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Figure 1: Our prototype, with idioms on the left and controls on the right. In Compare Alternatives mode, the parallel coordinates plot
is rendered; switching to Compare Evaluators mode displays the box plot instead. Controls enable users to switch comparison mode,
filter evaluators and alternatives, toggle overlays, and update preferences. Identifying information has been redacted.

ABSTRACT

Group decision making is when two or more individuals must col-
lectively choose among a competing set of alternatives based on
their individual preferences. In these situations, it can be helpful for
decision makers to model and visually compare their preferences
in order to better understand each others’ points of view. Although
a number of tools for preference modelling and inspection exist,
none are based on detailed data and task models that capture the
demands of group decision making in particular. This paper is a first
step in addressing this gap. By going through the four stages of the
nested model of visualization design, we have developed and tested
a prototype to support group decision making when decision makers
express their preferences directly on the alternatives.

Index Terms: Group Decision Making—Preference Models—
Preference Inspection—Multiform Visualizations; Nested Model—
Task Abstractions—Idiom Evaluation—User Studies

1 INTRODUCTION

Group decision making (GDM) situations arise when two or more
individuals must collectively choose among a competing set of alter-
natives. These situations are ubiquitous in organizational and public
planning [9]; examples include selecting an office location, hiring a
candidate, or choosing a wastewater management system for a city.

Progress toward a satisfactory resolution is often impeded by
differences in preferences [21] [29]. In some cases, group members
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†e-mail: carenini@cs.ubc.ca

may not even have a complete understanding of their own pref-
erences. Organizations often elect to remain with the status quo
because they do not have the resources to tackle these complexi-
ties [9] [14]. This inertia can stifle positive change.

One viable approach to GDM that is grounded in the literature
is to have decision makers explicitly model their preferences over
the alternatives. Then, the group members can compare how alter-
natives perform in order to reach a better understanding of other
points of view. There is evidence that this approach can encourage
reflection, promote transparency and inclusiveness, and ultimately
lead to greater satisfaction with the outcome [2] [26].

The success of this endeavour depends on how quickly and effec-
tively decision makers can glean insights from their own and others’
preferences. It can be difficult to spot differences and trends when
the data is represented in text-based formats such as spreadsheets.
Visualizations show more promise because they leverage the pat-
tern recognition and pre-attentive capabilities of the human visual
system [24]. Note that such visualizations need not be intended
to replace group discussion, but to facilitate it; understanding the
rationale behind user preferences is essential to achieving consensus.

However, not all graphical methods are equally effective, and
a poorly-chosen graphic can diminish the efficacy of the decision
making process [1]. Unfortunately, there are few tools that support
inspection of multiple people’s preferences simultaneously, and
none seem to be grounded in a comprehensive understanding of the
needs (and corresponding tasks) of decision makers. Furthermore,
there are currently no guidelines for designers of such tools. This
paper is a first step in addressing this gap by focusing on relatively
simple preference models in which decision makers express their
preferences directly on the alternatives.

The stages of our work roughly correspond to the levels of the
Nested Model of Visualization Design [23]. However, while the
Nested Model is typically applied to design problems in a single
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domain, we have elected to consider GDM (when alternatives are
directly scored) as a whole in order to take advantage of the struc-
tural similarity of GDM problems across domains. At the domain
situation level, from detailed summaries of seven GDM scenarios,
we have identified high-level analysis goals, along with a set of
situational features from which we have identified classes of deci-
sion makers. At the data/task abstraction level, we developed a
data model based on multi-dimensional tables, as this abstraction
is well-understood in the context of InfoVis [24]. To obtain the
task model, we coalesced scenario-specific goals into a hierarchy of
scenario-independent goals and subgoals. Then, for each subgoal,
we enumerated high-level visualization tasks to support them. At the
encodings level, we conduct a deep assessment of the pros and cons
of core visual encodings for our target preference model with respect
to the identified tasks. Then, we discuss options for combining en-
codings into a composite view and offer specific recommendations
for different user classes. To obtain preliminary evidence of utility
for our recommendations, we have implemented a prototype (algo-
rithm level) and performed two user studies. The results suggest that
the recommended idioms and interactions are effective, resulting in
more participatory discussions, increased information exchange, and
more easily identified areas of (dis)agreement.

2 BACKGROUND AND RELATED WORK

We provide some background on GDM, describe existing tools
for visualizing preferences and related data, and discuss relevant
visualization task analyses.

2.1 Group Decision Making (GDM)
GDM occurs when multiple stakeholders with possibly conflicting
preferences need to make a choice together. One consistent finding
in decision analysis is that formal methods can improve decision
making [10]. When these are applied to GDM they typically involve
at least the following steps (e.g. [34]): (1) context clarification and
identification of group members; (2) generation of alternatives; (3)
elicitation of preferences from stakeholders; and (4) synthesis and
communication of decision recommendations.

Our work is primarily concerned with Step 4, when decision
makers’ preferences are combined to make a final decision. For
simplicity, decision makers might sum the individual scores and
select the alternative with the highest total score, but this would
rob them of the opportunity to reconcile their differences and learn
from other points of view. Ideally, they would examine and discuss
the totals in the context of individual scores and preference models,
an activity we call preference inspection. Note that the decision
making process is often iterative: decision makers may revisit earlier
steps to refine the decision model as they develop a deeper under-
standing of the problem, so preference inspection activities such as
those supported by our prototype are critical.

Several preference models have been proposed in the decision
analysis literature, with increasing complexity: from decision mak-
ers simply ranking alternatives, to giving a score to each alternative,
to scoring alternatives on a set of attributes that could be weighted
differently [17]. In this paper, we focus on preference models in
which alternatives are scored directly, which represents a solid foun-
dation for performing similar work for more complex models.

In terms of user tasks, the decision analysis literature does not
provide the level of detail needed for designing visualizations; so
we have performed an in-depth survey of seven GDM scenarios (in
the spirit of a recent examination of an undergraduate admissions
process [37]), identified a hierarchy of common analysis goals, and
decomposed them into visualization tasks that guided our design.

2.2 Visual and Interactive Tools
Although tools to support decision making are plentiful, not all of
them are able to integrate and display multiple people’s preferences

simultaneously [27] [34]; some applications to GDM involve joint
construction of only a single preference model by all members of
the group [34]. There are tools that allow multiple users to input
their preferences, such as M-MACBETH [3], D-Sight [11], and
1000Minds [15]; but they typically only show aggregated preferences
using non-interactive charts and tables. Another tool, Web-HIPRE
[25], uses only stacked bar charts, which are not effective for many
of the GDM tasks identified in this work. Web ValueCharts [22]
is derived from a task model for individual decision making [4];
however, its generalization to GDM was not investigated. Finally,
ConsensUs [20] only allows users to compare their own preferences
to the group average or one other user at a time; it does not support
informative comparisons among any desired subset of evaluators.

In addition, there are tools for exploring data similar to prefer-
ences. For instance, LineUp supports comparison of ranked entities
across attributes [13]; SurveyVisualizer [8] supports exploration of
hierarchical multi-attribute survey data; and QStack ranks search
results from multi-tag datasets based on tag frequency [30]. Further,
since GDM is an inherently collaborative process, the field of collab-
orative visualizations [18] is closely related to our work; however,
in these tools GDM is often supported only to achieve a particular
shared task, such as selecting antibiotic prescriptions [19], rather
than to support GDM in general as we do here.

Tools for visualizing preferences or similarly structured informa-
tion tend to use a restricted set of encodings, as summarized in Table
1 for the most popular systems. However, unfortunately, the choice
and integration of such encodings in each tool has not been guided
by detailed data and task models, informed by a systematic study of
the needs of decision makers; this is what we aim to do in this paper.

2.3 Task Analyses
To our knowledge, there have been no attempts to formally model
the tasks for preference inspection in a GDM context.

Bautista and Carenini developed a task model for individual de-
cision making [4]. This model divides the decision process into
three phases: model construction, inspection, and sensitivity analy-
sis. Each phase is decomposed into a task hierarchy using terms and
concepts from information visualization and decision theory.

In a similar vein, Rempel and Young conducted a comprehensive
task analysis for portfolio construction, a decision problem that
involves iterative refinement of investment portfolios [32]. They
open-coded relevant literature and field notes, coalesced the codes
into themes, and described their codes in terms of visualization
tasks. Their analysis is specific to portfolio construction, lacking
the generality we aim for in this paper. Furthermore, they deal with
decision scenarios in which the alternatives are potentially infinite,
while we consider the more common finite setting.

3 FROM DOMAINS TO DATA AND TASK ABSTRACTIONS

In this section we describe the process by which we synthesize
data and task abstractions from our selected GDM scenarios. Goals
and tasks identified during this process that apply to more complex
preference models will be similarly treated in future work.

3.1 Scenario Characterization
In order to identify a hierarchy of analysis goals for GDM, we sur-
veyed seven scenarios covering as much breadth as possible within
our time constraints. For four of the scenarios, we interviewed deci-
sion makers after the decision process, using a script with specific
questions about problem formulation in decision analysis terms and
open-ended questions about the process and analysis goals. Some
interviews were conducted by the first author; others were conducted
by colleagues. The script was adapted to each scenario and refined
as data was collected. The remaining scenarios were described in
published sources (journal papers or webinars). Table 2 provides a
brief description of each scenario and the elicitation method used.
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Table 1: Some well-known techniques for visualizing preferences or similar data.

Context Main Encodings
ConsensUs [20] Group Decision Making Dot plots in small multiples
Group ValueCharts [2] Group Decision Making Stacked bar chart; tabular bar chart
LineUp [13] Multi-attribute rankings Slope graph; stacked or tabular bar chart
QStack [30] Multi-attribute rankings Stacked bar chart
SurveyVisualizer [8] Multi-attribute survey results Parallel coordinates tree
Web-HIPRE [25] Group Decision Making Stacked bar chart

Table 2: Descriptions of the seven group decision making scenarios.

Name Description Elicitation Method Alternatives Evaluators
BP: Best Paper Researchers choose Best Paper Award recipient Interview 4 - 15 5
FH: Faculty Hiring Faculty members choose which candidate to hire Interview 1 - 4 50 - 100

CR: Campbell River Stakeholders from diverse interest groups choose
a watershed operation strategy Webinar observation 6 15

VY: Voyager [12] Scientists choose trajectories for Voyager 1 & 2 Journal Paper 32 10

NC: Nuclear Crisis [27] Emergency planners choose a strategy in
response to a mock nuclear crisis Journal Paper 6 6

SW: Software Software company employees choose a
technology stack

Interview +
In-person observation 2 5

GI: Gift Lab members choose a gift for a colleague Interview 3 10

The first author produced summaries identifying the following:
1. the decision problem and decision-making process
2. the data, along with how preferences are modeled
3. the preference inspection goals and how they are achieved
4. other interesting features of the situation

For the first point, we summarized the steps taken by the decision
makers. For the second point, we identified aspects of the problem
(such as alternatives and evaluators) and described how preferences
were modeled (if at all). For the third point, we open coded the
sources, using ‘goal’ for any desired result (e.g. consensus) or quali-
tative query (e.g. identify best alternative) and ‘task’ for any process
(e.g. discussion) or quantitative query (e.g. identify tallest bar) used
to achieve a goal. For the final point, we identified interesting sit-
uational variables by looking for explicitly specified features (e.g.
How much time is devoted to preference inspection?) as well as
implicit features (e.g. How high are the stakes?). Five situational
variables were identified, and discrete levels were defined based on
the ranges covered by the scenarios. The levels for implicit features
were decided based on the authors’ judgment. The results for the
Best Paper scenario are provided in the supplemental material.

3.2 Situational Analysis
By examining the situational features identified in the previous step
(see rows in Table 3), we were able to sort the scenarios into groups,
which we call user classes (see columns in Table 3). The Specialized
class covers very high-stakes, one-time decision problems where
the decision makers devote one or more days to analyzing with the
help of experts (i.e., consultant with knowledge of formal decision
making methods). The Professional class covers high and medium-
stakes decision problems that recur annually or monthly where the
decision makers devote only a few hours to analysis. The Casual
class covers low-stakes decisions made in a more casual setting.

Each class is likely to have different needs for a support system.
Decision makers in the first class may benefit most from advanced
analytic features and visual encodings, since they have the time,
incentive, and expertise to take advantage of them. Decision makers
in the second class are more likely to benefit from systems that are
easy to learn and deliver insights quickly; if a system is visually
too complex or cumbersome, they may not be willing to put in the
effort to learn and use it. The third class may have an even greater

Table 3: Summary of situational features of seven scenarios.

Type Specialized Professional Casual
Scenarios CR, VY, NC BP, FH, SW GI
Stakes Very High Medium – High Low
Work
Context

Expert
Assistance Professional Casual

Timeframe Days Hours Hours
Decision
Frequency Once Monthly –

Annually Once

preference for usability over sophistication, and in some cases may
not derive sufficient benefit from support systems to use them at all.

3.3 Data Abstraction
Since we focus on preference models in which the evaluators express
preferences directly on the alternatives, our data model may include:

• A set of Alternatives A : |A| ≥ 1
• A set of Evaluators E : |E| ≥ 2
• A function score(e,a) that returns the score given by evaluator

e to alternative a (e.g. an integer in [1,10])
• A function rank(e,a) that returns the rank given by evaluator e

to alternative a (with ties assigned the average of the spanned
ranks). Note this can be derived from score(e,a).

To more clearly combine our data model with the visualization
tasks identified in the next section, we mapped it to a model based
on multi-dimensional tables, as this abstraction is well-understood
in the context of information visualization [24]; sets became dimen-
sions, and functions became measures. We obtained the dimensions
Alternative and Evaluator and the measures AltScore and AltRank;
we also derived the measures TotalScore and TotalRank to represent
aggregated scores/ranks over all evaluators.

3.4 Task Abstraction
The development of task abstractions began with a goals analysis
step, in which we coalesced scenario-specific goals into a hierarchy
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of scenario-independent goals. Next, we enumerated high-level
visualization tasks to support each subgoal. The task names are
drawn from Brehmer and Munzner’s typology [7], and the task
inputs and outputs are entities defined by the data model. We did
so by casting scenario-specific goals and supporting activities as
tasks (if more specific than the goal in question) and conducting
additional analysis to discover further tasks that could support the
goal in question. Finally, we decomposed the high-level tasks into
sequences of low-level tasks, again from Brehmer and Munzner’s
typology. Because many of these tasks consist of the same operations
on different inputs, we defined them in terms of auxiliary task (AT)
functions, whose inputs are entities defined by the data model.

3.4.1 Goal Analysis

Table 4 lists the goals and subgoals resulting from our analysis
along with the scenarios in which each of them appeared. In all
scenarios, the overarching goal was to achieve consensus or make a
well-informed decision that most stakeholders could accept. This
goal was primarily achieved through discussion, with quantitative
summaries serving as a guide. A crucial point is that in no scenario
did the quantitative summaries completely supplant verbal exchange;
rather, their role was to focus analysis on points of interest, which can
greatly enhance the efficiency of the process. In particular, decision
makers used the quantitative summaries for the first three goals,
which pertain to understanding the model. An additional goal is to
validate the model (G4). It is not uncommon for evaluators to adjust
their preferences (Section 2.1, step 3) after preference inspection
[34]. In some cases, it may also be necessary for the decision makers
to revise the alternatives (Section 2.1, step 2). Quantitative models
are seldom sufficient to fully capture individual preferences, so a
final goal is to discover nuances that the models do not capture (G5).

3.4.2 Task Analysis

After identifying the goals in Table 4, we related them to abstract
visualization tasks from Brehmer and Munzner’s typology: the
high-level family of Discover tasks and the lower-level families of
Query and Search tasks [7]. We provide the full analysis for goal
G1: Discover Viable Alternatives here; the supplemental material
contains similar analyses for goals G2 - G4. We exclude G5 since it
does not involve visual inspection of preference models.

High-level tasks to support G1 are shown in Table 5. All of these
tasks and the goals they support are instances of the high-level task
Consume: Discover, which covers many facets of inquiry [7].

Supporting tasks for G1a include finding alternatives with high
overall scores or low variation in scores across evaluators, as these
may constitute viable ‘compromise’ alternatives. Another way to
focus the analysis is to identify non-dominated1 alternatives. Exclud-
ing dominated alternatives can help minimize distraction. To narrow
the list further, it is essential to be able to consider trade-offs between
competitive alternatives. Finally, it may be necessary to look at pros
and cons of one alternative (where the ‘pros’ are evaluators with
high scores and the ‘cons’ are evaluators with low scores), especially
if selecting no alternatives is an option. G1b is concerned with
identifying high-performing alternatives for a particular evaluator.

We decomposed the high-level Discover tasks into low-level
Search and Query auxiliary tasks on various inputs. This fine-grained
analysis allows potential designs to be evaluated more efficiently.
All the high-level tasks can be accomplished using a combination of
just ten AT functions; Table 6 shows the complete list.

The AT functions and their inputs allows us to precisely describe
how to accomplish the high-level tasks. For example, Task T4:
Discover trade-offs in AltRanks/AltScores between alternatives a
and b can be accomplished for AltScores as follows:

1Alternative a dominates alternative b if at least one evaluator prefers a
to b and all others either prefer a or are indifferent between the two.

1. AT6(AltScores(a))→ X (Locate AltScores for a)
2. AT6(AltScores(b))→ Y (Locate AltScores for b)
3. AT3(X ,Y ))→ Z (Get differences between distributions)

Similar sequences can be used to achieve all the high-level tasks,
as shown in the supplemental material.

4 ENCODINGS ANALYSIS

In the context of our data and task abstractions, we conduct an in-
depth assessment of the pros and cons of core visual encodings.
Then, we discuss options for combining encodings into composite
views and offer specific recommendations for different user classes.
Our analysis focuses on the case in which alternatives are scored
directly. The ranking case is simpler (ranks can be derived from
scores, but not vice versa), and similar encodings would be suitable.

With respect to scalability, when the number of alterna-
tives/evaluators is less than a dozen, they can be differentiated using
colour alone [24]. Otherwise, colour should only be used for high-
lighting subsets of the data.

4.1 Single-view Analysis - Core Idioms
This section discusses the major competitive idioms for presenting
small-scale tabular data with categorical keys and quantitative val-
ues. To reiterate, the data abstraction when evaluators are scoring
alternatives directly is a two-dimensional table with Evaluators and
Alternatives as keys and AltScores as values. TotalScores are ob-
tained by summing AltScores over Evaluators. All but two of the
idioms we discuss encode values using position on a common scale,
which is the most effective channel for encoding magnitude [24]. Al-
though non-radial designs can be oriented horizontally or vertically,
our figures show only the horizontal orientation for succinctness.

4.1.1 Bar-based Idioms
Three styles of bar charts are suitable for two-dimensional tabular
data: stacked bar charts, multi-bar charts, and tabular bar charts [13].

Stacked Bar Charts are appropriate when a one-dimensional mea-
sure is the sum of a two-dimensional measure, as is the case with
TotalScores [13] [24]. To improve discriminability, segments within
stacked bars can be assigned different color hues [24]. Stacked
bar charts are not effective for tasks that require comparison of
AltScores [24] [36]; however, they are effective at supporting To-
talScore comparisons while providing information about the relative
contribution of each AltScore.

Multi-bar Charts map spatial regions to dimensions in a nested
fashion such that all bars are aligned to a common baseline. Ad-
ditionally, color hue may be mapped to the secondary grouping to
facilitate comparison across regions. Figure 2 includes two possible
designs given the available mappings from spatial region and color
hue to Evaluators and Alternatives.

Tabular Bar Charts map dimensions to spatial regions in a grid.
There are four possible designs given the available mappings from
spatial region and color hue to evaluators and alternatives. Figure
2 shows two variations that map colour to the column dimension.
Note that tabular bar charts pair nicely with stacked bar charts, fa-
cilitating transitions between comparing TotalScores, inspecting the
breakdown of TotalScores into AltScores, and comparing AltScores
for a particular evaluator. Tabular bar charts are more compact than
multi-bar charts, but they are also less precise because the same
axis range is compressed and repeated across columns. Additionally,
making comparisons across tabular columns is less accurate than
comparisons across regions in multi-bar charts [36].

4.1.2 Point-based Idioms
Strip Plots use position along a common axis to encode values
(Figure 2). Two-dimensional tabular data can be represented as a
series of strip plots with one dimension separated by region (each
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Table 4: Goals for preference inspection and the scenarios in which they appear. BP=Best Paper, FH=Faculty Hiring, CR=Campbell River,
VY=Voyager, NC=Nuclear Crisis, SW=Software, GI=Gift

GENERIC GOAL SCENARIOS
G1 Discover Viable Alternatives

a Discover high-performing alternatives across evaluators/evaluator groups all but FH
b Discover high-performing alternatives for a single evaluator/evaluator group SW, GI

G2 Discover Sources of Disagreement (discrepancies across evaluators)
a Discover and explain disagreement about an alternative (across evaluators/evaluator groups) all but GI

G3 Explain Individual Scores
a Analyze contribution of different evaluators to an alternative’s total score NC

G4 Validate Model
a Understand sensitivity of preferences to change NC
b Understand sensitivity of total scores to aggregation method VY
c Discover discrepancies between the preferences of one evaluator and the rest BP

G5 Discover Nuances (not captured by preference models) all

Table 5: Tasks to Support G1: Discover Viable Alternatives.

TASK
G1a. Discover high-performing alternatives across
evaluators

T1 Discover alternative(s) with best TotalRank/TotalScore

T2 Discover alternatives(s) with low variance in
AltRanks/AltScores across evaluators

T3 Discover non-dominated alternatives across evaluators

T4 Discover trade-offs in AltRanks/AltScores between
alternatives a and b

T5 Discover pros and cons in AltRanks/AltScores for
alternative a
G1b. Discover high-performing alternatives for a
single evaluator

T6 Discover alternative(s) with best AltRank/AltScore for
evaluator e

with its own strip plot) and the other distinguished using another
channel, typically colour hue (though another option is mark shape,
sometimes used in concert with hue [33]).

The key strength of strip plots relative to bar charts is that they
place an entire dimension on a single axis, uniting the precision of
multi-bar charts with the compactness of tabular bar charts. This
also makes them superior to bar charts for tasks related to spread,
such as identifying clusters and outliers, since the user can scan a
single spatial dimension to obtain all relevant information. However,
strip plots are less effective than bar charts at supporting look-up
tasks because the secondary dimension is often differentiated using
colour alone. The use of colour also limits scalability, since people
can only differentiate up to around a dozen hues [24]. Their efficacy
is contingent on the quality of the palette, which should be highly
discriminable and accessible to people with colour-blindness [24].

Another challenge associated with strip plots is that occlusion
may occur if two or more points have the same (or nearly the same)
value. Perhaps the most scalable way to address this challenge is
a combination of stacking and fill removal, which means plotting
multiple unfilled points in a vertical ‘stack’ at the same x-coordinate.

Strip plots can be augmented to further support comparison of
distributions. First, each axis can be overlaid with distribution in-
formation to create range, box, or violin plots. For succinctness,
we only consider box plots. Alternatively, points corresponding to
items in the secondary dimension can be connected with straight
lines of the same colour; the resulting parallel coordinates plots can
be effective for inspection and comparison across axes [24].

A variation on parallel coordinates is the radar chart, which is

less effective for comparison of values across axes since the axes are
not aligned. Furthermore, the layout may be misleading if the data
is not cyclic [24]. Other problems with radar charts arise in cases
where one or more values approach zero (see Bob in Radar Chart 2
of Figure 2). One benefit of radar charts is that the area of a polygon
is roughly proportional to the squared sum of the axis scores. This
means that Radar Chart 2 in Figure 2 roughly encodes TotalScores.

4.1.3 Heatmaps
Heatmaps are arranged as a grid like tabular bar charts, except it
does not matter which dimension is assigned to which axis because
the color mark used to encode values has no orientation.

The main strength of heatmaps is information density, which
makes them suitable for providing high-level summaries of large
datasets at a glance [24]. They can also reveal interesting trends if
the rows and columns are arranged in a meaningful way [24].

There are two popular types of color scales for heatmaps: rain-
bows, which progress from one hue to another, and sequential scales,
which vary the luminance or saturation of a single hue. Most experts
recommend the latter [16] [5], so we adopt this choice.

4.2 Single-view Analysis - Task-based Evaluation
We performed an analytic evaluation of the suitability of each encod-
ing for each auxiliary task function identified in Section 3.4.2. The
evaluation was based on a combination of established principles and
the experience of the authors. Tasks that apply to more than one type
of input were split into cases. The evaluation details are provided in
the supplemental material. Figure 4 summarizes the results.

A key takeaway is that the two most complementary encodings
that are in the top half of the table (i.e., with high total score) are
Parallel Coordinates 2 and Tabular Bar Chart 1. This pair of inde-
pendently strong encodings achieves a combined score of 33 out
of a possible 45, which is the score achieved if the best encoding
for each task were selected. This finding suggests that these two
encodings can be used in conjunction to support most tasks.

Another observation is that parallel coordinates dominate radar
charts. In light of this finding and the problems with radar charts
discussed earlier, we eliminate them from further consideration.

4.3 Multiple-view Analysis
In this section, we offer recommendations on how different views
can be integrated into a single window to support most tasks.

4.3.1 Number and Arrangement of Views
It is clear from Figure 4 that no single encoding is sufficient to
support all tasks. For this reason, our recommendations employ
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Figure 2: What is the best encoding for comparing Fairmont and Budget for Bob? The encodings are divided into four efficacy groups according
to key principles. (a) Highly effective - comparisons are performed along a single axis or within single region; (b) Less effective - comparisons
are made across axes or regions; (c) Less effective - axes are condensed and offer less precision; (d) Least effective - requires comparison of
unaligned widths, unaligned positions, or colors. The rankings within groups are nuanced, as discussed in the supplemental material.

the multiform design choice, in which the same data is faceted
into two views that use different encodings [24]. If the intended
platform is a desktop or laptop computer, we recommend splitting
the window horizontally and populating each half with encodings in
the horizontal orientation to maximize precision.

There is a cost associated with multiple views, both in terms
of cognitive load and screen real estate [38], so we do not advise
supporting more than two views. As the next few sections will
demonstrate, it is possible to strongly support all tasks using combi-
nations of just two encodings and a few basic interactions.

We present recommendations for both Casual and Advanced
users, with the latter including the Specialized and Professional
classes from Section 3.2, since their needs are likely to be similar
for cases where alternatives are scored directly.

4.3.2 Recommendations for Casual Users

Our recommendations for casual users strike a balance between
sophistication and accessibility.

Tabular Bar Chart 1 + Stacked Bar Chart + Box Plot 1. In order
to identify potentially strong combinations for a dual-view design,
we computed a score for each pair of encodings by taking the sum
of the maximum score on each task. The parallel coordinate designs
were excluded from consideration due to the learning curve and lack
of familiarity for most people [24] [28]; including unfamiliar idioms
may confuse casual users, making them less likely to use the tool.

Of the pairs that were included, the top scoring combinations
were: Tabular Bar Chart 1 and Box Plot 1; Tabular Bar Chart 1
and Strip Plot 2; Box Plot 1 and Strip Plot 2; and Box Plot 1 and
Multi-bar Chart 2. Of these, only the first uses the same colour map-

Figure 3: Recommendation for Casual Users with Tabular Bar Chart
1 + Stacked Bar Chart (top view) and Box Plot 1 (bottom view).

ping in both encodings, which is desirable because it preserves the
semantics of colour across views [31]. The remaining pairs would
require two distinct colour palettes; otherwise, they risk implying
connections between unrelated marks [31]. Introducing a second
colour palette limits scalability to about a dozen entities (alternatives
and evaluators) in total. Thus, we recommend the first pairing (i.e.
Tabular Bar Chart 1 and Box Plot 1) above all others.

Figure 3 shows a dual view based on this pairing, augmented with
a Stacked Bar Chart. This design strongly supports all tasks except
AT9:A (Search: Browse for min/max values for one evaluator across
alternatives), which is weakly supported by the Tabular Bar Chart;
this weakness can be mitigated by including sort functionality and
text labels for bar values. One drawback of multiform designs is
that users might become confused shifting attention between views,
since they use different idioms and the axes do not correspond.
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Table 6: Auxiliary Task Functions. The Input column also indicates when there are different cases of the task.

Action Input Output Supported by
AT1 Query: Identify single value or distribution its key-set
AT2 Query: Compare pair of values

A: one evaluator, two alternatives
B: one alternative, two evaluators

difference

AT3 Query: Compare pair of same-type distributions
A: all evaluators, two alternatives
B: all alternatives, two evaluators

tuple of differences AT2

AT4 Query: Compare pair of same-type distributions dominance relation AT3
AT5 Query: Summarize single distribution summary of variance
AT6 Search: Locate key-set

A: one alternative, one evaluator
B: one alternative C: one evaluator

single value or distribution

AT7 Search: Lookup (in context) key-set + single value or distribution single value or distribution AT6
AT8 Search: Browse single distribution outliers AT2
AT9 Search: Browse single distribution

A: one evaluator B: all data
min/max values AT2

AT10 Search: Browse set of distributions non-dominated distributions AT4

Figure 4: Support for each auxiliary task function (see Table 6 above for full descriptions) by encoding. 3=best, 2=strongly effective, 1=weakly
effective, 0=ineffective. n/a indicates the encoding is not applicable. The Total column contains the row totals. The rows are sorted by Total.

4.3.3 Recommendations for Advanced Users

The space of viable options here is somewhat larger than for casual
users, since designers may want to provide more or less flexibility
depending on the work context and expertise of potential users.
Even so, our recommended design strongly supports all tasks while
maintaining consistency and discriminability between views.

Comparison Mode Switch. A careful analysis of Figure 4 in-
dicates that all tasks are strongly supported by at least one of the
following: Stacked Bar Chart, Tabular Bar Chart 1, Box Plot 1, and
Parallel Coordinates 2. Overall, these encodings achieve a combined
score of 41 out of a possible 45, which is the score achieved if the
best encoding for each were selected. A design that can effectively
integrate these four encodings is presented in (Figure 5). When the
user selects Compare Evaluators mode, color is mapped to evalua-
tors and the design is identical to the one for causal users. However,
when the Compare Alternatives mode is selected, colour is mapped
to alternatives, and the strengths of Tabular bar charts, Stacked Bar
charts and Parallel Coordinates are synergistically combined.

4.3.4 Interactivity

This section describes how various options for transforming the view
support users in performing auxiliary tasks identified in this work.

Users should be able to sort alternatives by TotalScore or by
AltScore for a particular evaluator, as this ordering is essential for
inspecting top values (AT9) and identifying dominance relationships
(AT4). The ability to sort columns by AltScore for a particular
alternative is not essential but could be useful. Ideally, users should
also be able to reorder point plots, rows, and columns manually, as
giving them control over which items are adjacent can improve their
performance on comparison tasks (AT2, AT3, and AT4). Whenever
the columns in the tabular bar chart are reordered, the segments in
the corresponding stacked bar chart should be reordered as well.

Linked highlighting of marks for a particular evaluator or alterna-
tive could improve users’ ability to locate distributions (AT6) and
compare them (AT3), especially in cases where the distributions are
spread across regions or axes. Supporting selection of multiple dis-
tributions for highlighting at once could also facilitate comparison
tasks. Further, linked highlighting across all views can help users
stay oriented when shifting attention between views.

There are two types of filtering a designer might want to support:
filtering on entities and filtering on values. Filtering on entities is
the ability to select a subset of alternatives or evaluators to inspect
at any time, which can facilitate many tasks by removing distract-
ing elements. Filtering is especially important when working with
parallel coordinates, since the distributions occupy the same space.
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Figure 5: Design with Comparison Mode Switch.

Filtering on values is the ability to exclude alternatives based on
TotalScore or AltScore for a particular evaluator, which allows users
to set qualifying thresholds (i.e. constraints) that must be met for an
alternative to be considered. This feature is not required to support
any of the tasks we identified, but it could be useful in scenarios
where qualifying thresholds are important.

A final type of transformation involves augmenting the display
with details on-demand. For example, users might want to query the
value encoded by a mark, as it may be difficult to glean from the
graphical representation alone. Possible implementations include
toggled value overlays or tooltips that appear when users hover over
a mark. Tooltips could also include the label for the mark in order
to expedite identification (AT1). Details of particular importance
include text explanations supplied by evaluators; they could be
displayed whenever a user interacts with the corresponding mark.
Other forms of textual information designers might consider making
available on demand include averages, variances, and axis details.

5 EVALUATION

We have implemented an online tool (see Figure 1) based on the
recommendations for Option 2 in Sections 4.3.3–4.3.4 and as de-
picted in Figure 5. It allows preference elicitation and analysis to be
performed remotely and/or asynchronously; it also allows evaluators
to update their preferences while they view those of the group. We
have performed a preliminary evaluation with two user studies.

5.1 Preference Elicitation
Prospective evaluators are presented with a list of alternatives, each
of which may have a description and/or reference hyperlink. Then,
each evaluator can assign AltScore values using sliders on a simple
one-to-ten scale and provide the rationale behind their score for each
alternative. Scores and comments are saved to an online database.

5.2 Visualization Design and Implementation
As discussed in Section 4.3.3, our prototype displays tabular and
stacked bar charts as well as a box or parallel coordinates plot
(depending on comparison mode). It was implemented in TypeScript
using a MEAN (MongoDB, Express, Angular, NodeJS) stack; and
D3 [6] is used to generate the visualizations.

Our prototype incorporates many of the interactions discussed in
Section 4.3.4. Alternatives may be sorted by TotalScore or AltScore
by clicking on text labels above the tabular and stacked bar charts.
Linked highlighting occurs when hovering over a mark; marks asso-
ciated with that evaluator or alternative (depending on comparison
mode) are emphasized by reducing the saturation of all other marks.
Toggles for each evaluator and alternative enable filtering. Details
are made available in a number of ways. Clicking the name of an
alternative in the control area displays a dialog containing the alter-
native name, description, and reference hyperlink. Tooltips in the
box and parallel coordinate plots display AltScore values for marks.
A numerical overlay for the bars and stacked bars is available via

toggle. Since names may require truncation, tooltips for text labels
display full names. Finally, hovering over any mark reveals a detail
pane containing the evaluator and alternative names, the AltScore
value, and any comment about the alternative by the evaluator.

Finally, evaluators can change their AltScore values with sliders
or open dialogs to edit their comments. These changes are imme-
diate locally and may be discarded or shared with the group. This
seamlessly supports the iterative nature of GDM by allowing users
to move between inspection and elicitation (see Section 2.1).

5.3 User Studies
The decisions considered in our two user studies varied in scope and
impact, but both could be modeled by scoring alternatives directly.

Study Format: Before the group meeting, participants were sent
an email with instructions for registering with the tool and submitting
their preferences. During the meeting, the participants were directed
to a questionnaire and filled out the portion concerning their prior
visualization experience. Their collected preferences were then used
to give a demonstration of the prototype. Afterwards, participants
were given up to five minutes to individually analyze the group’s
preferences, with a focus on finding areas of (dis)agreement. From
this point, they were also permitted to update their preferences.

The meeting was then opened up for group discussion, with the
goal of reaching a consensus. Note that, while the preferences of
the author who conducted the study were displayed along with those
of the participants, the author did not participate in the discussions
other than to answer direct questions about their preferences.

The participants then filled out the remainder of the questionnaire
(adapted from the one used in Bajracharya et al. [2]) to provide
feedback on the tool. Most of the questions used a 5-point Likert
scale, but there were also places for free-form feedback.

User Study 1: MERIDIAN2 A consortium working to provide
resources and infrastructure for marine environmental research. Two
of the authors are currently members of MERIDIAN, though only
the author conducting the study was involved in it. This study
was held via video conference with eight MERIDIAN members
in four locations; the conducting author shared their screen as a
common reference display, while the participants used laptops to
access the tool for individual analysis. The task was to rank current
MERIDIAN projects in terms of priority for future work. This task
was significant because the participants had a personal stake in the
outcome, even though the discussion was only preliminary.

User Study 2: NLP The Natural Language Processing (NLP)
reading group attended by two of the authors; only the author con-
ducting this study was involved. It was held in-person with nine
participants tasked with ranking papers to be presented at future
meetings. Compared to the MERIDIAN group, this task was less im-
pactful for the participants, since it would not have long term effects
on their research projects; even so, the alternatives were selected
from different areas of NLP, so some disagreement was expected.

2https://meridian.cs.dal.ca/
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Table 7: Mean responses to questions on a 5-point Likert scale (1 = “strongly disagree”, 5 = “strongly agree” unless otherwise specified).

MER NLP
Prior experience: (1 = none, 5 = extensive)
Bar chart 4.83 4.12
Stacked bar chart 4.17 3.00
Box plot 4.00 3.25
Parallel coordinates plot 1.83 1.75
Microsoft Excel 4.50 3.62
Tableau 1.83 2.00
Visualizations in general 3.67 3.12
Usefulness: (1 = not useful, 5 = very useful)
Bar chart 4.33 4.25
Stacked bar chart 4.67 4.62
Box plot 4.50 3.12
Parallel coordinates plot 2.33 3.12
Legend 4.67 4.38
Mean of Visualization Elements 4.10 3.90
Showing/hiding alternatives 4.00 4.00
Showing/hiding evaluators 4.00 4.12
Sorting by evaluator/total score 4.50 4.88
Switching between comparison modes 3.00 3.62
Showing/hiding the score overlay 3.33 4.12
Linked highlighting 4.50 3.88
Mean of Interactive Techniques 3.89 4.10

MER NLP
I modified my own preferences during the
session (1 = not at all, 5 = significantly)

4.33 2.12

This tool helps make our discussions more
participatory

4.33 4.12

The tool helps identify agreements and
disagreements

4.67 4.88

The tool helps make informed decisions based
on everyone’s preferences

3.67 4.00

I would be happy if the alternative with the
highest aggregate score were chosen

3.67 3.62

Please rate the tool’s potential to affect group
interaction (1 = worse, 5 = better)

3.83 4.00

Please rate the tool’s potential to affect
information exchange among participants
(1 = less exchange, 5 = more exchange)

4.33 3.75

This tool was suitable for the complexity of the
decision being made

3.67 3.88

I would like to use this tool for making
similar collaborative decisions in the future

4.00 3.62

I would like to use this tool for making more
complex collaborative decisions in the future

3.83 3.75

5.4 User Study Results
Six of the MERIDIAN and eight of the NLP participants filled out
the questionnaire. Table 7 shows aggregated responses to the Likert
scale questions; see the supplemental material for full results.

Participants easily identified areas of disagreement, particularly
in cases where there was some apparent agreement, but also a small
number of outliers. Both groups sought to find high-performing
alternatives with as few low evaluator scores as possible.

The participants found most of the visualization elements effec-
tive. The primary exception seems to be parallel coordinates; this
may be related to the participants’ lack of prior experience (< 2)
with that idiom, rather than an assessment of its general effective-
ness. Also noteworthy is that all but one participant scored at least
one idiom as “very useful”; further, that idiom was not the same for
all participants, suggesting that the multiform approach may have
utility across a broad user base. Even so, the respondents seemed to
find the stacked bar chart the most useful overall. While it is not very
effective in most auxiliary tasks (see Figure 4 and Table 6), it excels
in auxiliary task AT9:B (Search:Browse to obtain min/max values),
highlighting its importance in the decision process. Interactions
were also found to be very effective. The one deemed least effective
(but still with micro-average 3.35) was switching comparison mode;
this is likely related to the scores for parallel coordinates.

The use of comments was mixed between and within the study
groups. In MERIDIAN, only three participants annotated their
scores with comments, and two of those only commented on their
own projects. Conversely, while only four NLP participants com-
mented on their scores, two of those annotated all of their scores,
while a third annotated all but one score. In both studies, however,
participants found evaluator comments to be useful during prefer-
ence inspection and used them as reference material during the group
discussions. This suggests that such annotation can be of benefit to
the GDM process, even though decision makers’ motivations may
vary significantly, and thus may require additional support.

All of the MERIDIAN respondents modified at least one of their
preferences, as did half of the NLP respondents. The majority of
the preference changes occurred during group discussions, as noted
by the conducting author. For MERIDIAN, one project was given
low scores by nearly all participants because it seemed unrelated to
the goals of the consortium; when its applicability was explained,

the participants increased their scores considerably for that project.
Another project had its scores reduced when it was noted that its
intended purpose could be achieved relatively inexpensively by exist-
ing systems. For NLP, the participant scores were largely driven by
relevance to their own research projects; the majority of the changes
occurred when it was revealed that the techniques used in one of the
papers for a particular domain could be applied more broadly.

The mean scores also suggest the tool enables participatory dis-
cussions (4.33 and 4.12), helps identify areas of (dis)agreement
(4.67 and 4.88), and can increase information exchange (4.33 and
3.75). Even so, it is noteworthy that the NLP group seemed less
interested in using the tool than the MERIDIAN group. This may
be due in part to the difference in impact that the tasks given to each
group would have. Reading group meetings are a small part of a
research group’s time and effort, and so there would be less inclina-
tion to spend time coming to a consensus about them; whereas the
prioritization or removal of a project in MERIDIAN would have a
significant impact on the day-to-day operations of its members. We
note that the NLP group, on average, would be more likely to use our
tool for more complex decisions than for ones similar to their task;
this may suggest some conflation between decision complexity and
decision impact, which can be explored in future user and usability
studies along with the other insights gained from this work.

The most frequent feature request was for the ability to anonymize
the evaluators; people whose preferences are outliers may feel pres-
sured to conform to the rest of the group, and a layer of anonymity
could help offset that effect. Another request was for additional
sorting options for alternatives, such as sorting by variance. This
matches the observed tendency to look for alternatives that maximize
aggregate score, while minimizing disagreement. Participants also
noted that the visualization would become harder to read for much
larger scenarios; addressing scalability concerns without sacrificing
effectiveness is important for future work.

6 CONCLUSIONS AND FUTURE WORK

Effective GDM is critical for the advancement of our society; how-
ever, it can be challenging due to its multi-variate and interpersonal
nature. There is considerable evidence that structured decision pro-
cesses and individual preference modeling in particular can promote
more fruitful analysis and discussion, ultimately leading to greater
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satisfaction with outcomes. InfoVis solutions have the potential to
enrich this process, but only a handful have been attempted, and none
seem to be grounded in a comprehensive understanding of user needs
and design options. This paper is a first step in addressing this gap.
By going through the nested model of visualization design, we have
developed and tested a prototype to support GDM when decision
makers express their preferences directly on the alternatives.

One limitation of our analysis of real-world scenarios is that they
were not examined in situ, and so it is possible that some tangible
realities were missed. Thus, a promising area for future work would
be to conduct design studies following the methodology proposed in
Sedlmair et al. [35], with our data/task models and current prototype
providing an initial framework that we could refine to satisfy more
specific requirements. This would complement the breadth of our
current work with additional depth and practical grounding.

As a first step in developing soundly designed preference visual-
izations for GDM, our encodings analysis has for now been focused
on relatively small-scale decision problems where each evaluator
scores each alternative. The next step will be to extend the design
space to decision scenarios requiring more complex preference mod-
els (e.g. where alternatives are represented by a set of attributes)
as well as larger sets of alternatives and evaluators. Although this
may require considerable additional effort, we are optimistic on its
feasibility, since the core data abstractions and tasks will be similar,
and so the analytic evaluation of tabular encodings presented in
this paper will inform the rest of its development. In addition, the
insights and new questions gained from our user studies will inform
new user and usability studies to evaluate future GDM support tools.
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