Technical Reports

The ICICS/CS Reading Room

UBC CS TR-84-13 Summary

Stability of Collocation at Gaussian Points, October 1984 Uri Ascher and G. Bader

Symmetric Runge-Kutta schemes are particularly useful for solving stiff two-point boundary value problems. Such A-stable schemes perform well in many cases, but it is demonstrated that in some instances the stronger property of algebraic stability is required.

A characterization of symmetric, algebraically stable Runge-Kutta schemes is given. The class of schemes thus defined turns out not to be very rich: The only collocation schemes in it are those based on Gauss points, and other schemes in the class do not seem to offer any advantage over collocation at Gaussian points.

If you have any questions or comments regarding this page please send mail to