
7/5/2019 bailey_code.R

127.0.0.1:8888/edit/notebooks/wuft/Power_of_Irma/bailey_code.R# 1/3

###
########### EJUF Code to Evaluate Landlord Data for Bailey ############
########################## Joan Meiners 2017 ##########################

Trying to figure out who are landlords by who owes multiple properties, and which
properties and landlords have most reported code violations

setwd("/Users/joanmeiners/Dropbox/Fall 2017/Environmental
Journalism/Bailey_Landlords_EJUF/")

library(dplyr)
library(plyr)

load initial dataset from bailey of addresses and owners, just for zip 32641 (see end of
script for code sorting all addresses by number of owners and violations)
bailey = read.csv("Energy-Poverty 32641 homes.csv")
levels(bailey$OWNERNME1) # how many different property owners are there
dim(bailey)
landlords = dplyr::count(bailey, OWNERNME1, sort = TRUE) # count properties per owner and
sort owners by how many properties they own
landlords = subset(landlords, n>1) # only keep owners that have more than one property =
likely landlords
View(landlords)

calculate the total cost of utilities per owner
by_owner = group_by(bailey, OWNERNME1)
utilities = dplyr::summarise(by_owner, cost = sum(Unit.Utilities.Cost))
View(utilities)

combine datasets on who the likely landlords are with how many properties they own and th
combined utility cost at those properties (only for zip code 32641)
ownercost = plyr::join(landlords, utilities, by = 'OWNERNME1')
View(ownercost)
colnames(ownercost)[colnames(ownercost)=="n"] <- "num_properties" # rename column
ownercost$cost_per_property = ownercost$cost / ownercost$num_properties # add column of
average utility cost per property for each owner

save dataset to file
write.csv(ownercost, file = "owner_cost.csv", row.names=FALSE)

Now looking at landlord data to find out which addresess have had the most complainst
against them
load data on reported code violations
violations = read.csv("Bailey_landlord.csv", header= TRUE)
dim(violations)
View(violations)

code to group the reported code violations by address, commented out because saved result
is loaded from repository in next step
addresses = violations %>%
dplyr::group_by(PrimaryParty, Address) %>%
dplyr::summarise(viol_per_address = n())
addresses = addresses[order(-addresses$viol_per_address),] # sort in order of decreasing
number of code violations
View(addresses)

1
2
3
4
5

6
7

8
9

10
11
12

13
14
15
16

17

18
19
20
21
22
23
24
25

26
27
28
29

30
31
32
33
34
35

36
37
38
39
40
41

42
43
44
45

46

steph
Highlight
[line 14] Count unique values

steph
Highlight
[lines 16-23] Group by single column

[lines 16-23] create frequency table

[line 17] refine table

steph
Highlight
[lines 16-26] divide & conquer

[line 26] outer join tables

steph
Highlight
[lines 31-32] Export

steph
Highlight
[lines 41-46] Toggle step on and off

steph
Highlight
[line 13] load

steph
Highlight
[line 39] peek at data

steph
Highlight
[37] load

7/5/2019 bailey_code.R

127.0.0.1:8888/edit/notebooks/wuft/Power_of_Irma/bailey_code.R# 2/3

write.csv(addresses, "worst_addresses.csv", row.names = FALSE) # save to file

load file created in commented out code above for addresses with the most code violations
and who ownes them
addresses = read.csv("worst_addresses.csv", header = TRUE)

reformat addresses and pull in zip code information from another dataset
adds = tidyr::separate(addresses, Address, into = c("Number", "Street"), sep = "\\ ", extra
= "merge") # number coded as a five digit with leading zeros, separate out and classify as
numeric to remove differing numbers of leading zeros from address number
adds$Number = as.numeric(adds$Number)
adds$ADDRESS = paste(adds$Number, adds$Street, sep=" ") # paste address number and street
fields back together
adds$viols = adds$viol_per_address # rename column
adds = subset(adds, select = c("ADDRESS", "viols"))
adds$ADDRESS = trimws(adds$ADDRESS) # remove extra whitespace from address field
dim(adds)

pull in cleaned dataset on property values from Hal Knowles
value = read.csv("/Users/joanmeiners/Dropbox/Fall 2017/Environmental Journalism/value.csv",
header = TRUE)
zipviol = plyr::join(adds, value, by = "ADDRESS") # join property value to code violations
dataset by address
zipviol = subset(zipviol, POSTAL != "NA" & CNTASSDVALUE > 20000, select = c("ADDRESS",
"POSTAL", "viols", "CNTASSDVALUE")) # filter out any addresses without a zip code and those
valued at below $20,000 as likely not a residence
zipviol$viols = as.numeric(zipviol$viols)
zipviol$POSTAL = as.factor(zipviol$viols)

look for trends in violations per zip code
hist(zipviol$viols) # need to transform
hist(log10(zipviol$viols)) # zero-inflated, probably passable for this simple analysis --
checked and still significant when add 1 to values or restrict to addresses with multiple
code violations, but this allows us to still look at those addresses with only one code
violation for comparison along property value gradient
hist(log10(zipviol$CNTASSDVALUE)) # normal
violzip = glm(log10(viols) ~ log10(CNTASSDVALUE), data = zipviol)
summary(violzip)
violzip

plot number of code violations per address against the property value of address
quartz(width = 12, height = 6) # this is view window, to save figure to file, turn on line
below instead of this one
tiff(filename = "Violations_value.tiff", units = "in", compression = "lzw", res = 300,
width = 12, height = 6)
ggplot(aes(y = viols, x = CNTASSDVALUE), data = zipviol) +
 scale_x_log10(breaks = c(2000000 ,200000, 20000), labels = function(x) paste0("$",
scales::comma(x))) +
 geom_point(color = "grey") +
 xlab("County-assessed Property Value (USD)") + ylab("Number of code violations per
address") +
 theme(axis.title = element_text(family = "Trebuchet MS", color="#666666", face="bold",
size=15)) +
 theme(axis.text = element_text(family = "Trebuchet MS", color="#666666", face="bold",
size=12)) +
 geom_smooth(method = "lm", se=FALSE, color="darkgreen")
dev.off()

47
48
49

50
51
52
53

54
55

56
57
58
59
60
61
62

63

64

65
66
67
68
69
70

71
72
73
74
75
76
77

78

79
80

81
82

83

84

85
86

steph
Highlight
[lines 47] tolerate dirty data

steph
Highlight
[line 56-57] Canonicalize column names

steph
Highlight
[line 58] strip whitespace

steph
Highlight
[line 61] use previously cleaned data

[line 61] use data from colleague

steph
Highlight
[line 61] Outer join tables

steph
Highlight
[line 64] Set data confidence threshold

steph
Highlight
[line 72] scale values

steph
Highlight
[line 72] interpret statistical/ml model

steph
Highlight
[line 79-85] visualize data

steph
Highlight
[line 53] extract column values

steph
Highlight
[50] load

steph
Highlight
[65] change var type

steph
Highlight
[69] visualize data

7/5/2019 bailey_code.R

127.0.0.1:8888/edit/notebooks/wuft/Power_of_Irma/bailey_code.R# 3/3

arrange data by owners with most addresses
owners = addresses %>%
 dplyr::group_by(PrimaryParty) %>%
 dplyr::summarize(addresses_per_owner = n())
owners = owners[order(-owners$addresses_per_owner),]
View(owners)

arrange data by owners with most code violations
viol = subset(addresses[, c("PrimaryParty", "viol_per_address")])
viol = viol %>%
 dplyr::group_by(PrimaryParty) %>%
 dplyr::summarize(violations_per_owner = sum(viol_per_address))
viol = viol[order(-viol$violations_per_owner),]
View(viol)

combine datasets on number of properties and number of code violations by owner
owner_violations = plyr::join(viol, owners, by = "PrimaryParty")
owner_violations$avg_owner_violations_per_address = owner_violations$violations_per_owner /
owner_violations$addresses_per_owner
owner_violations = subset(owner_violations, addresses_per_owner > 1)
owner_violations = owner_violations[order(-
owner_violations$avg_owner_violations_per_address),]
View(owner_violations)

write out file of most code-violating owners
write.csv(owner_violations, "owner_violations", row.names = FALSE)

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

106
107

108
109
110
111
112

steph
Highlight
[line 89-93 and 95-101] outlier detection

steph
Highlight
[lines 87-108] split, compute, and merge

[lines 103-108] outlier detection

steph
Highlight
[line 111] export

