value. By using
this inspector and adjusting CT interactively, we observed that images
with a high colour diversity are more informative when scaled down,
compared to mostly single-colour images. Therefore, we incorporate
the ratio of the most dominant colour in the image ranking.

5.2.2 Similar Images

We compared four approaches for computing pairwise image simi-
larities. Three methods are based on hand-crafted visual features:
histogram of colours (HoC), histogram of oriented gradients (HoG),
and structural similarity index (SSIM). The fourth method is a Siamese
convolutional neural network (CNN) trained on image pairs to learn
deep representations and the similarity function automatically.

We manually labeled 6019 image pairs to evaluate the algorithms.
We constructed pairs by randomly sampling two images from the same
bundle, to increase the chance of similar images and because the algo-
rithms are generally only used to compare images within and not across
bundles. Image similarity was determined solely based on the visual
style and not the underlying semantics. The deciding factor was if two
images provide any additional value or if one representative image is
sufficient. 35% of the image pairs were ultimately labeled as similar.
We divided the pairs into a training and validation set with an 80/20
split for use with the CNN; the other three methods are unsupervised.

All methods reach a similar accuracy between 93%-94%. More
details about the models and quantitative results are in [SUP5].

We implemented two visual inspectors (I3 and I4) to qualitatively
analyze the results. I3 shows random samples of negatively predicted
image pairs (false positives, false negatives). This tool allowed us to
better understand when a model diverges from the human annotator.
I4 shows a similarity matrix of all images within a bundle to help us
analyze the magnitude of values apart from the binary classification.

The quantitative results already showed that all methods performed
similarly, except SSIM has a slightly lower accuracy. The visual in-
spection revealed that all models detect nearly identical images well
but grapple with larger differences that the human annotator considered
irrelevant, such as slightly different layouts, or a chart legend that is
illegible when the image is rescaled to a thumbnail size.

The CNN contains only two convolutional layers and was trained
on 4815 pairs and learned low-level features. It might learn better
high-level concepts by using a deeper architecture and a sufficiently
large training set. However, in practice, ample data to train a CNN for
diverse collections may not be available. For our objective of filtering
only very similar and identical images within a bundle, conventional
unsupervised methods, such as HoC and HoG, are adequate and can be
directly applied to new visualization collections. When similar images
are not detected with less complex models, the MMR algorithm will
ensure that these images are far apart in the final ranking.

5.2.3 Image Ranking and Collages

We created a visual inspector (I6) that reveals which images are getting
filtered at which step, and how the original ranking changes after
diversifying it based on chart types and image similarity. This type
of qualitative assessment was crucial in understanding if combining
various building blocks leads to the desired outcome or if important
information gets lost during the image compression.

https://osf.io/28fvg/?view_only=a91d07b913d84f58805a12d51d462871
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Fig. 6. Inspector I6 to analyze the ranking and which images are filtered
( incomplete/empty, embedded, and similar views).

Fig. 6 is a screenshot of I6 showing the images of 6 example bundles
on a grey background. Coloured crosses indicate why images are fil-
tered. The first 2 bundles are both reduced to a single image because of
empty and embedded images. In general, we can see that most images
are filtered because they are embedded in a dashboard (blue cross). The
visual inspection also revealed that, with more complex dashboards,
embedded views may end up very small on screen so keeping them as
additional separate images might be helpful. Nevertheless, we made
the trade-off to filter all embedded images because the median number
of views per dashboard is only 2 and therefore sufficient details are
visible in most cases.

We analyzed the number of images within a collage in relation to
overflow images that are discarded or moved to additional collages
in the carousel. After applying all filters, 87% of all bundles can be
fully represented with collages of size 4. 94% of bundles contain 6
or fewer images. Instead of choosing a standard collage size, snippet
designers only must specify the minimum image size and all images
are resized or divided into multiple collages accordingly. Hence, the
maximal fragmentation of a collage depends on the overall snippet size,
which we will discuss below.

5.3 Page and Snippet Layout

We created the inspectors I7 to analyze different page and snippet
layouts, and I8 to compare our layouts with existing snippet designs
from the commercial tools Tableau, Observable, Power BI, and Qlik.
Although these tools prioritize a uniform grid or list layout, we argue
other layouts can be superior in some scenarios. Fig. 1 shows multiple
automatically generated snippets of the same Observable notebook.
Our pipeline supports trade-offs between compactness and information
capacity, where the complexity of a bundle (C-Complexity) is directly
linked to the amount of pixels used (C-Pixels). For example, snippets in
a strip layout expand based on their content, so bundles with rich visual
and textual content take up more space than bundles containing only
a bar chart. These complexity differences are not apparent in a grid
layout. The preview layout, with an example snippet shown in Fig. 1-6,
goes one step further to serve as a minimum-loss representation of
a bundle in return for larger pixel budget. The preview layout can,
for instance, be used in a modal window to provide additional details
instead of a time-consuming opening of the fully interactive version of
a bundle. This use case is not supported in any of the reviewed tools,
but our results show its promise.

Fig. 7 shows a comparison between a snippet of a Tableau workbook
generated with our pipeline and three alternative designs used in com-
mercial tools. This example is indicative for many other bundles we
have seen in our collection. It consists of dashboards and single views,
and the bundle title is vague. The three tools display only one image
and a title (see Fig. 7 2-4). In contrast, the VizSnippets pipeline can
create an image collage with four images and augment the snippet with
keywords to expose the underlying topic (see Fig. 7-1). We see that
keywords can be highly valuable in these cases where the bundle title
is non-informative, and our design requires only a minimal increase of

Fig. 7. Snippet comparison: (1) VizSnippets pipeline, (2) Tableau Online,
(3) Tableau Public, and (4) Qlik Sense.

the overall snippet size or a slightly smaller thumbnail. When a user
hovers on the snippet, arrows are superimposed and they can scroll
through additional image content.

5.4 Designer Feedback
We obtained feedback from 6 potential snippet designers within Tableau
product and research groups on the final version of the VizSnippets
pipeline during an informal one-hour session. They confirmed the
issues related to existing snippet designs, were highly interested in
the overall ability to show more relevant information to users, and
saw promise in many specific aspects of the pipeline. In comparison
to the baseline designs, the added keywords and the image selection
and collage generation significantly enhance the information capacity
of snippets. They valued the large preview capability to show more
results without loading the fully-interactive version and the flexibility
of generating different types of layouts for different tasks.

The interviewees stated that this work will inform new snippet de-
signs and they could see using the underlying algorithms for future
products, although they said they were unlikely to use every supported
layout. In particular, they thought some multi-image layouts may be
too visually busy when showing search results in a consumer product,
although the information density might be much better. To address this
specific issue, designers could include only a few images in one collage.
This strategy can result in several collages which are then combined
into an image carousel that lets users scroll through additional content
without leaving the snippet. An alternative approach is to show only
one image per snippet and replace it with other images when users
point their cursor onto it, similar to interactive video thumbnails [67].

6 VISUAL INSPECTION THROUGH RANDOM SAMPLING

We now reflect on our approach to creating multiple lightweight visual
inspectors, to cast it as a general method.

6.1 Inspectors for Iterative Development
Inspectors can support the common trial and error strategy for model
or algorithm development where models and parameters are initially
chosen through some combination of experience, reading related work,
and ideally by running quantitative analyses with ground truth data.
These algorithmic choices are then iteratively refined until results are
satisfactory or improvement stagnates.

A concrete example is the detection of similar images. Using an
algorithm based on the histogram of gradients, we manually assigned
similarity labels to example image pairs, and then computed statistical
measures of the performance of the binary classifier. Precision, recall,
and other measures were useful instruments in determining model
appropriateness. However, model results invariably led us to follow-
up questions that were amenable to visual inspection. For example,
in which cases does the model prediction diverge from the human
annotator? Do those images share any special characteristics? These
insights can in turn be used to tweak model parameters, such as the size
of the cell for which histograms are created.

6.2 Inspector Characteristics
Inspectors can facilitate discussions and inquiry about needs with
project stakeholders, and most centrally serve to internally probe and
validate algorithmic choices and parameter settings. We identify four



Fig. 8. A conceptual model for extensive, item-level visual inspection
through random sampling.

abstract tasks that can be supported by inspectors: 1) see and compare
results after applying a model or algorithm on real examples, 2) see
how results change with varying thresholds, 3) see intermediate steps
instead of the final result, and 4) see negative examples (e.g., false
positives, false negatives).

The process, illustrated in Fig. 8, is driven by two key ideas. First,
randomly load samples from a substantial data corpus for item-level
inspection to avoid cherry-picking. Second, spin up many lightweight
inspectors targeted at specific analysis tasks or algorithms, instead of
building one feature-rich system.

All inspectors should have a button to load new samples, to help
the analyst gradually progress from a partial to a more complete un-
derstanding of model or algorithm behavior, to judge its effectiveness
and limitations. Random sampling guarantees that analysts scrutinize
a diverse range of results. Inspectors may have control widgets, for
example to adjust algorithm parameters or to constrain the samples to a
specific data range. Visual inspection through random sampling actively
mitigates the risk of confirmation bias, but does not provide immunity
to it. Analysts may still be enticed to draw premature conclusions after
seeing only a small set of examples.

The scope of each inspector should be narrowly constrained to sup-
port ultra rapid prototyping. These tools are a means to an end, and,
preferably, the implementation should not take longer than a few hours
or days. The design and functionality of the visual inspectors can vary
substantially, but we aimed to reuse components in different inspectors
and a common database. We implemented web-based inspectors in
JavaScript and D3, with a Python back-end, to provide a maximum of
flexibility and because we were familiar with the development stack.
Ideally, inspectors provide nearly instantaneous feedback during the
interaction. Thus, model predictions or algorithm output is either pre-
processed on all available data or computed live on the current sample.

6.3 Visual Inspector Related Work
Numerous visual analytics approaches related to model explanation [17,
59], model construction [42, 45], and model evaluation [2, 15, 32, 71]
have been suggested. Our concern here is not to illuminate the model
internals [66] or steer the generation of new models [11]. Instead, we
are using visual methods for the evaluation and refinement of compu-
tational models that range from simple algorithms to more complex
machine learning models. The goal is insights on effectiveness and
limitations that can inform new parameter and model choices, or data
iteration [27]. Others have noted that the creation of feature-rich sys-
tems tailored to specific models [36] is not always feasible, particularly
when the goal is to apply existing models to new domains.

We suggest the extensive visual inspection with lightweight tools
and real-world data as an alternative approach. Similar to the visual
parameter space analysis [54], our approach also depends on a sampling
mechanism, but we randomly sample data for item-level inspection
to see a model in action while avoiding confirmation bias, instead
of systematically sampling the parameter space. Closely related is
the visual diagnosis of binary classifiers by Krause [32] that includes
presenting model results based on single instances. However, their
focus is on instance-level explanations for binary classifications while
we discuss a high-level visual-inspection strategy that is model agnostic.

Kachkaev et al. [29] provide a single example showing the value of
visual inspection with real-world data, in their case survey results; we
advocate injecting such inspectors at many places within a computa-
tional system to assess performance and set parameters.

7 DISCUSSION AND FUTURE WORK

We created and validated the computational pipeline through quan-
titative and qualitative analysis of two visualization collections, pro-
viding substantial evidence that we achieved our goal of dramatically
increased information density within snippets. Follow-up benchmarks
on additional collections would strengthen our claims of generality.
User studies focused on specific use cases, ideally informed by the
nuances of specific visualization platform characteristics and require-
ments, would shed further light on efficacy and would help designers
select suitable page and snippet layouts. Our findings are applicable
to other computational notebooks that may contain substantial visual
content, such as Jupyter Notebook [49], and can complement code
summarization techniques [65].

We chose extractive techniques to summarize the content of bundles
verbatim. In contrast, abstractive techniques, such as latent Dirichlet
allocation (LDA) [6], derive topics from a corpus and then use topic
keywords to describe a document. These high-level concepts may be
more understandable to users but the models need to be trained on large
corpora of text, and even then, some bundles will get falsely allocated
to a topic and represented by irrelevant keywords. Approaches related
to natural language generation [46] also rely on massive amounts of
training data and are not directly applicable to visualization snippets
due to the limited text fragments. For example, Chen [12] generated
abstractive summaries of web pages but ignored those with less than
100 words to ensure a sufficient basis for summarization. In comparison,
our sample Tableau workbooks contain 37 unique words on average.

In terms of visual content, all methods are based on a set of screen-
shots, with the aim to accurately represent the visual style, but views
and dashboards are scaled down significantly and may become illegible.
One option is to redraw smaller versions of charts, which poses its own
research problem, because of exotic chart types and inaccessible data
and chart specifications. Another alternative is to analyze the bundle
content and summarize it with abstract iconography or graphics [30].

8 CONCLUSION

We present a computational pipeline to compress visualization bundles,
such as Tableau workbooks or Observable notebooks, into represen-
tative snippets. These snippets allow users to judge the relevance of
bundles for a specific task without opening and inspecting them one by
one. To gain a better understanding of requirements and challenges, we
engaged with Tableau teams of potential snippet designers aware of end-
user pain points, and reviewed existing snippets across a broad set of
five different tools. We found that existing designs suffered from poor
information density, substantially impairing the ability of users to make
the expected relevance judgements. Snippets have an immense impact
on the consumption of visualization collections, and designing them
with higher information content can significantly improve the workflow
of use cases including the presentation of search results, navigation
through faceted browsing, and recommendation suggestions. The pre-
sented VizSnippets computational pipeline is responsive to a specified
pixel budget, and can be adapted to many use cases and form factors
through a suite of controllable layout families. The added keywords
and the image selection and collage generation significantly enhance
the information capacity. While the effectiveness of our pipeline was
primarily validated through Tableau and Observable bundles, we argue
that the suggested compression techniques can be applied to many other
visualization collections due to their similar characteristics. The devel-
opment and evaluation of the pipeline was informed through extensive
visual inspection on random samples of real-world data. We reflect on
this method and provide guidance for other researchers.

ACKNOWLEDGMENTS

We thank our collaborators at Tableau and appreciate feedback from
Madison Elliot, Steve Kasica, Zipeng Liu, Ben Shneiderman, and Mara
Solen.



REFERENCES

[1] R. A. Al-Zaidy, S. R. Choudhury, and C. L. Giles. Automatic summary
generation for scientific data charts. In Proc. AAAI Conf. on Artificial
Intelligence, pp. 658–663, 2016.

[2] S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh.
ModelTracker: Redesigning performance analysis tools for machine learn-
ing. In Proc. ACM SIGCHI Conf. on Human Factors in Computing Systems
(CHI), pp. 337–346, 2015.

[3] Z. Armstrong. Covid-19 viz roundup (Observable notebook).
https://observablehq.com/@zanarmstrong/covid-19-viz-roundup, 2021.
Accessed: 2021-02-26.

[4] D. Auber. Using strahler numbers for real time visual exploration of huge
graphs. In Int. Conf. Computer Vision and Graphics, vol. 1, p. 3, 2002.

[5] A. Aula, R. M. Khan, Z. Guan, P. Fontes, and P. Hong. A comparison of
visual and textual page previews in judging the helpfulness of web pages.
In Proc. Int. Conf. on World Wide Web, pp. 51–60, 2010.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal
of Machine Learning Research, 3:993–1022, 2003.

[7] M. Brehmer, B. Lee, P. Isenberg, and E. K. Choe. A comparative evaluation
of animation and small multiples for trend visualization on mobile phones.
IEEE Trans. Visualization and Computer Graphics, 26(1):364–374, 2019.

[8] Z. Bylinskii, S. Alsheikh, S. Madan, A. Recasens, K. Zhong, H. Pfister,
F. Durand, and A. Oliva. Understanding infographics through textual and
visual tag prediction. arXiv preprint arXiv:1709.09215, 2017.

[9] R. Capra, J. Arguello, and F. Scholer. Augmenting web search surro-
gates with images. In Proc. ACM Int. Conf. Information and Knowledge
Management, pp. 399–408, 2013.

[10] J. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking
for reordering documents and producing summaries. In Proc. ACM SIGIR
Conf. Research and Development in Information Retrieval, pp. 335–336,
1998.

[11] D. Cashman, S. R. Humayoun, F. Heimerl, K. Park, S. Das, J. Thompson,
B. Saket, A. Mosca, J. Stasko, A. Endert, et al. A user-based visual
analytics workflow for exploratory model analysis. 38(3):185–199, 2019.

[12] W.-F. Chen, S. Syed, B. Stein, M. Hagen, and M. Potthast. Abstractive
snippet generation. In Proc. The Web Conference, pp. 1309–1319, 2020.

[13] Y. Chen. Visualizing large time-series data on very small screens. In Proc.
Eurographics Conf. Visualization (EuroVis), pp. 37–41, 2017.

[14] Z. Chen, M. Cafarella, and E. Adar. Diagramflyer: A search engine for
data-driven diagrams. In Proc. Int. Conf. on World Wide Web, pp. 183–186,
2015.

[15] I. K. Choi, N. K. Raveendranath, J. Westerfield, and K. Reda. Visual (dis)
confirmation: Validating models and hypotheses with visualizations. In
Int. Conf. Information Visualization, pp. 116–121, 2019.

[16] K. Church, B. Smyth, and M. T. Keane. Evaluating interfaces for intelligent
mobile search. In Proc. Workshop on Web Accessibility (W4A): Building
the Mobile Web: Rediscovering Accessibility?, pp. 69–78, 2006.

[17] D. Collaris and J. J. van Wijk. ExplainExplore: visual exploration of
machine learning explanations. In Proc. IEEE Pacific Visualization Symp.,
pp. 26–35, 2020.

[18] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In Proc. IEEE Conf. Computer Vision and Pattern Recognition,
vol. 1, pp. 886–893, 2005.

[19] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia, S. Drucker, and
G. Robertson. Code thumbnails: Using spatial memory to navigate source
code. In Proc. IEEE Symp. on Visual Languages and Human-Centric
Computing, pp. 11–18, 2006.

[20] S. Dziadosz and R. Chandrasekar. Do thumbnail previews help users make
better relevance decisions about web search results? In Proc. ACM SIGIR
Conf. Research and Development in Information Retrieval, pp. 365–366,
2002.

[21] B. Erol, K. Berkner, and S. Joshi. Multimedia thumbnails for documents.
In Proc. Int. Conf. on Multimedia, pp. 231–240, 2006.

[22] K. N. Fachry, J. Kamps, J. Zhang, et al. The impact of summaries:
What makes a user click. In Proc. Dutch-Belgian Information Retrieval
Workshop, pp. 47–54, 2010.

[23] S. Greene, G. Marchionini, C. Plaisant, and B. Shneiderman. Previews
and overviews in digital libraries: Designing surrogates to support visual
information seeking. Journal of the American Society for Information
Science, 51(4):380–393, 2000.

[24] M. Gygli, Y. Song, and L. Cao. Video2Gif: Automatic generation of
animated gifs from video. In Proc. IEEE Conf. Computer Vision and

Pattern Recognition, pp. 1001–1009, 2016.
[25] J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala. Graphical histories for

visualization: Supporting analysis, communication, and evaluation. IEEE
Trans. Visualization and Computer Graphics, 14(6):1189–1196, 2008.

[26] J. Hoffswell, W. Li, and Z. Liu. Techniques for flexible responsive vi-
sualization design. In Proc. ACM SIGCHI Conf. on Human Factors in
Computing Systems (CHI), pp. 1–13, 2020.

[27] F. Hohman, K. Wongsuphasawat, M. B. Kery, and K. Patel. Understanding
and visualizing data iteration in machine learning. In Proc. ACM SIGCHI
Conf. on Human Factors in Computing Systems (CHI), pp. 1–13, 2020.

[28] S. Kaasten, S. Greenberg, and C. Edwards. How people recognise pre-
viously seen web pages from titles, urls and thumbnails. In People and
Computers XVI-Memorable Yet Invisible, pp. 247–265. Springer, 2002.

[29] A. Kachkaev, J. Wood, and J. Dykes. Glyphs for exploring crowd-sourced
subjective survey classification. 33(3):311–320, 2014.

[30] H. Kim, J. Oh, Y. Han, S. Ko, M. Brehmer, and B. C. Kwon. Thumbnails
for data stories: A survey of current practices. In IEEE Visualization
Conference (VIS), pp. 116–120, 2019.

[31] D. E. Knuth. Literate programming. The Computer Journal, 27(2):97–111,
1984.

[32] J. Krause, A. Dasgupta, J. Swartz, Y. Aphinyanaphongs, and E. Bertini. A
workflow for visual diagnostics of binary classifiers using instance-level
explanations. In Proc. IEEE Conference on Visual Analytics Science and
Technology (VAST), pp. 162–172, 2017.

[33] H. Lam and P. Baudisch. Summary thumbnails: readable overviews for
small screen web browsers. In Proc. ACM SIGCHI Conf. on Human
Factors in Computing Systems (CHI), pp. 681–690, 2005.

[34] Z. Li, S. Shi, and L. Zhang. Improving relevance judgment of web search
results with image excerpts. In Proc. Int. Conf. World Wide Web, pp.
21–30, 2008.

[35] C. Liu, L. Xie, Y. Han, X. Yuan, et al. Autocaption: An approach to
generate natural language description from visualization automatically. In
Proc. IEEE Pacific Visualization Symp., pp. 191–195. IEEE, 2020.

[36] S. Liu, X. Wang, M. Liu, and J. Zhu. Towards better analysis of ma-
chine learning models: A visual analytics perspective. Visual Informatics,
1(1):48–56, 2017.

[37] Z. Liu, S. H. Zhan, and T. Munzner. Aggregated dendrograms for visual
comparison between many phylogenetic trees. IEEE Trans. Visualization
and Computer Graphics, 26(9):2732–2747, 2019.

[38] S. Madan, Z. Bylinskii, M. Tancik, A. Recasens, K. Zhong, S. Alsheikh,
H. Pfister, A. Oliva, and F. Durand. Synthetically trained icon proposals for
parsing and summarizing infographics. arXiv preprint arXiv:1807.10441,
2018.

[39] M.-C. Marcos, F. Gavin, and I. Arapakis. Effect of snippets on user expe-
rience in web search. In Proc. Int. Conf. on Human Computer Interaction,
pp. 1–8, 2015.

[40] D. McKay, G. Buchanan, N. Vanderschantz, C. Timpany, S. J. Cunning-
ham, and A. Hinze. Judging a book by its cover: interface elements that
affect reader selection of ebooks. In Proc. Australian Computer-Human
Interaction Conference, pp. 381–390, 2012.

[41] D. Merejkowsky and R. Kelly. PyEnchant spellchecking library.
https://pypi.org/project/pyenchant/.

[42] Y. Ming, P. Xu, F. Cheng, H. Qu, and L. Ren. ProtoSteer: Steering deep
sequence model with prototypes. IEEE Trans. Visualization and Computer
Graphics, 26(1):238–248, 2019.

[43] V. O. Mittal, J. D. Moore, G. Carenini, and S. Roth. Describing complex
charts in natural language: A caption generation system. Computational
Linguistics, 24(3):431–467, 1998.

[44] Y. Mu, Q. Wei, G. Chen, and X. Guo. An iterative multi-criteria opti-
mization of product snippets enhanced by feature extraction from online
reviews. In Proc. Conf. Data Science and Knowledge Engineering for
Sensing Decision Support, pp. 545–552, 2018.
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