Improved Action and Path Synthesis using Gradient Sampling

Neil Traft and Ian M. Mitchell

Abstract— Shortest paths generated through gradient descent
on a value function have a tendency to chatter and/or require
an unreasonable number of steps to synthesize. We demonstrate
that the gradient sampling algorithm of [Burke, Lewis &
Overton, 2005] can largely alleviate this problem. For systems
subject to state uncertainty whose state estimate is tracked
using a particle filter, we propose the Gradient Sampling with
Particle Filter (GSPF) algorithm, which uses the particles as
the locations in which to sample the gradient. At each step,
the GSPF efficiently finds a consensus direction suitable for all
particles or identifies the type of stationary point on which it
is stuck. If the stationary point is a minimum, the system has
reached its goal (to within the limits of the state uncertainty)
and the algorithm naturally terminates; otherwise, we propose
two approaches to find a suitable descent direction. We illustrate
the effectiveness of the GSPF on several examples using the ROS
and Gazebo robot simulation environment.

I. INTRODUCTION

Many techniques have been developed for synthesizing
(approximately) optimal feedback control inputs/actions in
the control and robotics literature. When dynamics are
nonlinear, inputs are constrained, or cost functions are not
quadratic, the optimal feedback controls are often nons-
mooth. In this paper we propose a simple solution to two
commonly encountered problems that arise when synthesiz-
ing control inputs (and the paths that they generate) from
such control functions.

In order to illustrate these two problems, consider the
narrow corridor scenario shown in Figure |1 For simplicity,
we work with an isotropic, holonomic vehicle in the plane: It
can move in any direction at some bounded maximum speed.
The vehicle is trying to reach a goal location on the right
side of a narrow corridor. The objective is to minimize path
length, but for safety purposes we penalize states which are
close to the walls. To solve the scenario, we approximate a
minimum time to reach value function in the obstacle free
space. The resulting optimal feedback controller follows the
gradient of the value function.

The first problem arises even with numerical simulations
where we know the exact state at each step: Chattering of the
optimal control as illustrated in Figure 2| A typical cyber-
physical control system for vehicles and robots operates
on a loop in which new control signals are generated
at roughly periodic time intervals. If the control signals
arise from gradients of a value function, this approach is

This research was supported by CANWHEEL (the Canadian Institutes
of Health Research (CIHR) Emerging Team in Wheeled Mobility for
Older Adults Grant #AMG-100925) and National Science and Engineering
Council of Canada (NSERC) Discovery Grant #298211.

Department of Computer Science, University of British Columbia, Van-
couver, Canada. Email: ntraft@gmail.com,mitchell@cs.ubc.ca

Fig. 1. Narrow corridor example. Top: Obstacles are gray, the goal location
is a blue circle. Middle: Contours of the value function. The corresponding
cost function penalizes states near the walls. Bottom: Vector field of the
gradients of the value function (on a subsampled grid for visibility). All
gradients in the corridor have a rightward component, but there is an abrupt
jump between upward and downward components.

Fig. 2. Narrow corridor example paths. Every figure is overlayed with
contours of the value function, and markers are placed along the trajectory
at each step. Top: Fixed stepsize path. Middle: Adaptive stepsize path from
MATLAB’s odel5s (an implicit scheme). Bottom: Sampled gradient path.

mathematically equivalent to fixed stepsize gradient descent
(essentially forward Euler integration) and gives rise to
significant chattering. A naive response is to use a variable
stepsize integrator such as MATLAB’s ode23 or ode45. It
turns out that they can generate decent paths, but require
an unreasonable number of tiny steps. Those familiar with
numerical integration will immediately diagnose stiffness as
the problem, and prescribe an implicit integrator such as
MATLAB’s ode23t or odel5s. They take fewer steps
but require much longer to run because they still generate

~ N g
05F ~
— \N\:\\\ \(\Q‘?

of L ""’:: I ,
/
051 P4 —
///-;'. N
ElS // & \ il

Fig. 3. State uncertainty, as represented by samples from a (simulated)
particle filter. The figure shows a zoomed in view of the left side of the
corridor scenario from Figure[ﬂ Each dot is a state sample, and the attached
arrow shows the optimal action for that sample. Depending on which sample
represents the actual state, the optimal action could be in any direction.

many tiny steps in parts of the domain where the optimal
path is straight. In fact, the problem arises because the
value function is (nearly) non-differentiable along the center
of the corridor, and consequently the gradient is (nearly)
discontinuous precisely where the optimal path lies. Figure 2]
also illustrates how our proposed approach generates a much
more desirable solution with large stepsize and straight path.

The second problem arises in physical systems in which

the state is not accurately known. Figure |3| shows a com-
monly used non-parametric representation of state uncer-
tainty called the particle filter: Each point represents a
possible state of the system. Every direction of the compass
is covered by at least one particle’s optimal action. The
typical mechanism for choosing an action—extract the mean
or most probable state and use the corresponding optimal
action—will choose one of these actions and will not even
recognize that any action may be counterproductive. In fact,
in this case the system should, if possible, refine its state
estimate before choosing an action.

With these two problems in mind, the contributions of this

paper are to show:

o« How the gradient sampling algorithm [1] borrowed
from nonsmooth optimization can easily be combined
with a standard particle filter representation of state
uncertainty.

o That the resulting algorithm can at each step generate
a productive action choice which takes into account
current state uncertainty or determine that no such
action exists.

o That the resulting action choices nearly eliminate the
chattering often observed over multiple steps when
using gradient descent based path planners.

We illustrate success in a simple simulation with Figure [2}
but more importantly we illustrate success in a full scale
robotic simulation with state uncertainty and simulated noisy
sensors and motion using the widely adopted ROS / Gazebo
environment. The algorithm does give rise to one undesirable
behavior: It tends to steer toward not just minima of the

value function but any stationary point, including saddle
points. Consequently, we propose a procedure for categoriz-
ing whether a stationary point is the desired minimum and
discuss two approaches to resolve saddle points. A pleasant
side-effect of the categorization algorithm is automatic deter-
mination of whether the goal has been reached to the degree
possible given the current state uncertainty.

II. BACKGROUND

At a high level, we seek to choose a sequence of direction
commands which will navigate a robot from its current
location to a known goal location in a known map. Although
the robot is able to move in any direction, the problem is
non-trivial because the map contains obstacles which must
be avoided. Furthermore, the robot is unsure of its current
position, may not move exactly as commanded, and receives
noisy sensor information from which it must estimate its
position and movement. A very common approach to solve
this problem is to plan deterministically optimal paths, track
state uncertainty online, but then choose the action which is
deterministically optimal for some single possible state. Such
an approach can be theoretically justified by the separation
principle for linear time-invariant systems with Gaussian
noise, but most mobile ground robots and their sensors
are highly nonlinear so the widespread adoption of this
pipeline is due to its ease of implementation and frequent
experimental success (modulo the chattering issue mentioned
earlier).

In this section we outline the elements of a typical optimal
navigation pipeline, with actions chosen by gradient descent
of a value function approximation and uncertainty tracked by
a particle filter representation. The section concludes with a
brief description of the gradient sampling algorithm from the
non-smooth optimization literature.

A. Problem Formulation

Our goal is to navigate the robot through the state space €2
to some compact target set 7 ; we present results for 2 C R2,
but it is straightforward to extend the approach to higher
dimensions and motion on smooth manifolds. We seek paths
z(+) : [to, ty] — €2 that are optimal according to an additive
cost metric

23
Y(xg) = in / c(x(s)) ds, (D)
z(1) Jto

where z(0) = zo, x(ty) € T and z(-) are drawn from the
set of feasible paths such that z(t) € Q\ T for to <t < ¢y.
The value function v (x) measures the minimum cost to go
from state « to 7 (this cost may not be achievable, but paths
whose costs are arbitrarily close to (z) exist). The cost
function ¢(-) is assumed to be strictly positive and Lipschitz
continuous.

The optimal solution of (I)) depends on the feasible paths.
Here we will assume only the simplest form of isotropic
holonomic dynamics

La(t) = @(t) = u(t),)

where [Ju(t)|| < 1 (all norms are assumed to be Euclidean
[I1l = || |l2 unless otherwise specified). We assume the input
signal u(-) is measurable and hence xz(t) is continuous.

B. Planning with a Value Function

The value function (T) satisfies a dynamic programming
principle and can be shown to be the viscosity solution of
the Eikonal equation (for example, see [2])

[V (x)|| = c(z), for z € Q\ T;
Y(x) =0, forzeT.

Under the dynamics (2), the viscosity solution ¢ (z) of (3) is
continuous and almost everywhere differentiable. The only
local minima of (z) occur at 7, but the function will
usually be non-convex: it can have saddle points in Q \ 7
and local maxima at boundaries of {2 which are not also
boundaries of 7. It will typically not be differentiable at
these critical points, as well as on other lower dimensional
subsets of the domain.

Except on simple domains €2 and for simple cost functions
c(x), it is not practical to find the viscosity solution of
analytically; however, there exist many efficient approaches
to approximate it; for example [2]-[5]. In order to handle
complex domains and cost functions, approximations are
generally constructed on a discrete grid.

Given the value function, the optimal state feedback action
is easily extracted

3)

. Vip(z)

S T @
Consequently, generation of an optimal path is equivalent
to gradient descent of ¢ (x). Of course we typically cannot
represent the exact solution of ([Z]) and (Efl) either, so we
seek an approximate path in the form of a sequence of
waypoints {z(t;)}; for some sequence of timesteps ¢ty <
t1 <ty <--- <ty and some initial 9. A common approach
is essentially a forward Euler integration with fixed timestep
At

tiy1 = t; + At,

Unfortunately, a straightforward implementation of (3] to
generate paths from the value function (or even a fancier
implementation with adaptive stepsize) falls prey to the well-
established problem with gradient descent (as illustrated in
the top two subplots of Figure [2): The resulting paths chatter
or take many steps to achieve the optimum. This outcome is
not surprising, since the optimal paths often proceed down
the middle of steep-sided valleys in the value function, and
in these valleys the value function displays the large disparity
in curvature that causes gradient descent such problems. In
fact, the value function may not be differentiable there, so
the gradients change discontinuously and the disparity in
curvature is infinite.

A further complication arises because (x) and hence
Vi (x) are approximated numerically. The numerical algo-
rithms will typically return an approximation of V() even
at values of = where the true () is not differentiable, and

&)

more generally the approximate values of Vi (z) may be
inaccurate near these regions where differentiability fails.

C. State Estimation with Particle Filters

The particle filter is a popular technique for state esti-
mation or localization of systems with nonlinear dynamics
and/or sensor models. We focus on a version commonly used
in robotics called Monte Carlo Localization (MCL) [6]. The
state estimate is represented by a collection of weighted sam-
ples {(w™®(t),z®)(t))}. This estimate is updated by pre-
dictions whenever the system state evolves and corrections
whenever sensor readings arrive, typically in an alternating
iteration. Predictions update only the state component by
drawing a new sample

™ (tis) ~ pla(tivr) | 2 (t), u(t;)), 6)

where p(z(t;4+1)|z(t;),u(t;)) is the probability distribution
over future states given past state and input; in other words,
the dynamics (2) plus some motion noise. Corrections update
only the weight component by multiplication

w® (t;11) = p(sensor reading | ¥ (¢;41)) w™ (,),

where p(sensor reading|z(*) (¢; 1)) models the probability of
seeing the sensor reading given the particle’s current state.

In MCL the particle representation is also regularly resam-
pled, typically after each sensor reading. During resampling,
a new collection of particle locations is drawn (with replace-
ment) from the existing locations with probability propor-
tional to the existing particles’ weights, and the weights are
all reset to unity. In the remainder of the paper we will work
with the state estimate only after resampling, so we assume
unit weights.

D. The Gradient Sampling Algorithm

It is well known that gradient descent performs poorly
on nonsmooth optimization problems, and many algorithms
have been proposed to overcome its limitations. Here we
draw inspiration from the gradient sampling algorithm [1],
which is designed to generate a sequence of high quality
linesearch directions despite the presence of discontinuous
and/or poorly approximated derivatives in the objective func-
tion.

The basic algorithm samples the gradient at points within
a radius € of the current point x(¢)

2 ®) (1) = z(t) + e 52, (7)
P (t) = Vi (zM(1) (®)

for k=1,..., K, where {62} are sampled independently
and uniformly from the unit ball centered on x(¢). Next, the
algorithm approximates the Clarke subdifferential [7] using
the convex combination of the gradient samples

P(t) = conv{pV(t),...,pE)(t)}.
The point in this set with minimum norm

p*(t) = argmin [|p||® 9)
peEP(t)

Fig. 4. Finding a “consensus” among different actions. Left: Gradient
vectors (yellow) shown at the corresponding samples’ locations, and the
resulting consensus action (red). In this neighbourhood, the value function
has a ridge. Right: The gradients (yellow) plotted in gradient space, their
convex hull (blue) and p*(t) (red). The consensus action is a leftward
movement, which is a descent direction for all samples.

is a consensus direction: a direction of descent from all
samples z(*) (t). The direction p*(t) is the solution of a sim-
ple convex quadratic optimization problem. The technique is
illustrated in Figure [}

If ||p*(t)|| = O, there is a Clarke e-stationary point—
conceptually a local minimum, maximum or saddle point—
somewhere within the e-ball about z(t), and no direction can
be agreed upon by all samples. In this case the radius € is
reduced and a new sample set (7)—(8) is obtained.

Otherwise, the algorithm performs an Armijo line search
along the vector given by p*(t) to determine an appropriate
step length s, and the update is given by

p*(t)
R RO

The algorithm terminates when e shrinks to a predeter-
mined threshold. When paired with a linesearch procedure
that ensures sufficient descent, it is shown to converge to
a Clarke stationary point under suitable conditions. The
bottom of Figure 2] shows that the resulting optimal trajectory
approximation is accurate and uses a reasonable stepsize
throughout.

(10)

III. OTHER RELATED WORK

The algorithm described below accounts for the state un-
certainty in the particle filter by seeking a consensus direction
for the current action. It does not attempt full treatment of
the problem of planning under uncertainty, which has been
tackled from many angles, for example: differential games
and the Hamilton-Jacobi-Isaacs equation [8]; robust model
predictive control (see [9] for an extensive list of citations);
various versions of asymptotically optimal Rapidly-exploring
Random Trees (RRT*) such as [10], [11]; and algorithms
for efficient solution of very large Partially Observable
Markov Decision Processes (POMDPs) [12] and POMDPs
for continuous state spaces [13].

In fact, the algorithm does something very similar to
QMDP [14]: The action chosen for each particle is opti-
mal assuming that further evolution is deterministic, so the
consensus direction likewise incorporates the assumption of
deterministic future evolution. However, while QMDP selects

the action among a discrete set with minimum expected
cost, our choice is the minimum norm @]}, motivated by
the convergence proof in [1] and the ease of computing this
value.

The algorithm described below was intended as a light-
weight addition to a standard pipeline which separately ap-
plies a deterministic planner and online state estimation. We
suspect that the more comprehensive treatments of planning
under uncertainty would produce better results, albeit with
additional implementation and computational effort. In future
work we plan to quantify those differences experimentally.

IV. MERGING THE METHODS

The basic gradient sampling algorithm can generate a path
for simulations, visualizations, and other situations where
the initial condition zo is known, the dynamics @ are
accurate, and the chosen input (@) is accurately implemented.
Unfortunately, for most physical systems these assumptions
do not hold. In this section we consider how the algorithm
can be adapted to the case where x(¢) can only be estimated.

A. Gradient Sampling with State Uncertainty

The state estimate representation used by particle filters
suggests a natural adaptation of the gradient sampling al-
gorithm: Instead of choosing the gradient sample locations
with (7), use the particles’ locations (6) directly. We call this
version Gradient Sampling with Particle Filter (GSPF).

Proposition 1: 1f the solution p*(t) of (9) is such that
lp* ()| # 0, then p*(t) is a descent direction in the value
function for all particles. If ||p*(¢)|| = 0, there is no direction
which is a descent direction for all particles.

We note that in GSPF, we do not have direct control
over the step length s; instead, the step length is implicitly
determined by how long (¢;41—t;) the system evolves before
the particle filter is again resampled. This choice implicitly
replaces (I0) with

w(tiv1) = x(ts) + (tip1 — 1) <||p]0:((tt))||2> '

It is straightforward to modify the probability distribution
in (6) to take this change into account. From a theoretical
point of view, the goal of the Armijo line search which
provided the step size in the basic algorithm was to ensure a
sufficient descent condition, which is then used in the proof
of convergence to Clarke e-stationary points of the value
function. Assuming that resampling occurs sufficiently often,
it should be possible to ensure a similar sufficient descent
condition in the GSPF, but that by itself will not rescue
the convergence proof because we have also replaced (I0)
with (6). Whether or not the convergence theorem still
holds, GSPF still appears to converge to stationary points
in practice.

B. Classifying and Resolving Stationary Points

Adapting gradient sampling to the case where the system
state is estimated by a particle filter is straightforward, but
we no longer have direct control over the sampling radius e

and so we must devise an alternative termination criterion.
Furthermore, the gradient sampling algorithm converges to
stationary points of any kind, but we seek a local minimum
(which by construction (3) is guaranteed to be a global
minimum and occur at the target set); consequently, we must
devise a mechanism for escaping stationary points which are
not local minima.

Fortunately, we do have indirect control over our sampling
radius: We can perform more sensor updates (and resam-
plings) in the hope that the spread of the state estimate
is reduced with the introduction of more observations. In
Section [V] we simulate a robot which can choose to use either
a low or high precision sensor, and which would prefer to
use the low precision version whenever possible to conserve
power. Similar multi-tiered sensing solutions may include
cases where multiple sensors are available but not always
deployed, or where the robot could re-orient a sensor with a
limited field of view.

Before going to the trouble of gathering additional sensor
readings, we should first determine whether a stationary point
is a desirable minimum or an undesirable saddle point or
maximum. To do so, we will locally approximate the value
function as a quadratic

Y(x) = F(z — z) A —z) + 0T (x —z)+c (1)

in the neighborhood of the particles, where «.. is the center of
curvature and matrix A is symmetric. Rather than fitting the
value function directly, we fit the gradient of the quadratic
approximation

Vi(x) = Az —) +b (12)

to the set of gradient samples {p(*)(¢)} that we have already
collected (@) In our implementation, we set z. to be the
mean of the particle locations {z(*)(¢)}, use least squares to
fit A and b, update . = A~'p, and refit A and b (at which
point b is very close to zero). The resulting matrix A is an
approximation of the Hessian of the value function in the
neighbourhood of the stationary point.

We note in passing that quasi-Newton optimization al-
gorithms, such as BFGS, also approximate the Hessian of
the objective function. Such algorithms are designed to con-
struct their approximation efficiently in high dimensions over
multiple steps using only a single objective function sample
at each step. In our case we wish to approximate a low
dimensional Hessian which takes into account information
from all of the current particles and only the current step, so
we find the least squares fit described above more efficient
and appropriate than an adapted quasi-Newton update.

If the stationary point is a minimum, A will be positive
definite. Algorithmically, we compute the eigenvalues of A
(relatively inexpensive for the low to moderate dimensional
systems in which we are interested) and declare victory
if they are all positive. If there are negative eigenvalues,
then we can attempt to improve the state estimate through
traditional sampling (as described above) and thereby escape
the stationary point.

~— | ‘\
— | J

Fig. 5. Using a quadratic approximation to resolve a saddle point. In
both plots gradient samples from an area where there is a saddle point
are shown in yellow. Left: Gradient vectors shown at their corresponding
particle locations and the eigenvectors of the local Hessian approximation
(blue). The vectors pointing inward correspond to a positive eigenvalue,
while those pointing outward correspond to a negative eigenvalue. The
action chosen (red) is upward, because more gradient samples agree with
this sense of the eigenvector corresponding to the negative eigenvalue. Right:
Gradient vectors shown in gradient space and their convex hull (blue). The
convex hull contains the origin so there is no consensus direction.

In practice, improved sensing is not always available
or is insufficient to resolve undesirable stationary points.
Fortunately, the eigenvalue decomposition of the Hessian A
also provides us with an alternative method to determine
a reasonable action. Each eigenvector v corresponding to a
negative eigenvalue of A is locally a direction of descent for
the value function. By Proposition [I] there is no consensus
direction of descent for all particles, but we can choose
some direction from among these eigenvectors in the hope
of escaping the stationary point.

If there is only a single negative eigenvalue (which must
be the case at a saddle point in 2D) with corresponding
eigenvector v, there are only two descent directions: v or —v.
A simple voting procedure can determine which of these the
majority of the particles prefer. Let

K
a= Z sign(—vTp*).
k=1

If « < 0 we travel in the direction of —w, otherwise
we travel in the direction of +v. Figure [illustrates this
procedure. If multiple eigenvalues of A are negative, one
could use the simple voting procedure on the eigenvector
associated with the most negative eigenvalue, or one could
devise a more complex procedure for searching over the
space spanned by the eigenvectors associated with all of the
negative eigenvalues to find a direction favorable to more of
the particles.

V. EXAMPLES

To test GSPF in as realistic an environment as possible in
silico, we use the MCL particle filter implementation found
in ROS [15], and hook it to Gazebo [16] to simulate the
robot’s (noisy) motion and sensor systems. We have modified
the original MATLAB code from [1] to accept the particle lo-
cations as the sample locations, and communicate with ROS
through MATLAB’s Engine API for C++. For convenience,
we construct the value functions using a transformation of (3)
to a time-dependent Hamilton-Jacobi PDE [17] that is easily
solved using our own software [18, section 2.7]. Given the

Fig. 6. Single obstacle scenario. Left: Costmap ranging from low (blue) to
high (red). Right: Contours of the resulting value function. Stationary points
are the minimum at the goal (—2.0,0.0) and the saddle point on the east
side of the obstacle (0.9,0.0). The horizontal ridge running through this
saddle point is the decision boundary between going north or south around
the obstacle.

value function approximation, we approximate the gradients
numerically at the nodes of the grid using (upwind) finite
differences, and then interpolate these approximate gradients
to states which are not on the grid. The value function and
gradient approximations on the grid are currently constructed
offline, while the interpolation is done online.

In each of the following examples, we simulate a holo-
nomic disc robot with a sweeping single-beam LIDAR range
sensor. The robot can travel equally fast in any direction in
the plane. The sensor has a 260° horizontal field of view. We
can simulate either a low precision (noisier) or high precision
version of the sensor. Unless otherwise specified, the high
precision version of the sensor is used.

In all figures that depict paths taken by the robot, both the
ground truth trajectory (green solid lines) and state estimate
(blue stippled lines) are shown. The “state estimate” is the
value returned by the MCL implementation, which is usually
the mean of the particles’ locations.

A. Single Obstacle

Our first example has only a single symmetric obstacle,
and is used to demonstrate the main features of the GSPE.
The robot must travel around the obstacle from east (4.0, 0.2)
to west (—2.0,0.0) while avoiding a saddle point. Figure []
illustrates the scenario.

The robot starts using the noisier sensor and an initial
state estimate with large covariance. The robot does not
know that the optimal deterministic path goes northwest
around the obstacle because the noisy state estimate straddles
the north/south decision boundary. The GSPF identifies that
west is a consensus direction, so the robot moves that way.
The state estimate improves, but not enough to resolve the
choice between north and south; consequently, the system
encounters the saddle point. As explained in Section
an approximate local Hessian is constructed and the presence
of positive and negative eigenvalues identifies the stationary
point as a saddle. We illustrate the two approaches to resolve
such stationary points in Figure [/ and below.

To demonstrate improved localization, we switch to the
high precision version of the range finder and perform MCL
sensor corrections (and resampling). Figure 8| shows how the

Fig. 7. The single obstacle example using two different stationary point
resolution methods (zoomed to show only the relevant portion of the
domain). Top: Improved localization. Bottom: Eigenvector voting. Ten trials
of each are shown.

Action Angle vs. Particle Covariance
T T T

P
6.28 4

40.15

.
Covariance

o 5 10 15 25 30 35 40

20
Time

Fig. 8. Covariance of the particle cloud and the consensus action direction
as functions of time for a single run of the improved localization approach.
The covariance decreases as we move west (6 ~ 3.14) until we get stuck
on the saddle point (the grey shaded segment). Covariance further decreases
as we take new observations from the improved sensor. We see a sudden
change in direction (6 = 1.57) when the covariance drops sufficiently low
that the particles no longer surround the saddle.

covariance of the state estimate drops in one of the trials as
these improved corrections are incorporated, until finally a
consensus direction emerges (when the particles all end up
on the north side of the decision boundary) and the robot
escapes the saddle.

For resolution by eigenvector, we keep the noisy sensor.
When we identify the saddle point, we examine the eigen-
vectors of the approximate Hessian. The particles vote on
the direction of the eigenvector associated with the negative
eigenvalue with which their action most agrees. The majority
vote to go north, allowing escape from the saddle.

Whichever resolution procedure is used, once the robot
escapes the saddle point GSPF continues easily around
the north of the obstacle and then southwest toward the
goal. When the particles are in the goal region another

Fig. 9. Navigating to a goal in the bottom right corner. In all cases, actions
are chosen at roughly 0.05m intervals. Top: Action chosen by steepest
descent on the expected state generates chattering. Middle: Action chosen
by stochastic gradient descent (SGD) generates a more randomized, but still
jagged path. Bottom: Action chosen by GSPF generates a smoother path.

stationary point is identified. A new approximate Hessian
is constructed, its positive eigenvalues confirm that we have
reached the target, and GSPF terminates.

B. Narrow Hallway

We illustrated that the basic gradient sampling algorithm
can resolve the chattering problem encountered when the
value function is (nearly) non-differentiable in Figure 2| In
this section we illustrate that the same chattering behaviour
can arise when using the default ROS approach of plan-
ning based on the expected state of the MCL filter. We
furthermore demonstrate that adapting stochastic gradient
descent (SGD)—another popular optimization algorithm for
potentially nonsmooth objective functions—to a particle filter
does not resolve the chattering behavior either.

The robot starts to the left of a narrow hallway, and must
travel down the hallway to its goal on the bottom right. The
cost function is chosen to penalize states which are too close
to the walls, and the resulting value function displays a steep
sided valley through the narrow hallway. Figure [J] illustrates
a single run for each of the approaches: Choosing the optimal
action for the MCL filter’s expected state (equivalent to
steepest descent), choosing the optimal action for a random
particle (the equivalent of SGD), or choosing the action based
on GSPFE. The first two approaches show chattering, while
the last shows that the consensus action generated by GSPF
results in a relatively smooth path.

TABLE I
AVERAGE ANGULAR DIFFERENCE BETWEEN SUCCESSIVE ACTIONS

Update Steepest Descent SGD GSPF
Rate mean (variance) mean (var) mean (var)
0.01 m 16.6° (0.05) 16.0° (0.08) | 2.37° (0.02)
0.05 m 16.6° (0.21) 22.6° (0.29) | 0.54° (0.00)
0.1 m 15.2° (0.04) 23.5° (0.79) | 0.39° (0.00)
0.2 m 23.3° (0.15) 29.4° (2.76) | 0.01° (0.00)

-

iz

f
VW
e
Y G

2o

2,

4

Fig. 10. The value function for the cluttered scene. The goal location is
in the bottom left. Contours of the value function and the resulting gradient
vector field are shown.

To test the hypothesis that chattering might be reduced
by adjusting the stepsize, we ran simulations at a variety
of update rates and measured the angle between successive
action choices:

; arctan (%) — arctan (%)
where p*(t) = [x(t)7y(t)]T.

Only the portion of each trajectory in the hallway was used
in this calculation. Results are shown in Table |Il The large
heading changes characteristic of chattering persist for the
steepest descent and SGD approaches over a wide range of
update rates, while GSPF avoids the problem even at fast
update rates. We were able to observe chattering by GSPF if
we stringently limited the number of particles (around twenty
or fewer), but such a small number is not enough to localize
reliably anyway.

)

C. Cluttered Scene

In our final example we examine a scene with several
obstacles of different shapes, as illustrated in Figure The
function exhibits many saddle points (typically one near each
separate obstacle) and ridges that represent decision surfaces.

Trials using action selection based on expected state and
GSPF are shown in Figure [TT] Eigenvector voting procedures
were used to resolve all stationary points. We observe several
differences in the paths generated by the two algorithms.
First, GSPF does not make an immediate decision on which
side of the first obstacle to pass, and sometimes eventually
chooses to pass to the west. Second, GSPF exhibits a
tendency for sharp turns when squeezing between obstacles,

NS N
O [© [

Fig. 11. Navigation through the cluttered scene. The robot travels from
the upper right to the lower left. Ten trials are shown in each case. Left:
Action chosen based on expected state. Right: Action chosen by GSPF.

tightly tracking the valleys of the value function. Both of
these behaviours arise because GSPF takes into account the
position (and hence optimal action) of all particles.

The second behaviour can be considered an appropriate
response to a potential collision (if the true state turns out
to be the particle which is near the obstacle). The first,
however, may generate paths which are worse than those
which immediately choose a route around the obstacle, even
if the route turns out to be slightly suboptimal for the
true state. This behaviour occurs along ridges in the value
function, so a potential solution is to approximate the Hessian
at every step and examine its eigenvalues. The presence of a
(sufficiently) negative eigenvalue indicates that the particle
filter is straddling a ridge in the value function (and is
therefore likely headed to a saddle point anyway), so we
could immediately apply one of the saddle point resolution
approaches from Section to choose a steeper descent
direction.

VI. CONCLUSION

We observed that the gradient sampling algorithm from [1]
can be used to resolve the chattering problem commonly
encountered when generating optimal paths from value func-
tion approximations. We then proposed the Gradient Sam-
pling with Particle Filter (GSPF) algorithm, which uses the
particles as the gradient sample locations, thereby naturally
and efficiently generating consensus directions suitable for
all particles or detecting that no such consensus can be
reached. When no consensus exists we use the eigenvalues
of an approximate Hessian to diagnose whether we have
arrived at the goal or are stuck on an undesirable stationary
point; in the latter case two approaches were described for
finding a descent direction. The scheme was illustrated on
three examples in the ROS / Gazebo simulation environment.
Although not illustrated, it is also straightforward to apply
the gradient sampling approach to systems whose state
uncertainty is characterized by parametric representations,
such as the Kalman filter, or to alternative sources of optimal
actions, such as RRT* planners.

In the future we intend to explore the theoretical properties
of the GSPF, its extension to anisotropic and non-holonomic
dynamics, and its use with other planners. We also plan
to develop a highly optimized version of the algorithm to

explore the upper limits of the real-time update rate for a
large number of particles.

ACKNOWLEDGMENT

The authors would like to thank Branden Fung and Car-
olyn Shen for their work on an earlier version of this algo-
rithm, as well as Michael Overton and Michael Friedlander
for several enlightening discussions about gradient sampling
and other non-smooth optimization algorithms.

REFERENCES

[1] J. V. Burke, A. S. Lewis, and M. L. Overton, “A robust gradient
sampling algorithm for nonsmooth, nonconvex optimization,” SIAM
Journal of Optimization, vol. 15, pp. 751-779, 2005.

[2] J. N. Tsitsiklis, “Efficient algorithms for globally optimal trajectories,”
IEEE Transactions on Automatic Control, vol. AC-40, no. 9, pp. 1528-
1538, 1995.

[3] R. Kimmel and J. A. Sethian, “Optimal algorithm for shape from
shading and path planning,” Journal of Mathematical Imaging and
Vision, vol. 14, no. 3, pp. 237-244, 2001.

[4] E. Cristiani and M. Falcone, “Fast semi-Lagrangian schemes for
the Eikonal equation and applications,” SIAM Journal on Numerical
Analysis, vol. 45, no. 5, pp. 1979-2011, 2007.

[5] F. Li, C.-W. Shu, Y.-T. Zhang, and H. Zhao, “A second order
discontinuous Galerkin fast sweeping method for Eikonal equations,”
Journal of Computational Physics, vol. 227, no. 17, pp. 8191-8208,
2008.

[6] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA: MIT Press, 2005.

[7] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth
Analysis and Control Theory, ser. Graduate Texts in Mathematics.
Springer, 1998.

[8] L. C. Evans and P. E. Souganidis, “Differential games and repre-
sentation formulas for solutions of Hamilton-Jacobi-Isaacs equations,”
Indiana University Mathematics Journal, vol. 33, no. 5, pp. 773-797,
1984.

[91 D. Q. Mayne, “Model predictive control: Recent developments and
future promise,” Automatica, vol. 50, no. 12, pp. 2967 — 2986, 2014.

[10] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in Proceedings of the IEEE International
Conference on Robotics and Automation, Shanghai, China, May 2011,
pp. 723-730.

[11] B. D. Luders and J. P. How, “An optimizing sampling-based mo-
tion planner with guaranteed robustness to bounded uncertainty,” in
Proceedings of the American Control Conference, Porland, OR, June
2014, pp. 771-777.

[12] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An
anytime algorithm for POMDPs,” in International Joint Conference
on Artificial Intelligence, August 2003, pp. 477-484.

[13] H. Bai, D. Hsu, and W. S. Lee, “Integrated perception and planning
in the continuous space: A POMDP approach,” International Journal
of Robotics Research, vol. 33, no. 9, pp. 1288-1302, 2014.

[14] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning
policies for partially observable environments: Scaling up,” in Inter-
national Conference on Machine Learning, July 1995.

[15] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[16] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in International Conference on
Intelligent Robots and Systems (IROS), September 2004, pp. 2149-
2154.

[17] S. Osher, “A level set formulation for the solution of the Dirichlet
problem for Hamilton-Jacobi equations,” SIAM Journal of Mathemat-
ical Analysis, vol. 24, no. 5, pp. 1145-1152, 1993.

[18] I. M. Mitchell, “A toolbox of level set methods (version 1.1),”
Department of Computer Science, University of British Columbia,
Vancouver, BC, Canada, Tech. Rep. TR-2007-11, June 2007. [Online].
Available: http://www.cs.ubc.ca/~mitchell/ToolboxLS/toolboxLS.pdf

http://www.cs.ubc.ca/~mitchell/ToolboxLS/toolboxLS.pdf

	Introduction
	Background
	Problem Formulation
	Planning with a Value Function
	State Estimation with Particle Filters
	The Gradient Sampling Algorithm

	Other Related Work
	Merging the Methods
	Gradient Sampling with State Uncertainty
	Classifying and Resolving Stationary Points

	Examples
	Single Obstacle
	Narrow Hallway
	Cluttered Scene

	Conclusion
	References

