
convert matrix to datafram
Paul Bradshaw

27 March 2017

To convert to matrix use as.matrix . However, if the first column contains words, then it will make all data text,

so you need to omit the first column:

regionsmatrix <- as.matrix(regions[,-1])

This means you have no row names:

rownames(regionsmatrix)

NULL

You can get the names from the columns and put them in as row names:

rownames(regionsmatrix) <- colnames(regionsmatrix)

rownames(regionsmatrix)

[1] "North.East" "North.West"

[3] "Yorkshire.and.The.Humber" "East.Midlands"

[5] "West.Midlands" "East"

[7] "London" "South.East"

[9] "South.West" "Wales"

[11] "Scotland" "Northern.Ireland"

#added by Steve

regionnames <- colnames(regionsmatrix)

Now we have the rows and columns both using the region names, and the data is numerical. And it’s all in a

matrix.

But how do we convert this to a format which can be used for network graphs?

Data formats for network graphs
Network graphs normally need two sets of data:

A list of the entities to be graphed1.

A table of the relationships between the entities2.

Google Fusion Tables’s network charts functionality only needs the second. But Kumu and D3 network charts,

for example, need both.

The table of relationships is the key part: the list of entities can always be generated from that (a pivot table, for

convert matrix to datafram file:///C:/Users/steph/Dev/data_wrangling_journalism/notebooks/bbc/int...

1 of 7 21-Jul-19, 1:41 PM

steph
Highlight
[1] Remove variables

steph
Highlight
[1.1] create child table

steph
Highlight
[3] canonicalize column names

example, will do this).

Normally that table has at least two columns:

Column 1: the entity that the relationship comes from1.

Column 2: the entity that the relationship goes to2.

An optional column 3 might specify the strength of the relationship (for example, the amount of money, or

the numbers of people, going from entity 1 to entity 2)

3.

There might also be a column with some sort of classification of the relationship (for example,

directorship, or family relationship)

4.

We have data showing what regions people come from and go to, but it’s not in that format.

How do we get it in that format? It’s good to mock up an example first so you know what it needs to look like.

Here is what we need:

144 rows (12 x 12 relationships = 144) of 3 columns (from, to, amount).

The first row will be the 12 regions, in sequence, 12 times (North East, North West, Yorkshire…). The second

row will be each region, 12 times, in sequence (North East, North East, North East…). The third row will be the

numbers

This last row can actually be generated by using array like so, which turns a table into a vector:

regionnums <- array(regionsmatrix)

What about the other columns? One way to get it in that format is to use loops.

A basic loop
A basic for loop looks like this: for (item in list of items) { do something each time}

Here, for example, are two lines:

Create an empty vector variable called rs1.

Run a for loop which goes through the range of numbers 1 to 12, and for each adds it to that

previously empty vector variable. (Note: apparently it’s not ideal to add to vectors this way, but I’m doing

it this way for now (https://stackoverflow.com/questions/22235809/append-value-to-empty-vector-in-r)).

2.

When the loop has run 12 times (once for each item in that range of numbers), the vector contains all 12

numbers.

rs <- c()

for (r in c(1:12)) { rs <-c(rs, r) }

Of course we don’t want a list of numbers. Instead we can use those numbers to serve as indexes to grab

items from another vector, like so:

#First, make sure the rs variable is empty again, or we'll add to what we created bef

ore

rs <- c()

for (r in c(1:12)) { rs <-c(rs, regionnames[r]) }

convert matrix to datafram file:///C:/Users/steph/Dev/data_wrangling_journalism/notebooks/bbc/int...

2 of 7 21-Jul-19, 1:41 PM

steph
Highlight
[4] change variable data type

The key part here is regionnames[r] : this uses [r] as an index to specify the item position in

regionnames to grab. The first time the loop runs, when r is 1 , this means regionnames[1] (the first item

in the vector regionnames)

Now, we need to convert our list of 12 regions into a list of 144 cells: each 12 regions must appear 12 times. To

do that we need to put another loop inside of the loop above, like so:

#First, make sure the rs variable is empty

rscol1 <- c()

for (r in c(1:12))

 { for (r in c(1:12))

 { rscol1 <-c(rscol1, regionnames[r]) }

 }

This is harder to get your head around, so break it down:

The first loop starts at 1

While it is 1 , it then begins the second loop, and goes from 1 to 12. This grabs all 12 names from the

vector and adds them once.

The first loop then moves on to 2

The second loop again grabs the 12 names from the vector, and appends them, so we now have the

same 12 names twice, in sequence.

This process repeats so we end up with the list of 12 names appended 12 times to that original empty

list.

The loop for the second column
Here’s the loop to create the second column. What’s changed? Well, apart from the name of the vector being

created: rscol2

rscol2 <- c()

for (r1 in c(1:12))

 { for (r2 in c(1:12))

 { rscol2 <-c(rscol2, regionnames[r1]) }

 }

The difference is that in the previous code r was used for the number being grabbed in both loops. This time

we’re differentiating: the first loop calls each item r1 as it cycles through. The second loop: r2 .

What this means is that while the second loop is running 12 times, the actual number (1, 2, 3, whatever) isn’t

used for anything. Instead r1 is used as the index. So it runs 12 times using the index 1, then 12 times using

the index 2, and so on. This generates a list that looks different.

Combining the results into a data frame
We now have three vectors containing our three columns. To combine them into a data frame we use…

data.frame :

convert matrix to datafram file:///C:/Users/steph/Dev/data_wrangling_journalism/notebooks/bbc/int...

3 of 7 21-Jul-19, 1:41 PM

steph
Highlight
[5] generate data computationally

[5.1] Cartesian product

networktable <- data.frame(rscol1, rscol2, regionnums)

#Rename the columns

column_names <- c('destination', 'origin', 'numbers')

colnames(networktable) <- column_names

write.csv(networktable, 'networktable.csv')

We can make this adapt to another similar matrix by using the length of the column as the end of our range.

Saving the code as a reusable R script
If we expect to run this in other projects and not just this one, we can save it as an R script and then run it in

different projects.

To do this, select File > New File > R Script. Paste your code in there, and then save it (it will save in the same

directory as the current R project).

To run the script use the source command followed by the name that you used for the script, in inverted

commas. If you called the script ‘squaretabletolong’, for example, the code to run that script would be:

source('squaretabletolong.R')

Creating a function instead of a script
It might be easier to save the code in a function instead of a script.

Here’s the code to create a function that takes 2 pieces of information (the number of columns, and a list of

headings) and returns a column for you that contains those headings multiplied by the number of columns:

squaretotable <- function(colnum,headers){

#create empty vector, which will be filled and returned

 col1 <- c()

#first loop

for (i in c(1:colnum)){

#second loop

for (a in c(1:colnum)) {

 col1 <- c(col1, headers[a])

 }

 }

return(col1)

}

Running the function looks like this:

col1 <- squaretotable(12,regionnames)

Or indeed:

convert matrix to datafram file:///C:/Users/steph/Dev/data_wrangling_journalism/notebooks/bbc/int...

4 of 7 21-Jul-19, 1:41 PM

steph
Highlight
[6.1] canonicalize column names

steph
Highlight
[6] concat parallel tables

steph
Highlight
[7] export

steph
Highlight
[8] architect subroutine

#Note that we can call the results anything we want - col1 is just used within the fu

nction

col2 <- squaretotable(length(regionnames),regionnames)

In fact, if we know that the number is always going to be the length of the list of column headings, we only need

one variable in the function, like so:

squaretotable2 <- function(headers){

#create empty vector, which will be filled and returned

 col1 <- c()

 colnum <- length(headers)

#first loop

for (i in c(1:colnum)){

#second loop

for (a in c(1:colnum)) {

 col1 <- c(col1, headers[a])

 }

 }

return(col1)

}

And test:

col3 <- squaretotable2(regionnames)

Expanding the function to convert the whole table
That function only generates one column of what we end up with. Can we expand it to do the whole thing?

First we need to list the tasks to complete:

We have a square table (in this case 12x12).1.

Column 1 needs to contain the headings, each of which is repeated once, 12 times2.

Column 2 needs to contain the headings, each of which is repeated 12 times, once3.

Column 3 needs to contain the data as a single array4.

convert matrix to datafram file:///C:/Users/steph/Dev/data_wrangling_journalism/notebooks/bbc/int...

5 of 7 21-Jul-19, 1:41 PM

squaretotableall <- function(headers, yourtable){

#create empty vector, which will be filled and returned

 col1 <- c()

 colnum <- length(headers)

#first loop

for (i in c(1:colnum)){

#second loop

for (a in c(1:colnum)) {

 col1 <- c(col1, headers[a])

 }

 }

 col2 <- c()

#first loop

for (i in c(1:colnum)){

#second loop

for (a in c(1:colnum)) {

 col2 <- c(col2, headers[i])

 }

 }

#convert to matrix

 yourmatrix <- as.matrix(yourtable[,-1])

#create an array

 col3 <- array(yourmatrix)

 newtable <- data.frame(col1, col2, col3)

return(newtable)

}

Now to test

newtable <- squaretotableall(regionnames,regions)

We can now copy the function code to the self-contained R script so when called it adds the function to any R

project, which can then be called.

Simplifying further
We could further improve this function by extracting the headings from the table (we need to exclude the first

one). In fact, all it needs is one line: headers <- colnames(yourtable[-1])

This grabs all the column names apart from the first one.

convert matrix to datafram file:///C:/Users/steph/Dev/data_wrangling_journalism/notebooks/bbc/int...

6 of 7 21-Jul-19, 1:41 PM

steph
Highlight
[9] concat parallel tables

stot_all <- function(yourtable){

#create empty vector, which will be filled and returned

 col1 <- c()

 headers <- colnames(yourtable[-1])

 colnum <- length(headers)

#first loop

for (i in c(1:colnum)){

#second loop

for (a in c(1:colnum)) {

 col1 <- c(col1, headers[a])

 }

 }

 col2 <- c()

#first loop

for (i in c(1:colnum)){

#second loop

for (a in c(1:colnum)) {

 col2 <- c(col2, headers[i])

 }

 }

#convert to matrix

 yourmatrix <- as.matrix(yourtable[,-1])

#create an array

 col3 <- array(yourmatrix)

 newtable <- data.frame(col1, col2, col3)

return(newtable)

}

Now to test

stotalltest <- stot_all(regions)

Rewrite using better practice outlined here (https://stackoverflow.com/questions/22235809/append-value-to-

empty-vector-in-r)

convert matrix to datafram file:///C:/Users/steph/Dev/data_wrangling_journalism/notebooks/bbc/int...

7 of 7 21-Jul-19, 1:41 PM

