Technical Reports

The ICICS/CS Reading Room


UBC CS TR-2000-08 Summary

Determination of Intensity Thresholds via Shape Gradients, August 01, 2000 Roger Tam and Alain Fournier, 9 pages

medical imaging, segmentation, shape representation, shape measurement, thresholding, Union of Circles objects in an image provide high-level information that is essential for many image processing tasks. Accurate analysis of medical images is often dependent upon an appropriate greyscale thresholding of the image for reliable feature extraction. The determination of object thresholds can be a time-consuming task because the thresholds can vary greatly depending upon the quality and type of image. Thus, an efficient method for determining suitable thresholds is highly desirable. This paper presents a method that uses shape information to accurately determine the intensity ranges of objects present in a greyscale image. The technique introduced is based on the computation of the \emph{shape gradient}, a numerical value for the difference in shape. In this case, the difference in shape is caused by the change in threshold value applied to the image. The use of this gradient allows us to determine significant shape change \emph{events} in the evolution of object forms as the threshold varies. The gradient is computed using \emph{Union of Circles} matching, a method previously shown to be effective in computing shape differences. We show the results of applying this method to artificially computed images and to real medical images. The quality of these results shows that the method is potentially viable in practical applications.


If you have any questions or comments regarding this page please send mail to help@cs.ubc.ca.