

Visualizing Graph Neural Networks

with **CorGIE** : <u>Cor</u>responding a <u>G</u>raph to <u>Its</u> <u>E</u>mbedding

Zipeng Liu University of British Columbia (UBC) Yang Wang Facebook Jürgen Bernard University of Zurich

Tamara Munzner UBC

Paper under review ChinaVis 2021 at Wuhan July 2021

Outline

- Introduction of GNN
- Visual evaluation of GNN
 - Previous
 - Ours: CorGIE
 - Overview
 - Data & tasks
 - CorGIE interface
 - Reflections

Graph neural network (GNN)

- Machine learning (ML) models for graph
 - Like CNN for images
 - Like Transformer for text
- Many real-world graph-related applications
 - Node classifications
 - e.g. fraud detection, disease classification
 - Link prediction
 - e.g. recommendation of products, protein interactions

Graph neural network (GNN)

Movie – user graph

GNN: neighborhood aggregation

Node features are aggregated / passed through topological neighborhood

https://snap-stanford.github.io/cs224w-notes/machine-learning-with-networks/graph-neural-networks

Evaluate GNN

Two big-picture questions:

- "Are we there yet?": should we train / tune more?
- "Are we lost?": does it behave as we expect?

Outline

- Introduction of GNN
- Visual evaluation of GNN
 - Previous
 - Ours: CorGIE
 - Overview
 - Data & tasks
 - CorGIE interface
 - Reflections

Evaluate GNN: previous approaches

Ying et al. GNNExpaliner. NeurIPS'19.

Evaluate GNN: previous approaches

Li et al. EmbeddingVis. VAST'18.

Jin et al. GNNVis. Arxiv'20.

Evaluate GNN: previous approaches

Outline

- Introduction of GNN
- Visual evaluation of GNN
 - Previous
 - Ours: CorGIE
 - Overview
 - Data & tasks
 - CorGIE interface
 - Reflections

Evaluate GNN: 📩 CorGIE idea

Examples of correspondences:

Evaluate GNN: 📩 CorGIE idea

Examples of correspondences:

Evaluate GNN: 📩 CorGIE idea

Examples of correspondences:

Check [Similar topology? Similar node features?] Check [Different topology? Different node features?]

Pick [two nodes sharing many topo neighbors]

Pick [a cluster]

- - - Pick [two far-away clusters]
 - Check [how close the nodes are compared to others?]

Evaluate GNN: ल CorGIE idea

K-hop layout

- Topo neighbors in hops
- Clustering structure within hop

Data (sub-)spaces

Topology space

Targets: Neighbors; connections

Latent space

Clustering; relative positions

Feature space

Feature distribution

- Specify nodes in space
 - Properties of the targets
 - E.g. tight clusters in latent space, disconnected nodes in topology space

• Correspond them between spaces

- Targets should tell the same story between spaces
 - E.g. nodes in tight clusters in latent space are expected to share neighbors in topo space
- Iterative process
 - Refine specification
 - Inspire new specification

Outline

- Introduction of GNN
- Visual evaluation of GNN
 - Previous
 - Ours: CorGIE
 - Overview
 - Data & tasks

- CorGIE interface
- Reflections

CorGIE interface: K-hop layout

- Show topo neighbors of user-specified node sets
 - Mimic how info is aggregated in the GNN
 - Boxes from left to right: Focal nodes, hop-1, hop-2, ...
 - Within box, cluster neighbors using their topo connections

Multiple views for data spaces and connecting them

Reflections

- Correspondences between input, output, middleware
 - Grey-box approach
 - Works for many GNN models
 - Generalizable to other types of models
- Data space notion

- Useful to think about connecting data spaces
- New spaces for future extension
 - e.g., geospatial spaces for graphs dealing with traffic

Visualizing Graph Neural Networks with CorGIE: <u>Cor</u>responding a <u>G</u>raph to <u>Its Embedding</u>

Zipeng Liu, Yang Wang, Jürgen Bernard, Tamara Munzner Paper under review Presented at ChinaVis 2021

http://www.cs.ubc.ca/group/infovis/pubs/2021/corgie/

Take-away

- Evaluate GNN visually by exploring correspondences between graph & its embedding
 - Abstraction: connecting data spaces
- Reveal graph topology used in GNN with K-hop layout

