Technical Reports

The ICICS/CS Reading Room


UBC CS TR-2005-24 Summary

A Formal Mathematical Framework for Modeling Probabilistic Hybrid Systems, October 12, 2005 Robert St-Aubin and Alan K. Mackworth, 22 pages

The development of autonomous agents, such as mobile robots and software agents, has generated considerable research in recent years. Robotic systems, which are usually built from a mixture of continuous (analog) and discrete (digital) components, are often referred to as hybrid dynamical systems. Traditional approaches to real-time hybrid systems usually define behaviors purely in terms of determinism or sometimes non-determinism. However, this is insufficient as real-time dynamical systems very often exhibit uncertain behaviour. To address this issue, we develop a semantic model, Probabilistic Constraint Nets (PCN), for probabilistic hybrid systems. PCN captures the most general structure of dynamic systems, allowing systems with discrete and continuous time/variables, synchronous as well as asynchronous event structures and uncertain dynamics to be modeled in a unitary framework. Based on a formal mathematical paradigm uniting abstract algebra, topology and measure theory, PCN provides a rigorous formal programming semantics for the design of hybrid real-time embedded systems exhibiting uncertainty.


If you have any questions or comments regarding this page please send mail to help@cs.ubc.ca.