
DNIF77

A Prpgram for Shading Molecular Models

by

Catherine Helen Johnson

An essay

presented to the University of Waterloo

in partial fulfillment of the

requirements for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, 1982

• C. H. Johnson

ACKNOWLEDGEMENTS

I am grateful to my supervisor, Professor Kellogg S. Booth, for providing
both the topic of this essay and assistance in its development.

I wish also to thank the members of the Computer Graphics Laboratory,
especially Paul Breslin and Darlene Plebon, for their advice concerning the Iko-
nas 3000 frame buffer and its associated software.

DNIF77
A Program for S h a d in g Molecular Models

1. Introduction

DNIF77 is a FORTRAN 77 extension of the original FORTRAN DNI program
written by Nelson Max of Lawrence Livermore Laboratory as a post-processor to
add colour shading and highlighting capability to the ATOMS program [Max79a,
Max79b]. ATOMS produces monochrome colour perspective depictions of space­
filling and ball-and-stick crystal and molecular structures [Know77].

DNI generates a binary input tape for a minicomputer-controlled Dicomed
D48 graphic film recorder, which plots directly on black and white or colour film
at a maximum resolution of 4096 by 4096 pixels. Colour images are generated
by multiply exposing the appropriate areas of the film at the desired brightness
levels through a series of colour filters, one at a time; black and white pictures
use only a neutral filter.

DNIF77 is capable of displaying its molecular input on or offline using an
Ikonas 3000 frame buffer attached to a DEC PDP 11/45 computer running under
the UNIX operating system. This configuration is a raster scan display with a
two-dimensional array of 512 by 512 32-bit words of refresh memory represent­
ing each position, or pixel, on its screen. Each pixel contains a black and white
greyscale or colour intensity level. More generally, an index into a colour lookup
table specifies the desired colour of the corresponding location on the display
screen. An important characteristic of frame buffer memory is its random
accessibility.

This essay explains the shading algorithm of the original DNI program and
describes the frame buffer implementation. It includes a discussion of goals,
justification of the choice of source language, and an explanation of program
input and all subroutines, outlines suggestions for performance optimization,
and indicates areas of future development for which DNIF77 will provide the
basis.

1

2

2. Shading and Highlighting in DNI (Dicomed Version)

Hiis computation is described in detail as background for the algorithm
chosen for the frame buffer implementation.

ATOMS and ATOMLLL divide the visible segments of each atom (sphere) and
bond (cylinder) into a set of trapezoids with straight vertical edges and curved
or straight horizontal edges. DNI may thus conveniently shade these trapezoids
in vertical segments.

The shading equations arise in the following way. For the sphere centred
about the point C = {XC, YC, ZC). having radius R, with P = (X , Y, Z) some
arbitrary point on its surface, one can derive the following equation:

cos'* = B*-(X-XC£-(Y-YC?

where iS = the angle of incidence of the light source with the sphere (assumed
to originate from a point infinitely far behind the observer) [Max79a, Max79b].

Because the sphere’s constituent trapezoids have vertical sides for a partic­
ular vertical scan segment, R, X, XC, and YC are fixed constants in the above
equation, which then reduces to a quadratic equation in Y. This quadratic is
evaluated efficiently using the technique of finite differences.

If we let

/ (y) = coszi?

then

A/ = / (y + A) - / (y)

A2/ = / (y + 2 / i) - 2 / (y + A) + / (y)

where A/ and A2/ are the first and second finite differences, respectively, and
A2/ is a constant equal to /" (y) when / (y) is a quadratic equation. The follow­
ing tableau illustrates the evaluation of f (y) for y incrementing by some fixed

3

quantity h at each step:

/ ______________

f (v) = *1

f (y + h) = A: 1 + k2

f (y + 2h) = k l + 2k2 + Jfc3

f (y + 3 h) = jfcl + 3k2 + 3A:3

etc.

&/

k2

k2 + k 3

k2 + 2k3

etc.

Az/

*3

*3

e£c.

NOTE : k l , k 2 , and *3 are the variable names in DNI and DNIF77 representing
the current values of f (y) , A/, and A2/ respectively.

Shading of cylinders is accomplished in a similar fashion. However, it is not
always possible to use the same quadratic equation for each value of y along a
vertical segment. Cylinders become cones after a perspective transformation.
When the projected edges of the cone lie in different quadrants, the half-cone
bounded by the edge with negative slope will be shaded with a quadratic polyno­
mial on horizontal segments, and the other half with different polynomials on
vertical segments [Max79a, Max79b],

Although the values of cos2# obtained in the above manner represent inten­
sity levels, they are unsuitable for direct use as exposure levels on film. Rather,
they serve as indices into colour lookup tables whose entries compensate for
differing light transmission characteristics of the film for different colour filters.
These colour translation tables are computed once at the beginning of the pro­
gram by subroutine setabl. When the Dicomed receives an exposure level, it
automatically indexes into the translation table for the currently active colour
filter to obtain the corresponding exposure level.

The computation of these translation tables will now be described, since an
understanding of their derivation is crucial to the development of analogous
tables for the frame buffer implementation.

4

The Dicomed operates by positioning, one at a time, colour filters through
which light is directed onto the photographic film. The file ‘fort.4’ (FORTRAN log­
ical unit 4) contains a table of measured film densities for each colour filter at
selected output intensity levels. By definition, the density of film is

D = -log^m easured intensity),

or that fraction of light transmitted by the film|. Thus film density decreases as
output intensity level increases.

For each filter colour, as well as for black and white, a unique table of 256
exposure codes is calculated. First, the equation for density D is inverted, yield­
ing a parallel table of measured intensities

MI = 10-^/10°)

Then desired output intensities (i.e., exposure levels) for the full range [0. 255]
of values for cos8t) are interpolated from these measured intensities, and seeded
up to the range of measured intensity values for the particular colour filter,
using the equations

/ ’(tf) = .1 + .9(cos*i>)-ei

= .1 + .9 cos122i? for colour

and

Gi'd) = ,08F(o>) + .39 (.6 (cos8#)14 + ^ (cos8#)14̂)

= .08/'’('$) + .39(.8cosza# + .2cos7/d) for highlights

When F and G are thus simplified, it becomes apparent that they are per­
turbations of Lambert’s Cosine Law for diffuse reflection :

/ (t?) = A + D cost?

where

tF rom the equations in the program, it appears th a t these tables actually contain scaled densi­
ties of the form — lOOlog^(measured intensity).

5

A is ambient light from all sources, and

D represents diffuse reflectivity of light off surfaces

and Phong’s empirical model for specular reflection (or highlights), which con­
centrates intensity for small values of d:

$(i$) = Ccosn,d

where

C is specular reflection of light from the surface and

n is some ‘large’ number

[Max79a, Fole82].

The extra terms in G(d) causing the marked departure from g (1S) are to
eliminate the optical illusion of Mach bands around the central highlight.
[Max79a].

Key observations in the subroutine setdbl of Max’s DNI program are:

■ the variable

f k = float (k) / 255, 0 k < 255

actually represents cosztf, 0 < cosztf < 1

■ the variables d 1 and d2, described above as F{iS) and G(tf), are
roughly the equations / and g of Lambert’s Law and Phong's empirical
model.

3. Ikonas Frame Buffer Implementation

The initial phase of this implementation involved familiarization with the
FORTRAN and PASCAL versions of the program. It was then necessary to decide
on the language of implementation, subject to the constraints that:

■ the chosen language be available on the PDP 11/45

■ there exist a convenient means of communication with the Ikonas
frame buffer input/output software, written in the language C.

The PDP 11/45 currently supports FORTRAN 77 and C language compilers
and a PASCAL interpreter, the latter having no separate module interpretation
or linking and loading capability.

Porting the PASCAL version of DNI from the Honeywell 66/60 computer to
the PDP 11/45 was rejected as an alternative. Not only would subsequent

program development using the interpreter be tediously slow, but there is no
way of calling C language routines directly from this implementation of PASCAL.
A separate program would have to be written to transmit an output file from
PASCAL DNI to the Ikonas.

The UNIX FORTRAN 77 compiler accepts FORTRAN as a subset, and permits
separate module compilation and cedis to subroutines written in C. In addition,
it produces the same intermediate language as the C compiler; C code genera­
tion, optimization, and execution time performance profiling capabilities eire
thus accessible from FORTRAN 77. A further advantage of FORTRAN 77 is that it
can directly produce a Dicomed input file in the required 16-bit binary format;
the PASCAL version of the program used an intermediate step to translate ASCII
output into 16-bit binary Dicomed input.

For all these reasons, it was decided to use FORTRAN 77 for the initial
development of the frame buffer implementation The work required to get the
original FORTRAN version of DNI running on the PDP 11/45 was minimal, as out­
lined in APPENDIX I. Certainly, translating the program to C is a better long­
term solution. Performance would be improved, as high usage modules could be
translated into microcode destined for residence in the Ikonas microprocessor
memory.

Having obtained a FORTRAN 77 version of the program, extensive recoding
was undertaken to modularize lengthy subroutines (main, trapez), eliminate
'do-nothing' code, define COMMON blocks in UNIX ‘include’ files, and take advan­
tage of the if-then-else construct. At each stage of this revision, the Dicomed
output files resulting from fixed test data were comp Eire d against output for the
same data from the original program. A by-product of this activity was the
detection of two bugs in the original version of DNIj\

The next phase of the project was to enhance DNI to produce both Dicomed
and Ikonas output.

The orgemization of computation in DNI is determined strictly by the
operating characteristics of the Dicomed film recorder. Highlighting must be
performed as a separate pass over identical data, because the correct filter and
colour translation table must be pre-selected prior to exposure of the film. The
plotting resolution on the Dicomed is either 1024 by 1024, 2048 by 204B, or 4096
tS ee APPENDIX I.

7

by 4096 pixels. At the lower resolutions, 'macro-pixels’ greater than 1 pixel in
dimension are automatically shaded.

The following issues were addressed when introducing the frame buffer out­
put capability to DNI:

■ desire to achieve output device independence until the lowest possible
level of processing

■ selection and specification of an appropriate 'visible window' for
display, given the maximum resolution of 512 by 512 pixels on the Iko-
nas.

■ choice of an appropriate colour representation, given the facts that the
Ikonas uses an RGB colour representation, and its colour display pro­
perties bear no resemblance to those of photographic film.

■ desire to produce a modular program useful as a tool for future inves­
tigation in such topics as anti-aliasing and colour shading and correc­
tion.

The methods chosen to handle these issues are described in the appropri­
ate subroutine summaries of the following program documentation.

4. Program Documentation

4.1. Input

The molecular description file 'fort.9' (FORTRAN logical unit 9) is produced
by ATOMLLL. It consists of 220 rows, each containing 10 integers in 10 i7 format.

These 220 rows correspond to the 11 arrays, each of length 200, belonging
to COMMON block /PARAM/, contained in the file 'param.cm':

n, kt, kb, xl, xr, xct, yet, rt, xeb, ycb, rb.
n(i) represents the record type, which is either a sphere (atom), cylinder
(bond), trapezoid, end-of-frame, or end-of-job. The itfl elements of all 11 vectors
in /PARAM/ comprise the complete set of given information about a specific
object In the molecular description, and will subsequently be referred to as a
record.

It should be noted that the interpretation of each field in a given record
depends on that record’s type indicator, n(i). For instance, if n(i) indicates a
trapezoid record, kt(i) describes its top arc, whereas kt(i) represents the colour
of a spherical record.

6

In general, each cylinder or sphere record is followed by a list of its consti­
tuent trapezoid records. Next comes an end-of-frame record, and finally, an
end-of-job record.

This knowledge was used to construct the admittedly artificial, but manage­
able input test files

/ u / chjohnson/ da ta / cyll

/cyl2

/sph2

These files represent, respectively, the horizontal and vertical cylinder and the
large red sphere of Fig. 1 in APPENDIX VI.

4.2. Main Program

The main program controls the processing of the ATOMLLL-generated input
data described in the previous section. Colour shading and highlighting are per­
formed as two separate passes over the input data when Dicomed output is
desired, or simultaneously for Ikonas frame buffer output.

Program activity falls very naturally into the categories of initialization,
record processing, and output; it is within this functional framework that the
subroutines comprising DNIF77 will be discussed.

4.3. Initialization

4.3.1. block data

This subroutine initializes all static constants in COMMON blocks at compile
time.

4.3.2. init

This routine queries the user for program execution control parameters;
recommended dialogues for both output devices are described in APPENDIX II. A
feature of these dialogues is that they loop until valid responses are given. The
control parameters are stored in the COMMON blocks /DEBUG/, /FBPARM/, and
/PGMCTL/. Spacing constants and Dicomed control parameters dependent on
the output device resolution are also calculated, and, for frame buffer output,

9

the subset of input data to be plotted is specified.

The latter point requires clarification. The Dicomed film recorder has a
maximum resolution of 4096 by 4096 pixels, and a minimum resolution of 1024
by 1024 pixels, whereas the resolution of the Ikonas frame buffer is 512 by 512
pixels. Frame buffer output assumes a device resolution of 1024 (which may be
altered by changing the values of the integers minxd, minyd, maxxd, and maxyd
in the DATA statement at the beginning of the routine).

By default, the program will display on the Ikonas the 512 by 512 array of
intensities calculated for that portion of the input data centred about the pixel
location (512, 512). Optionally, the user may select any pixel location whose x
and y coordinates are within the range [1, 1024] as the centre of his 'visible win­
dow'. When the chosen centre is too close to a boundary, the displayed picture
will of course be smaller than 512 by 512 pixels.

4.3.3. setabl

This routine computes colour lookup tables indexable by values of cos2t?
obtained as the solution to the quadratic shading equations. The purpose of
these tables is to compensate for nonlinearities in colour perception on the out­
put device, as well as the film, in the case of the Dicomed. There are significant
differences in the tables used by the Dicomed and the Ikonas. The underlying
derivation of tables for both devices is similar, although the task is simpler in
the case of the Ikonas.

In the Ikonas implementation, Max's file of measured film densities is
irrelevant, although some equivalent measure is desirable for gamma correc­
tion. Two tables are used — one for all colours and one for highlighting —
representing the functions F(iS) and G(iS) described in Section 2. (These two
tables could be combined into a single one by adding corresponding elements
for colour and highlights and storing only the resulting sum). The table entries
are scaled, not to the range of measured film densities, but rather, to the range
[0, 255], on the assumption that the full 8-bit range of intensity for all colours
was desiredf.

To simplify table lookup at the time exposure levels are emitted to the Iko­
nas, the function G is identically equal to 0 when the user requests no
tThis assumption could be altered b j defining different functions F for each colour.

10

highlighting of the displayed molecule.

4.3.4. reed

This routine reads the descriptions of visible molecules created by ATOMLLL
into the 11 consecutive arrays of /PARAM/. The program depends on the fact
that these arrays are consecutive, and declared in a specific fixed order. The
conventions of FORTRAN 77 file I/O require that the input file 'fort.9' (FORTRAN
logical unit 9) be rewound from its initial position at end-of-file prior to the issue
of the read command.

4.4. Record Processing

No changes to this logic were necessitated by the addition of frame buffer
output. Rather, the goal with this part of the program was to decompose it into
functional modules.

4.4.1. begcyl

Originally part of the main program, this routine is called to initiate pro­
cessing of cylinder (bond) records. A bug causing execution failure on input
data containing only descriptions of bonds was corrected!. The cylinder top,
bottom, and bisecting boundary line type, slope, and intercept are initialized, as
are flags indicating the type of quadratic differencing and shading schemes to
apply.

4.4.2. begsph

This routine performs an analogous function to begcyl for sphere (atom)
records. Intermediate values required by the quadratic differencing equations
are calculated.

4.4.3. newcol

This routine is called by begcyl and begsph to update information related to
the colour of the object currently being shaded.

fSee APPENDIX I.

11

4.4.4. trapez

This routine controls the shading of all spheres and cylinders, which have
been subdivided into trapezoids by the ATOMLLL pre-processor. It has been con­
siderably shortened by extracting into separate modules sections representing
specific shading strategies. The general tasks it performs include calculation of
the radius and slope of the trapezoid top and bottom arcs. Then trapez sweeps
horizontally across the trapezoid, calculating the number of scanlines to be
shaded, and initially positioning the cursor at the first point to be plotted before
calling the appropriate routine to shade the type of object from which the tra­
pezoid arises.

4.4.5. shdsph

Originally part of trapez, this routine computes starting values for the qua­
dratic differencing algorithm before passing control to quad to generate the
required number of output intensities.

4.4.6. shdcyl

The complexity of shading cylinders is greater than that of shading spheres,
as explained in Section 2.

First, the top, bottom, and middle coordinates of the bisecting (or
highlighting) line are obtained. Different shading equations are required above
and below this line, unless it is strictly vertical, in which case the entire tra­
pezoid can be shaded using the same quadratic equation.

4.4.7. shdah, shdbh

Originally part of trapez, these routines shade a vertical scanline of a
cylinder's trapezoid above or below its bisecting line, respectively, using a
different quadratic equation on each successive horizontal line.

4.4.6. shvlin
This routine is a generalization of two nearly identical sections of code in

the original version of trapez. It is called to shade a vertical scanline above or
below the bisecting line of a trapezoid using the same quadratic equation for the
entire region; quad computes the desired intensities once the first and second
differences are initialized. Note that only one of shdah and shvlin, and one of

12

shdbh and shulin is called to shade above and below the bisecting line, depend­
ing on the nature of the projected cylindrical image.

4.4.9. quad

This routine is an efficient implementation of the quadratic differencing
algorithm described in Section 2. It packs two output intensities per word,
requiring one division (or shift) and two additions to calculate each intensity.

4.5. Device Output

In extending the capability of DNI to produce frame buffer output, the
underlying goal was to achieve some measure of device independence for out-
putt- To this end, all calls in the original program to the routine dicowd were
replaced by calls to output, with an additional parameter describing the nature
of the data destined for output. For each type of data known to the routine, the
appropriate action is taken, depending on the destination device. It is thus easy
to add new devices to the program's repertoire.

4.5.1. output

When the Dicomed is the chosen output device, output passes the data
directly to dicowd, or calls dicemp to flush the buffer of all accumulated expo­
sure information. It is in the case of Ikonas output that the processing depends
on the nature of the input to the routine.

The data type 'noop' is reserved for Dicomed control information; such data
can be ignored when Ikonas output is selected.

Data flagged as the starting x or y plotting coordinate must be saved for
future use once it has been scaled down from the range [l, 4096] used by the
program for all pixel address computation^.

Exposure intensities destined for the Dicomed may be emitted either one or
two per output data word. The frame buffer implementation must remember
the format of the emitted data in order to unpack it, if generated by the routine
quad, before translating it to the appropriate frame buffer representation. The
number of output exposure codes must also be saved so that the final exposure
fThis is contrary to the suggestions in [YuenBO], which seem to imply eliminating any capability
of producing Dicomed output in a frame buffer implementation.
^Because this range is so deeply embedded in the Dicomed address calculation of the original DNI
program, it is easier to perform this single rescaling for Ikonas output.

13

in packed format is ignored if this number is odd (a function performed
automatically by the Dicomed hardware).

When output is called to emit an exposure level, it must first ensure that
the destination pixel is within the frame buffer visible window. If so. the colour
and highlight intensities corresponding to the input cos2# exposure level are
obtained by table lookup in F(i?) and G(tJ), and converted to the colour
representation required by the Ikonas display (three 8-bit bytes, right-justified,
representing red, green, and blue components respectively, from the right side
of the word). Shading and highlighting are thus performed in a single pass. The
two intensities are simply added together one byte at a time to ensure that no
byte exceeds the maximum permissable value of 255. Then the desired intensity
is stored in a scanline buffer for transmission to the Ikonas.

4.5.2. exit

This routine closes all input and output files before te rminating execution of
the program.

4.5.3. Dicomed Output Support Routines

4.5.3.1. fnnhdr

This routine calls output to emit the sequence of Dicomed control com­
mands required to set up a film frame header.

4.5.3.2. dicowd

This routine accumulates information destined for the Dicomed in a fixed-
length buffer, emptying it to output file ’fort.8' (FORTRAN logical unit 8) as a
binary stream of 16-bit integers when the buffer becomes full.

4.5.5.3. dicemp

This routine flushes the current contents of the Dicomed output buffer to
the file ‘fort.8’.

14

4.5.4. Ikonas Output Support Routines

4.5.4.1. itorgb

The following table describes the mapping between an 8-bit intensity level
for each of the colour filters available on the Dicomed and its corresponding RGB
representation on the Ikonas:

Colour Red Green Blue

red X 0 0
green 0 X 0
yellow X X 0
blue 0 0 X
magenta X 0 X
cyan 0 X X
white X X X

In other words, when the desired 8-bit illumination intensity is X for a
known colour, this routine returns a 24-bit value containing X in the fields
corresponding to the RGB representation for that colour.

4.5.5. FORTRAN 77 / C Interface Routines

These are C language routines called from FORTRAN 77 to establish com­
munication with the Ikonas I/O software. Conventions for such inter-language
communication are outlined in APPENDIX III.

4.5.5.1. Fclofh—

This routine closes the frame buffer output pathname opened during the
previous call to Fvnifb_

4.5.5.2. Rnifh_

This routine sets global variables needed by the Ikonas simulator I/O rou­
tines in the file ’/u/phbreslin/sim/fb_io.c’. It then calls in i t - fb (also in
.../fbLio.c) to open either the Ikonas itself, or a simulated frame buffer output
file.

15

4.5.5.S. fyutpx_

This routine converts arguments from their FORTRAN 77 type(s) to their
expected C type(s) before calling a simulator routine to store a value in a
specified pixel location.

4.5.5.4. get-storage

Also part of the simulator 1/0 package, this routine allocates a buffer one
scanline long for frame buffer I/O.

5. DNIF77 Performance Optimization

The current version of the program is by no means optimal in terms of
storage and CPU usage. Following are suggested approaches toward improving
runtime performance.

(1) As described in Section 4.1, input data from ATOMLLL requires a cen­
tral memory allocation of 3200 32-bit words, a very high proportion of
which usually contain zeroes. Since the records spanning these 11
arrays are internally type-coded, including a special end-of-job record,
there is no need for ATOMLLL to write out fixed blocks of input to
DNIF77, aside from convenience as a magnetic tape format.

(2) Analysis of the results of running DNIF77 in frame buffer mode in con­
junction with the UNIX performance profiler prof indicate a full 25% of
execution time is spent performing integer division and multiplication.
These operations simulate shifting and masking, both in the rescaling
of data and packing more than one unit of information in a single word,
as done by quad and itorgb. Any division or multiplication by a power
of two could be replaced, either by a call to a C language function using

actual shift instructions, or ideally, a microprocessor-resident micro-
coded version of such a C function. In fact, the same argument applies
to all high-usage routines in the program (eg. output, itorgb, quax£).

(3) As noted in Section 4.3.3, the double lookup of colour and highlight
intensities in routine output could be eliminated by storing the sum of
these intensities in a single table. This would also significantly reduce
the amount of shifting and masking performed, since the byte by byte
addition of two RGB intensities from itorgb could be replaced by a sin­
gle invocation of itorgb.

16

(4) A bottleneck in the current program is the sequence of subroutine
calls

quad -* output I iiorgb
Fputpx

This sequence preserves the hierarchical nature of the processing, at
the same time introducing redundant processing, quad packs two 6-bit
intensity codes per word, which must immediately be unpacked by ouf-
put. To eliminate this extra work and the overhead of several subrou­
tine invocations, quad could be modified so that, for each 8-bit inten­
sity code within the boundaries of the visible frame buffer window, the
work of itorgb and Fputpx are performed by inline code. If such an
approach were adopted, one would have to ensure that the inline and
subroutine versions of this code always remained in step with each
other.

(5) A problem arises due to the discrepancy in resolution of the Ikonas and
Dicomed devices. It is often possible for an intensity to be calculated,
only to be rejected for output to the frame buffer when the destination
pixel is found to be outside the visible window. One could circumvent
this situation by scaling all input data from ATOMLLL downward by a
factor of two; however, this immediately creates a dual problem of mul­
tiple intensities calculated for the same pixel. Alternatively, program
computations could be adjusted to permit 512 by 512 pixel resolution
when the Ikonas frame buffer is the selected output device.

6. Areas of Future Development

6 .1. Colour S h a d in g and Correction

Comparison of output generated directly on the Ikonas monitor with the
Polaroid photographs of APPENDIX VI reveals several ’features’.

Monitor output tends to exhibit a Mach band around the central highlights,
which is removed by subsequent photographing of the generated image. This
suggests that by modifying the terms added to the equation for G(tf) described
in Section 2 to eliminate Mach bands in the Dicomed output, one could obtain a
better quality image.

17

Photography of monitor output tends to blur the boundaries of atoms too
quickly to black; this could possibly be improved by modifying the ambient light
contribution in the equation for F(i>).

Another characteristic of frame buffer output is the high concentration of
white light in the central highlight. This could be adjusted, for instance, by scal­
ing the values of G(iJ) to some subrange of the full range of 256 possible intensi­
ties.

6 .2 . Ant ia l ia s in g

In general, the outer edges of all atoms (spheres) and bonds (cylinders), as
well as all boundaries of their constituent trapezoids, should be antialiased.
However, examination -of program output suggests several shortcuts can be
taken. Natural boundaries of atoms and bonds appear smooth, as the calculated
intensities fall off gradually to the background ambient lighting conditions. As
well, neither shape of object exhibits internal faceting — i.e., we do not see the
boundaries of the trapezoids from which an object is constructed. Based on
these empirical observations, it appears that jagged lines in need of antialiasing
correction occur where the natural boundary of an object is superimposed on
another object. In other words, when an atom is occluded by either another
atom or a bond, the trapezoid boundaries of the occluded portion of the atom
require antialiasing.

Specific instances of candidates for antialiasing appear in the sample pro­
gram output of APPENDIX VI. For example:

Fig. 1 : the top and bottom edges of trapezoids in the yellow atom which
intersect with the bond

Fig. 2 : the intersections of the red and blue atoms

Fig. 3 : the intersections of the red and yellow atoms

Fig. 4 : the non-vertical intersections of the green atoms with each other

To incorporate antialiasing into DNIF77, one must first devise a method of
determining occluding trapezoid boundaries, perhaps by considering absolute
changes in boundary slope between adjacent trapezoids of different objects. For
the x and y coordinates thus selected, one could find the differences between
their corresponding floating point and integer values. These differences could
then be used as x and y coordinate input to shdsph or shdcyl to calculate an
intensity by which the appropriate adjacent pixel would be fractionally

18

illuminated. Appropriate in this sense should be interpreted as x - 1 (y- 1) or
x + 1 (y + 1), depending whether the difference between floating point and
integer values of x (y) is less or greater than 0.5.

A limited form of antialiasing could be achieved by using the double resolu­
tion (1024 by 1024) information available from the colour shading computation.
)l of the calculated intensity for each member of a group of four adjacent pixels
could simply be added to produce the output intensity for the destination Ikonas
pixel. More generally, any weighting function could be used to derive the indivi­
dual contribution of each adjacent pixel to the final output intensity [Crow77].
No m atter what the selected antialiasing algorithm is, it should be
microprocessor-resident to minimize its impact on total program execution
time.

7. Conclusion

DNIF77 extends the capability of Nelson Max's DNI program to provide out­
put for an Ikonas frame buffer. The shading algorithm of DNI was studied, and
Ikonas colour lookup tables computed using a method similar to the derivation
of those for the Dicomed. The approach works, but still requires refinement to
obtain 'perfect' synthetically-generated molecules.

This essay documents the DNIF77 implementation, evaluates its perfor­
mance, and suggests topics for further investigation, which should be facilitated
by the modular organization of the program.

REFERENCES

Catm79

Crow77

Dico79

Feld78

Fole82

Know77

Max79a

Max79b

Yuen80

Catmull, E. "A tutorial on compensation tables,” Computer Graphics
13. 2 (Aug. 1979), 1-7.

Crow, F. C. "The aliasing problem in computer-generated shaded
images," Communications of the ACM 2D, 11 (Nov. 1977), 799-805.

DICOMED Corporation. Graphic film recorder model D48 operation
and programming manual. February 1979 edition, revision A.

Feldman, S. I., and Weinberger, P. J. "A portable FORTRAN 77 com­
piler,” Bell Laboratories, Murray Hill, New Jersey, Aug. 1978.

Foley, J. D., and Van Dam, A. Fundamentals of Interactive Computer
Graphics, Addison-Wesley, Reading, Mass., 1982.

Knowlton, K., and Cherry, L. "ATOMS — a three-d opaque molecule
system — for colour pictures of space-filling or ball-and-stick
models,” Computers and Chemistry 1, 3 (1977), 161-166.

Max, N. "ATOMLLL — a three-d opaque molecule system, Lawrence
Livermore Laboratory version," UCRL-52645, Lawrence Livermore
Laboratory, University of California/Livermore, Jan. 1979.

Max, N. "ATOMLLL:- ATOMS with shading and highlights," Computer
Graphics 13. 2 (Aug. 1979), 165-173.

Yuen, H. "PASCAL DNI, a program for shading molecular models,"
Master's Essay, Department of Computer Science. Faculty of
Mathematics, University of Waterloo, 1980.

19

APPENDIX I
Adaptation of DN1 to PORTEAN 77

1. Modifications

(1) ^include ‘filename’ was changed to include 'filename'

(2) Initialization of hexadecimal constants:

eg. zdOOO was changed to z’dOOO’

(3) The non-default logical input units 4 and 9 must be opened and
rewound; they are otherwise positioned automatically at end-of-file.

(4) All calls to subroutine Ushift were replaced by division by 2.022 °.

2. Bugs Detected and Corrected

(1) the comma after column 72 in the declaration of COMMON block /isp /
in the main program must be moved to the following line to be recog­
nized; otherwise two variable names are concatenated, since interven­
ing blanks and all information after column 72 are ignored by FOR­
TRAN.

(2) the line ad = a / two 15 must be added following the call to newcol
when beginning a new cylinder; otherwise the program fails if its only
input is cylinder(s).

20

APPENDIX II
DN1PV7 User's Guide

1. File Requirements in Current Directory

1.1. Dicomed or Ikonas Output

fort.9 t: input data generated by ATOMLLL

1.2. Dicomed Output

fort.4 : table of measured film densities

fort.8 : will be appended to unless removed from the current directory prior
to execution of DNIF77

Notes:

(1) Both of the following dialogues may be carried out either interactively,
or using a file of pre-determined responses, as In

dnif77 <dialogue_responses

(2) An invalid response to any query will regenerate the same question
until an acceptable response is obtained.

2. Dialogue to Obtain Dicomed Output

User-supplied information appears in italics in the following dialogue.

dni/77
Target output device:
(l:Dicomed, 2:Ikonas) free format:
1
Wait between frames, double film advance, debug trace:
(0:no, lyes) 3il format:

NNN
|AH references to files named fort.n represent FORTRAN logical unit n.

21

22

Resolution : 1024, 2048, 4096 : free format:
NNNN

Notes:

(1) Select ’wait between frames’ if special operator handling is required
before signalling restart to the film recorder.

(2) Select 'double film advance' if the exposed film is to be mounted as 35
mm. slides.

(3) Selection of 'debug trace' option generates output on the file 'fort.7’ in
the current directory.

3. Dialogue to Obtain Frame Buffer Output

User-supplied information appears in italics in the following dialogue.

fb -in it
dnif77
Target output device:
(l:Dicomed, 2:Ikonas) free format:

8
Compute highlights?
(0:no, lyes) free format:

N
Type of frame buffer:
(0:actual, l:simulated) free format:

N
Frame buffer debug output desired?
(0:no, lyes) free format:

N
By default, centre portion of ATOMLLL data will be displayed on frame buffer.
Do you wish to change area displayed?
(0:no, lyes) free format:

N
x, y coordinates (in Dicomed raster units) of centre of area to be displayed:

free format:
(Must be in range 1 to 1024)

NNNN NNNN

23

Notes:

(1) Atoms with no highlights will be shaded solid colours; highlighting adds
white light radiating out from the angle of incidence of the user
viewpoint with the surface of the display screen.

(2) It is useful to select simulated frame buffer output when a picture i9
desired quickly, or the frame buffer is in use. The resulting file can be
displayed later, as explained below.

(3) Frame buffer debug output will appear on the file ‘fort.7’ in the current
directory.

(4) The last question is asked only when the user indicates a desire to alter
the default 'visible window'. Depending how close the chosen centre is
to the boundaries of the ATOMLLL data, the dimension of the displayed
region will be ^ 512 pixels in either direction.

3.1. Saving an Image Generated Directly on Ikonas Display

Issue the command
/u/daplebon/bin/save_raster destination_save_file_name

3.2. Manipulation of Simulated Frame Buffer Output

A file called 'frame_buffer* will have been created in the current directory
during execution of DNIF77. It can either be displayed on the Ikonas or exam­
ined interactively using the Ikonas simulator.

3.2.1. Displaying ’frame-buffer' on the Ikonas

Issue the command
/u/ikonas/bin/draw_raster frame-buffer

3.2.2. Using the Ikonas Simulator

Issue the command
/u/ikonas/bin/iksim +o

The +o option tells the simulator to use the existing file 'frame-buffer' as input.

The commands

SL scan y

8L x,y

24

permit examination of scanline y and pixel location (x, y) respectively.

exits the simulator. At this point, one can elect to save or release the file
'frame-buffer'. Since this file is very large, it should only be saved if absolutely
necessary for later display or examination.

APPENDIX ID
Interlanguage Co m m u n ic a tio n Between FORTRAN 77 and C

Following are the major factors to be considered when defining C pro­
cedures called from FORTRAN 77:

(1) The FORTRAN 77 statement
call f(x)

requires a corresponding C definition of a procedure
U x)

(2) All FORTRAN 77 arguments to subroutines and functions are passed by
address. Hence they must be declared as pointers to variables of the
appropriate types within the called C procedures.

(3) The returned type of a C function called from FORTRAN 77 must be
declared in the calling routine. For such declarations, the reader is
referred to the table of corresponding FORTRAN 77 and C declarations
in the FORTRAN 77 User's Guide [Feld78].

25

APPENDIX IV
DNiîyy Maintenance Manual

The following files in the directory /u/chjohnson/dni/f are required to com­
pile and load DNIF77:

(1) all FORTRAN 77 source routines (.f suffix)

(2) all COMMON block declarations (.cm suffix)

(3) FC_interface.c — a file containing 'intermediary' C routines called by
DNIF77 to access Ikonas simulator I/O software, also written in C.

(4) fbsim.lib — an archive library (in UNIX ar format) containing
/u/phbreslin/sim/fb_io.o. The C source corresponding to fbsim.lib is
saved under

/u/chjohnson/dni /f/iksim_io /f h_io. c.

Ideally, the Ikonas simulator library should be used for this purpose, to
ensure that the most up-to-date version of the required routines is
accessed. However, loader problems involving duplicate copies of the C
library routine calloc necessitated this short-term solution.

The UNIX utility make is used to maintain an up-to-date executable load
module for the program. The file '/u/chjohnson/dni/f/makefile’ (attached at
the end of this APPENDIX) contains a set of dependencies for each object routine
belonging to the final load module; these dependencies include the correspond­
ing source routine and all files included in it (eg. COMMON blocks).

N.B. It is imperative that any changes in included files in the source be reflected
in the appropriate section of the makefile. Otherwise, the automatically-
recompiled object module will be out of synchronization with its
corresponding source language.

Procedure for Modifying DNIKyy

(1) edit source files

26

27

(2) update makefile file dependencies, if necessary

(3) execute the UNIX command 'make' in the directory containing
'makefile'

(4) run the program, requesting Dicomed output, using as input (fort.9)
the files

/ u / chjohnson/ dni/ data/ cyll

/cyl3

/sph2

(5) After each run in (4) above, execute the command
cmp -1 fort.8 /u/chjohnson/dni/data/output/X

where X is cyll, cyl2, or sph2 respectively. This will ensure that the
new version of the program still produces the same Dicomed output as
the originalt.

(6) test the new version of the program on the frame buffer. Discrepan­
cies of 1 between corresponding bytes in the two files compared are
deemed acceptable (eg. sph2), as they represent floating point to
integer roundoff.

Listing of makefile

FC = f77 -c -C -0 -U
FLGO = f77 -i $(OBJECTS) -o dnif77 fbsim.lib
OBJECTS = block.o dni.o begcyl.o begsph.o dicemp.o dicowd.o exit.o frmhdr.o\

init.o itorgb.o newcol.o output.o quad.o reed.o setabl.o shdah.o\
shdbh.o shdcyl.o shdsph.o shvlin.o trap.o FC_interface.o

dnif77: »(OBJECTS)
8(FLG0)

begcyl.o: begcyl.f bond.cm coltbl.cm manif.cm param.cm qdiff.cm
8(FC) begcyl.f

fThis is a more realistic method of verification than comparing Dicomed disassem bler output
from old and new versions. Disassembler output contains unnecessary repetitive text, making
the files too long far examination by most UNIX utility functions.

26

begsph.o: begsph.f coltbl.cm ispace.cm manif.cm param.cm qdifl.cm\
radius.cm sphere.cm
8(FC) begsph.f

block.o: block.f coltbl.cm dicntl.cm dico.cm fbparm.cm ispace.cm\
manif.cm param.cm
S(FC) block.f

dicemp.o: dicemp.f dico.cm
8(FC) dicemp.f

dicowd.o: dicowd.f dico.cm
8(FC) dicowd.f

dni.o: dni.f bond.cm coltbl.cm debug.cm dicntl.cm dico.cm fbparm.cm\
ispace.cm manif.cm param.cm pgmctl.cm
8(FC) dni.f

exit.o: exit.f manif.cm pgmctl.cm
8(FC) exit.f

frmhdr.o: frmhdr.f dicntl.cm manif.cm
8(FC) frmhdr.f

init.o: init.f debug,cm dicntl.cm fbparm.cm ispace.cm manif.cm\
pgmctl.cm
8(FC) init.f

itorgb.o: itorgb.f coltbl.cm debug.cm fbparm.cm manif.cm
8(FC) itorgb.f

newcol.o: newcol.f coltbl.cm manif.cm
8(FC) newcol.f

output.o: output.f coltbl.cm debug.cm fbparm.cm ispace.cm manif.cmN
pgmctlcm

29

quad.o:

$(FC) output, f

quad.f manif.cm
8(FC) quad.f

reed.o: reed.f manif.cm
8(FC) reed.f

se tabi, o: setabl.f coltbl.cm debug.cm fbparm.cm manif.cm pgmctl.cm
8(FC) setabl.f

shdah.o: shdah.f bond.cm debug.cm dienti.cm ispace.cm manif.cm qdifl.cm
8(FC) shdah.f

shdbh.o: shdbh.f bond.cm debug.cm dienti.cm ispace.cm manif.cm qdifl.cm
S(FC) shdbh.f

shdcyl.o: shdcyl.f bond.cm debug.cm dicntl.cm ispace.cm manif.cm qdifl.cm
8(FC) shdcyl.f

shdsph.o: shdsph-f debug.cm dicntl.cm ispace.cm manif.cm qdiff.cm\
sphere, cm
8(FC) shdsph.f

shvlin.o: shvlin.f dicntl.cm ispace.cm manif.cm qdifl.cm
8(FC) shvlin.f

tabout.o: tabout.f
8(FC) tabout.f

trap.o: trap.f bond.cm debug.cm dicntl.cm ispace.cm manif.cm\
param.cm qdifl.cm radius.cm sphere.cm
8(FC) trap.f

FCLinterface.o: FCLinterface.c /u/phbreslin/sim/manif.h
cc -c FCLinterface.c

APPENDIX V
Guide to Ewsting Computer flies

CGL UNIX Master Catalogue

/u/chjohnson/dni

Subdirectories

/data : ATOMLLL-generated input files

/data/output : output from original DNI program for files of same
name under /data

/f : makefile, source, compiled object code, and exe­
cutable load module for DNIF77

/f/fb_images : frame buffer images for Fig. 1 through 4 in
APPENDIX VI

/f/iksim_io : C language source for Ikonas simulator I/O
software

/f/original : DNI converted to FORTRAN 77, as described in
APPENDIX I

/f/save : DNI converted to structured FORTRAN 77 and
modularized, prior to adding frame buffer capability

Honeywell Master Catalogue (H. Yuen)

gr/./atom s

Subdirectories

/atom.jcl

/tapes

30

31

/dni.jcl

/c.progs

/essay

/atom, in

/source

/dm. in

f lie s

/new.l, /new.2: his Fig. 3f

/new.3, /new.4: his Fig. 5

/new.5, /new.6: his Fig. 4

/fort09: his Fig. 2

/ft09: his Fig. 1

VAX Master Catalogue

/u/cgl

Subdirectory

/chjohnson: Versatec plotter vtrofl format input text for this document

ffYuenBO].

APPENDIX VI
Sample Program Output

The following figures are Polaroid prints taken by a Dunn 631 Colour Camera
connected to the Ikonas frame buffer system.

figure Input file

1 /u/chj ohnson/dni / data/fig 1
2 /u/chjohnson/dni/data/fig2
3 /u/chjohnson/dni/data/flg3
4 /u/chjohnson/dni/data/flg4

figure 1

Three atoms with two connecting bonds [Max79a].

figure 2

A central atom occluded symmetrically on the outside by four others
[Yuen80].

figure 3

One of the occluding atoms of Figure 2 is hidden by the central atom
[YuenBO].

figure 4

In this rendition of seven atoms, only two small pieces of the blue one are
visible [YuenBO].

32

APPENDIX VD
Program listings

(1) COMMON blocks—alphabetical order

(2) Main program—file dni.f

(3) FORTRAN 77 subroutines—alphabetical order

(4) C procedures—files FC-interface.c, iksim_io/fb_io.c

37

«ò «8 «9 «8

38

bond.cm

c====> These variables are all Initialized in subroutine begcyl.

c====> Molecular Bond Information <====

common / BOND / Jt, St, rlt,
Jb, sb, lib,
Jm, sm, rim,
fm, fs,
markt, markb

c jt, st, rlt: top line type, slope, intercept
c Jb, sb, rib : bottom
c Jm, sm, rim: middle " "

c
c
c
c
c
c

where line type Is :
1 : convex down
2 : convex up
3 : straight
4 : special (for normalization)

[abs(slope) > 1]

c fm, fs : used for Intermediate value calculation
c in differencing scheme when processing cylinders

c markt, markb : flags telling which quadratic differencing
c and shading schemes to use on trapezoid

c i.e., shade above/below highlight line with
c quadratics on
c 0 : vertical lines
c 1 : horizontal lines

•B «8 «8

eoltbl.cm

common / COLTBL / app,
bpp,
nowcol,
Ihilit

c====> Colour Intensity Tables <====

dimension app(7,2),
& bpp(7, 2)

c app : minimum Intensity (initialized in block data i
c bpp : range of intensity

c where
c row index: colours
c 1 : red
c 2 : green
c 3 : yellow
c 4 : blue
c 6 : magenta
c 6 : cyan
c 7 : neutral
c column index : shading
c 1 : colour
c 2 : black & white

c nowcol colour of object currently being plotted
c (set in subroutine newcol)
c ihilit ; colour (1) or highlight (2) computation
c (set in main program)

o
o

40

c===> Debug control flags <====

common / DEBUG / Idbg,
& Ifbdbg

c idbg : general trace & dump of calculated values

c ifbdbg : frame buffer debug information

0 : off
1 : on

debug.cm

dlcntl.cm

common / DICNTL / Icomp,
ifa,
ifepl,
tfep2,
Ifesl,
tfes2,
ifp,
ipes,
ipesl,
Ipes2,
lpe$3,
ipos,
ires

c====> Command codes for Dlcomed D48 graphic fiim recorder <====

c====> All page references are to D48 Operation & Programming Manual
c*===> (Publication #12M069, February 1979 Edition, Revision A)

c====> The variables ipesl, Ipes2, & ipes3 are set in subroutine init.
c====> All others are initialized in the block data subroutine.

c icomp ICS (initial condition select); pp. 3 .17 - 3.19

c Bits se t (right to left) :

c 0; LIN: infinite film exposure code
c 3: AZE: allow 0 exposure (fog level)
c 5: HVINT: Interchange horizontal & vertical axes
c 7: HREV: reverse direction of seem along
c horizontal axis

c N.B. Bits 5 & 7 change the axis orientation
c from V to / \
c <------ | V
c | H <------ 1
c j H
c V

c which is actual ly plotted as / \
c | H
c I
c <------
C V

c because y coordinates are sent to the Dicomed
c when x's are expected and v.v.

c 11: FBD: disable CRT beam flyback

o
o

o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

n
o

n

o

42

If a EFS (exposure & filter select); p. 3.21
no change of filter, no film advance, exposure level 0

Ifepl FES (function element select); pp. 3.8 - 3.14
(Always followed by ifep2)

Ifep2 FES function code 3 & ES set; p. 3.12
plot the single intensity in the following word

Ifesl FES
(Always followed by Ifes2)

no deferred status, filter code, film advance,
exposure code

Ife82 FES function code 1 & ES set
horizontal raster line will be plotted from the
following input stream, containing exposure codes
packed 2 / word.

Ifp function 3 output format
contains parameters to plot 1 element in direction 0
(positive horizontal) at the exposure level in bits 0-7
with no change of filter.

Ipes PES (point element select); p. 3.20

ipesl
horizontal element spacing 1 - 4 raster units
horizontal point spacing 1 raster unit

Ipes2
vertical element & point spacing (same as horizontal)

c Ipes3
c
c
c

background exposure code 0;
no. of horizontal points/element = no. of vertical
points/element = 1 ,2 , or 4 (depending on resolution)

c ipos VPA (vector or position absolute); p. 3.16
c moves CRT beam to position specified by absolute
c horizontal & vertical coordinates;
c uses previously-defined exposure code + 2 words:
c 1 st - abs. horizontal 2nd - abs. vertical coordinate

c Ires ICS (initial condition select); pp. 3.17 - 3.19
c reset D48 to basic operating state described on p. 3-33

8»
 fi

»

43

dico.cm

c—==> Dicomed 16-blt output code buffers <====

common / DICO / buff,
bptr,
bufmax

lnteger*2 buff(200)

Integer bptr,
& bufmax

c buff : output buffer; dumped to output
c file when full
c (set by subroutine dicowd)

c bptr : pointer to next available slot
c in buff
c (initialized In block data subroutine;
c updated by subroutine dicowd)

c bufmax dimension of buff
c (defined in block data subroutine)

9>
9>

9>
9»

9>
9>

8»

9»
fi*

 9»
 8«

 8»
 *>

 9»
 8»

 8»
 «

• 8
» 8

» 8
» 8

» 8
» 9

» 8
» 9

» 8
» 8

*
fbparm .cm

common / FBPARM / minx,
miny,
maxx,
maxy,
acminx,
acminy,
acmaxx,
acmaxy,
mlnfbx,
mlnfby,
maxfbx,
maxfby,
mlnrgb,
maxrgb,
nextx,
nexty,
(start,
lend,
Icount,
shdctl,
fthet2,
gthet2

c====> Frame buffer output control parameters <====

dimension mlnrgb (7),
maxrgb (7),
fthet2 (256),
gthet2 (256)

integer acminx,
acmaxx,
acminy,
acmaxy,
shdctl,
fthet2,
gthet2

c minx, miny
c
c

smallest x & y coordinates visible on
frame buffer (in Dicomed raster units)
(set by subroutine Init, as are maxx & maxy)

c maxx, maxy largest x & y coordinates visible on frame buffer

c acminx, acminy smallest calculated coordinates to be sent to
c frame buffer (In Dicomed units)
c (set by Init; updated by subroutine output, as
c are acmaxx, acmaxy, minfbx, mlnfby, maxfbx, maxfby)

acmaxx, acmaxy largest calculated coordlnaes to be sent to
frame buffer (In Dicomed units)

mlnfbx, minfby: least x & y coordinates of an illuminated pixel
on frame buffer

maxfbx, maxfby largest x & y coordinates of an illuminated pixel
on frame buffer

minrgb, maxrgb minimum and maximum calculated intensity for
each colour
Purpose : to see whether they are too close to

265 before adding in highlight component
(Initialized by block data routine; updated
by function itorgb)

nextx, nexty : next point for which intensity to be emitted
(set by block data routine; updated by subroutine
output)

is tart, lend controls loop extracting exposure codes, which
occur either 1 or 2 per word.
(set by subroutine output, as is Icount)

Icount number of exposure codes remaining to emit for
current raster line

shdctl : Plot shaded colour only, or include highlights
(set by routine init)

fthet2 frame buffer colour lookup table
(set by routine setabl, as is gthet2)

gthet2 frame buffer highlight lookup table
(contains 0's if no highlighting desired)

00 00 00 00 00 00 00
o

o
o

o
o

o
o

o
o

46

ispace.cm

c====> Spacing parameters <====

c====> All variables In this common block are se t In subroutine init.

common / ISPACE / isp,
Isp2,
jsp,
jsp2,
fjsp,
fjsp2,
tjsp,
tjsq

Isp : pixel size; single element plotting
resolution

Isp2 Isp / 2
jsp vector size; vector plotting resolution
Jsp2 Jsp / 2
fjsp : float(jsp)
fjsp2 f1oat(jsp2)
tjsp 2 * fjsp
tjsq 2 * fjsp * fjsp

matiif.cm

c====> All variables in this common block are initialized by the block
c====> data subroutine at compile time.

c====> Manifest constants <====

common / MANIF /Idico,
Ifrbuf,
ihoriz,
ioerr,
toff,
ton,
i2to14,
Jnoop,
jsavex,
Jsavey,
jpacki,
Junpki,
jemlti,
Jflush,
ksph,
kcyl,
rmaxi,
r2to14,
smin,
two15

c idico : 1 (Output sent to Dlcomed film recorder)

c ifrbuf ; 2 (Output sent to Ikonas frame buffer display)
c ihoriz : 1

c toerr : 2 when error occurs during input

c toff : 0 false

c ton : 1 true

c i2to14 : (Int) 2 ** 14

c The following 7 variables are used by the routine output to decide
c what to do with the accompanying word of integer Information;
c the action chosen depends on the particular output device selected.

c jnoop : Used for Dicomed control functions :
c eg. frame header, setting colour filters, etc.

c Jsavex : Dicomed starting x raster position

c jsavey ! Dicomed starting y raster position

o
a

48

c jpacki 2 Dicomed output intensities / word, right-justified

c Junpkl 1 intensity / word

c Jemiti intensity to be displayed

c Jflush empty Dicomed buffer

c ksph: sphere

c kcyl : cylinder

c rmaxl (real) maximum integer : 32767.0

c r2to14 (rea l) 2 **14

c smin:
c

any arc whose slope is less than smin is
considered a straight line

c two15
c

2. ** 22
(The logic for this name must be historical!)

8»
 8

»
8*

 9
9

8»
 8

»
8»

 8
° 8

»
9»

8»

 9
»

9»
 8

»
9»

 9
*

9«
 9

»
9*

 9
»

9»
 9

»
9»

 9
»

9»
param.cm

c====> THe variable prmlen is set by the block data subroutine;
c====> all others are set by subroutine reed.

common / PARAM / prmlen,
n,
kt,
kb,
xl,
xr,
xct,
yet,
rt,
xeb,
ycb,
rb

Integer prmlen,
xl, xr,
xct, yet,
rt, rb,
xeb, ycb

dimension n(200),
kt(200),
kb(200),
xl(200),
xr(200),
xct(200),
yct(200),
rt(200),
xcb(200),
ycb(200),
rb(200)

c====> Molecular Input data from ATOMSLLL <====

c prmlen size of each of following

c n record type
c > 0 : trapezoid
c -2 : cylinder
c -3 : sphere
c -4 : end of Job
c -6 : end of frame

c kt, kb top & bottom arc types f

c 1 : convex down
c 2 : convex up
c 3 : straight line

60

c 4 : special

c top line type & slope for cylinder
c colour & x coordinate of centre for sphere.

c xl, xr x coordinates of left & right sides of trapezoid
c top line intercept & bottom line type for cylinder,
c y coordinate of centre & radius for sphere,
c xct, yet, rt : centre & radius of top arc for trapezoid,
c bottom line slope & intercept, & middle line type
c for cylinder.
c xeb, ycb, rb : centre & radius of bottom arc for trapezoid,
c middle line slope & intercept, & intermediate
c quadratic differencing value for cylinder.

«•
a»

 8»
pgmctl.cm

c====> All variables in this common block are se t by subroutine Init.

c====> Program control variables <====

common / PGMCTL / ifda,
iwait,
idvice,
Ifbslm

c All of the

c ifda :

c iwait:
c

c idvice
c

c ifbslm
c
c
c

following are user specified at run time:

double film advance

generates extra space between completely exposed Dicomed
frames so film can be mounted as 35 mm. slides

output device type
(Dicomed film recorder / Ikonas frame buffer)

selects actual or simulated frame buffer output
When the frame buffer is simulated, output is placed
on the file frame_buffer In the current directory;
this file can be examined using the Ikonas simulator.

o0 o0 o0 o8 o8 o8 o8

62

qdiff.cm

c<====> Intermediate values used in quadratic differencing calculations <====
c====>
c====> The equations from which these values originate are detailed In
c = = => section 4 of
c====>
c====> ATOMLLL - A Three-D Opaque Molecule System
c====> (Lawrence Livermore Laboratory Version),
c====> N. L. Max, UCRL-52646, Jan. 1979.
c====>

common / QDIFF / a,
ad,
bp,
c,
d,
e,
f,
k3

c a set by routine newcol/

c ad set by routines begcyl & begsph

c bp maximum range for colour exposure
c (set by routine newcol)

c c, d, e, f, k3 set by routine begsph

00 «0

radius.cm

c====> Radius parameters <==

common / RADIUS / srt,
srb,
srr

c srt top
c (set by routine trapez, as is srb)

c srb : bottom

c srr square
c (set by routine begsph)

9*
 fi

*
fi»

 «
•

sphere.cm

c====> All variables in this common block are se t by routine begsph.

c====> Molecule parameters <====

common / SPHERE / r,
xc,
yc

Integer r,
xc,
yc

c r : radius

c XC ! x coordinate of centre

c yc : y coordinate of centre

65

dni.f
Ci::: — > MAINLINE <—
c::::
c:::: This program produces shaded highlighted molecular representations
c:::: suitable for output on either a Dicomed film recorder or an Ikonas
c:::: frame buffer connected to a DEC PDP/11 computer. It is a structured
c:::: FORTRAN 77 extension of the original DicomedTdependent FORTRAN program
c:::: obtained from Nelson Max of Lawrence Livermore Laboratory.
C::::
C:::: References : 1. 'ATOMLLL ATOMS with Shading & Highlights',
C:::: N. L. Max, Proceedings of SIGGRAPH 179.
C::::
c:::: 2. 'ATOMLLL - A Three-D Opaque Molecule System
c:::: (Lawrence Livermore Laboratory Version)1,
c:::: N. L Max, UCRL-52645, Jan. 1979.
C:;::
c:::: 3. Dicomed Graphic Film Recorder Model D48 -
C:::: Operation and Programming Manual.
C::::
C::::
c:::: Input files :
C:::: fort.4:
C::::
C::::
C:::: fort.9 :
C::::
C::::
C::::
C:::: Output files :
c:::: fort.8 :
C::::
C::::
C::::
C::::
C::::
c::::
C:::: fort.7 :
C::::
c:::: user terminal: Execution trace
C:::: +
c:::: frame buffer statistics
c:::: (if Ikonas is output device)
C::::
c:::: frameubuffer: screen Image file created for simulated frame
c:::: buffer output.
c:::: May be examined with Ikonas simulator or displayed
c:::: directly on the Ikonas.
C::::
c:::: Program execution is controlled by a self-explanatory input dialogue.
C:::s
c:::: An efficient quadratic differencing algorithm computes values for
c:::: (cos(theta) ** 2) along vertical lines; these are used as indices
c:::: Into computed colour lookup tables for shading & object highlighting,
c:::: (Details concerning the differencing equations may be found in

measured film densities to compute colour
lookup tables for the Dicomed

molecular description file created by the
ATOMLLL program, which is a front end for
this program.

Dicomed control codes to produce exposed
photographic film on a Dicomed film recorder.

N.B. Due to bugs in the FORTRAN 77 compiler and/or
quirks of the Unix operating system, this file is
always opened In append mode If it already exists.

optional debug output.

8®
 8*

 fi»
 fi

» 8
» f

i»

c:::: section 4 of Reference 2.)
C::::
c:::: The program requires 2 passes over the input data for the Dicomed,
c:::: which manipulates colour filters one at a time.
c:::: Shading & highlighting can be performed simultaneously for the Ikonas,
c:::: which requires only a single intensity in RGB format for each pixel to
c:::: be illuminated.
C:::: Processing Is complete once either an end-of-job indicator or the
c:::: physical end of input data has been encountered.

C* • • •
c:::: N.B. "Do nothing" code from N. Max's original version
c:::: has been commented out.
c::::

include 'bond.cm'
include 'coitbl.cm'
include 'debug.cm'
include 'dicntl.cm'
Include 'dlco.cm'
Include 'tbparm-cm'
Include 'ispace.cm'
include 'manif.cm'
include 'param.cm'
include 'pgmctl.cm'

data ¡color / 22 / ,
ibandw / 21 / ,
Ifr / 0 / ,
newcyl / -2 /,
newsph / -3 /,
newjob / -4 /,
newfrm / -5 /

call init
call output(jnoop, ires)

c====> call setabl(1)
call setabl
call frmhdr

30 continue
idum = 0

o====> call tabout(3)
6 0 continue

call reed(n, prmlen * 11, ler)
if (ler .gt. 0) go to 30

c====> Colour shading

kstart = 0
80fhHit = 1

c====> call tabout(1)
call output(jnoop, (color)

nowcol = 0
go to 120

c====> Set shading flag to black & white for highlight calculation

100 ihilit = 2
c====> call tabout(2)

call output(Jnoop, Ibandw)
nowcol = 0

c====> The following case statement is performed for each record
c====> in every block of input data until either the end-of-job code
c====> physical end-of-file Is encountered.

120 do 500 I = kstart + 1, prmlen
write(6, 960) I

c====> Continue shading trapezoids in the current atom

if (n(i) .gt. 0) then
write(6, 965)
call trapez(I, kind)

c====> Begin new frame

else if (n(i) .eq. newfrm) then
write(6, 980)

if (ihilit .eq. 1) then
If (idvice .eq. Idico) go to 100

else
kstart = i
call output(jnoop, ifa)
Ifr = If r + 1
write(6, 900) ifr
if ((wait .eq. ion) then

c====> call tabout(3)
call output(jflush, jfhish)
read(6, 800) idum

end if
If (ifda .eq. ion) call output(jnoop, ifa)
call frmhdr
If (kstart - prmlen) 80, 60, 50

end If

c====> End of Job

else if (n(i) .eq. newjob) then
c====> call tabout(3)

call output(jflush, jflush)
if (idvice .eq. ifrbuf) then

wrlte(6, 910) (minrgb(j), maxrgb(j), j = 1, 7)
write(6, 930)
write(6, 950) acminx, acmaxx, acminy, acmaxy
write(6, 940)

68

write(6, 960) minfbx, maxfbx, minfby, maxfby
end if
call exit

c====> Begin New Sphere

else If (n(i) .eq. newsph) then
wiite(6, 970)
call begsph(I, kind)

c====> Begin New Cylinder

else if (n(i) .eq. newcyl) then
wiite(6, 976)
call begcyl(I, kind)

end if
600 continue

If ((ihilit .It. 1) .or. (Ihillt .gt. 2)) then
write(6, 920) ihilit
call exit

else
go to (100, 60), ihilit

endif

c====> Input formats

800 format(II)

c====> Output formats

900 formate Finished frame', 14)
910 format(t20, 'Min Intensity', 5x, 'Max Intensity',

& //'red', t23,16, t41,l6 ,
& /'green', t23,16, t41 , 16,
& /'yellow', t23,16, t41 , 15,
& /'blue', t23,16, t41,16,
& /'magenta', t23,16, t41 , 16,
& /'cyan', t23,15, t41 , 16,
& /'white', t 2 3 , l6 , t 4 1 , i6)

920 format(//'Main program : ihilit = ', I6,
& ' out of range for computed go to')

930 formate //'Range of calculated pixel addresses)
940 formate //'Range of illuminated pixel addresses :')
960 formate t8, 'x : ', 16, ' to ', 16, ' y : ', 16, ' to ', 16)
960 formate 'Record 16)
965 formaté t20, 'Trapezoid')
970 formate t20, 'Sphere')
976 formaté t20, 'Cylinder')
980 formate t20, 'End of frame1)

end

subroutine begcyl(i, kind)

c:::: This routine is called to initiate processing of a bond (cylinder)
C:::: input record.
C::::
C:::: Input :
c:::: I : index of arrays of / PARAM / containing information
c::: relevant to this bond.
C::::
c:::: Output :
c:::: kind : indicates cylindrical trapezoid data requires further
c:::: processing.
C::::
c:::: N.B.
c:::: 1. Bonds will always be shaded magenta by this program.
c::::
c:::: 2. This routine was originally part of N. Max's dni.f
c:::: mainline module.
c::::

Include 'bond.cm'
include 'coltbl.cm1
include 'manif.cm1
include 'param.cm1
include 'qdiff.cm'

data magen / 5 /

if (nowcol .ne. magen) then
call newcol(5, a, bp)

c====> The following line was missing in N. Max's code
c====> (so the program failed for input data containing only bonds)

ad = a / two16
end if

c====> Top values

Jt = kt(l)
s t = kb(i) / 32767.
markt = 0
if ((Jt .ne. 1) .and. (abs(st) .le. smin)) then

markt = 1
Jt = 3

end if
rit = xl(i)

c====> Bottom values

Jb = xKD
sb = xct(i) / 32767.
markb = 0
if ((jb .ne. 1) .and. (abs(sb) .le. smin)) then

markb = 1
jb = 3

end if
rib = yct(i)

==> Middle values

Jm = rt(l)
sm = xcb(i) / 32767.
if ((Jm .ne. 1) .and. (abs(sm) .le. smin)) then

markt = 1
markb = 1
Jm = 3

end if
rim = ycb(l)

if (jb .gt. 1 .and. jm .gt. 1 .and. sb * sm .It. 0) markb = 1
if (jt .gt. 1 .and. jm .gt. 1 .and. st * sm .It. 0) markt * 1

fm = rb(i) / 32767.
fs = 265. * fm * bp
c = fs * two 15
kind = kcyl

return
end

61

c:::: This routine Is called to initiate processing of an atom (spherical)
c:::: input record.
C::::
c:::: Input :
c:::: I : index into arrays of / PARAM / to information relevant
C:::: to this atom.
C::::
C:::: Output :
C:::: kind : indicates spherical trapezoid data for further processing
C::::
c:::: Some terms used in the quadratic differencing equations are computed.
C::::
C:::: N.B.
c:::: 1. This routine was originally part of N. Max's dni.f
c:::: mainline module.

subroutine begsph(i, kind)

include 'coltbl.cm'
include 'ispace.cm1
include 'manif.cm'
include 'param.cm'
include 'qdiff.cm'
include 'radius.cm'
include 'sphere-cm'

if (kt(i) .ne. nowcol) then
call newcol(kt(l), a, bp)
ad = a / two16

end if

xc = kb(i)
yc = xl(i)
r = xKO
srr = float(r) ** 2
c - bp * 265. * two 15 / srr
d s a + c * srr
e = c * Jsp * 2
f - c * jsp * jsp
k3 = -2 * f
kind = ksph

return
end

9°
8*

8°
9®

o
8*

 9»
 9

° 9
*

62

block data
c:::: This routine provides initialization of all static constants
c:::: in common blocks.
C::::

Include 'coltbl.cm*
include 'dicntl.cm'
include 'dico.cm'
Include 'fbparm.cm'
include 'ispace.cm1
include 'manif.cm'
include 'param.cm'

AIIIIIIllo

/ COLTBL /

dataapp / 14*.01 / ,

& bpp / 6 * 0.99, 0.45,

AIIIIIIIIo

/ DICNTL /

data icomp / z '88a9' / ,
& if a / z 'dO O ' / ,
& ifepl / z '20001 / ,
& Ifep2 / z '7000' / ,
& Ifesl / z '2000' / ,
& ifes2 / z '3000' / ,
& Ifp / z' 1000' / ,
& ipes / z'aOOO' / ,
& ipos / z '4000' / ,
& ires / z '90001 /

AII¡IIIO

/ DICO /

databp tr / 1 / ,
& bufmax / 200 /

o n ii ii ii V / FBPARM /

* 0.99 /

data nextx
nexty
minrgb

- maxrgb
shdctl

/ 0 / ,
/ o /,
/ 7 * 9999 /,
/ 7 * -9999 /,
m

'===> / MAN IF /

dataidlco/ 1 /,
Ifrbuf / 2 / ,
ihoriz / 1 / ,
loerr / 2 / ,
loft / 0 / ,

63

& Ion / 1 / ,
& !2to14 / 1 6 3 8 4 /,
& Jnoop / 1 / ,
& jsavex / 2 / ,
& jsavey / 3 / ,
& jpacki / 4 / ,
& Junpki / 5 / ,
& Jemiti / 6 / ,
& jflush / 7 / ,
& key! / 2 / ,
& ksph/ 1 / ,
& rmaxi / 32767.0 / ,
& r2to14 / 1 6 3 8 4 .0 /,
& smln / 0.1 / ,
& two16 / 4 1 9 4 3 0 4 .0 /

c====> / PARAM /

data prmlen / 200 /
end

subroutine djcemp

This routine flushes the current contents of the Dicomed output
buffer to the file 'fo rt.81 in the current directory.

include 'dico.cm'

if (bptr .ne. 1) then
limit = bptr - 1
w rite(8) (buff(i), i = 1, limit)
bptr = 1

endif
return
end

65

c:::: This routine adds another 16-b it word to the Dicomed output
c:::: buffer, firs t emptying the buffer if it is already full.

• • • v< • • •
c:::: Input :
c:::: iword : 32-b it integer to be added to buffer
At • ♦ •W« • • •

subroutine dicowd((word)

Include 'dico.cm'

If (bptr .gt. bufmax) then
w rite (8) buff
bptr = 1

end If

buff (bptr) = iword
bptr = bptr + 1
return
end

o
o

66

subroutine exit

C: This routine closes all files associated with the program before
terminating execution.

Include 'manif.cm'
include 'pgmctl.cm'

c====> Close input files

close (4)
close (6)
close (9)

c====> Close output files

w rite(6 , 9 0 0)
9 0 0 format (1 End of jo b ...')

close (6)
if (idvice .eq. ifrbuf) then

call Fclofb
else

close (8)
end if

stop
end

67

c:::: This routine emits the Dicomed control sequence for a frame header.
c::::
c:::: MB. This code was originally part of M Max's mainline module dni.f
C::::
c:::: Reference :
c:::: Dicomed Graphic Rim Recorder Model D48 -
c:::: Operation & Programming Manual.
C* * • •

subroutine frmhdr

include 'dicntl.cm'
include 'manif.cm*

c Reset
call output(jnoop, ires)

c ECS - select raster mode
call output(jnoop, 1 6)

c ECS - colour exposure
call output(jnoop, 1 8)

c ICS with options
call output(Jnoop, fcomp)

c ECS - colour translation
call output(jnoop, 2 2)

c PES - set horizontal spacing
call output(jnoop, ipesl)

c PES - set vertical spacing
call output(jnoop, Ipes2)

c PES - set background exposure code &
c no. of points/element in both directions

call output(jnoop, ipes3)
return
end

0$ O «C 0®

subroutine init

C:::: This routine :
c:::: 1. queries the user for program control parameters
c:::: 2 . computes, if necessary, pixel coordinate boundaries of the
c:::: frame buffer visible window.
c:::: 3 . computes spacing constants dependent on the output device
c:::: resolution.
C::::
c:::: N.B. This code was originally part of N. Max's mainline module dni.f.
C::::

include 'debug.cm'
include 'dicntl.cm'
include 'fbparm.cm'
include 'ispace.cm'
include 'manif.cm'
include 'pgmctl.cm'

integer resol

c Dicomed boundaries
data minxd, minyd / 1, 1 / ,

maxxd, maxyd / 1024 , 1024 / ,
Ikonas boundaries

minxfb, minyfb / 0, 0 / ,
m axxfb, maxyfb / 5 11 , 511 /

c====> Obtain run parameters from user

1 2 5 w r ite (6 ,9 0 5)
read(5, *) idvice
if ((idvice .ne. Idico) .and. (idvice .ne. ifrbuf)) go to 1 2 6

if (idvice .eq. ifrbuf) then

1 3 5 w r ite (6 ,9 5 0)
read(5, *) shdctl
if ((shdctl .ne. ioff) .and. (shdctl .ne. Ion)) go to 136

1 5 0 w r ite (6 ,9 1 5)
read(5, *) ifbsim
If ((ifbsim .ne. ioff) .and. (ifbsim .ne. Ion)) go to 150

1 7 5 w rite(6 , 9 2 0)
read(5, *) ifbdbg
If ((ifbdbg .ne. ioff) .and. (ifbdbg .ne. ion)) go to 1 7 5

call Finifb(ioff, ifbsim)

c==-=====> Compute a visible frame buffer window centred about the
c========> specified raster position of the Dicomed screen

9»
99

200

210

c====>
c====>

c====>
c====>

&

else
c====>

100

&
&

3 0 0

&

w rite(6, 9 2 5)
re a d (6 ,*) indie
if (indie .eq. loff) then

midxd = (maxxd - minxd) / 2
mldyd = (maxyd - minyd) / 2

else
w rite(6, 9 3 0) minxd, maxxd

read(6, *) midxd, midyd
if ((midxd .It. minxd) .or. (midxd .gt. maxxd) .or.

(midyd .It. minyd) .or. (mldyd .gt. maxyd))
go to 2 1 0

endif

midxfb = (maxxfb - minxfb) / 2
minx = max0(minxd, midxd - midxfb)
m axx = mln0(maxxd, midxd + midxfb)
if (mod(maxxfb, 2) .ne. 0) maxx = maxx + 1

midyfb = (maxyfb - minyfb) / 2
miny = max0(minyd, midyd - midyfb)
maxy = mln0(maxyd, midyd + midyfb)
If (mod(maxyfb, 2) .ne. 0) maxy = maxy + 1

Initialize x , y coordinates o f range of frame buffer pixels
calculated by program,

acminx = maxyd
acm axx = minxd
acminy = maxyd
acmaxy = minyd

Initialize x, y coordinates of range of frame buffer pixels
actually plotted,

mlnfbx = maxxfb
m axfbx = minxfb
minfby = maxyfb
m axfby = minyfb

If (ifbdbg .eq. ion)
w rlte(7, 9 4 0) midxd, midyd, minx, maxx, miny, maxy

resol = 1 02 4

idvlce = Dicomed
wrtte(6, 9 0 0) ‘

read(5, 8 0 0) iwait, tfda, idbg
If (((iwait .ne. ioff) .and. (iwait .ne. ion)) .or.

((ifda .ne. loff) .and. (ifda .ne. Ion)) .or.
((idbg .ne. loff) .and. (idbg .ne. Ion))) go to 100

open(8, file = 'fort.8 ', form = 'unformatted')

w rite(6, 9 1 0)
read(5, *) resol
if ((resol .ne. 1 0 2 4) .and. (resol .ne. 2 0 4 8) .and.

(resol .ne. 4 0 9 6)) go to 3 0 0
endif

9»
 8

»
_

 8
»

9»

70

c====> Calculate constants derived from resolution

c====> / ISPACE /
isp = 4 0 9 6 / resol
isp2 = isp / 2
jsp = 8 * isp
Jsp2 = 8 * Isp2
f jsp = float(jsp)
fjs p 2 = float(Jsp2)
tjsp = 2. * f jsp
tjsq = 2. * f jsp * fjsp

c====> / DICNTL /
ipesl = ipes + 612 * Isp + 8
Ipes2 = 512 * isp + 8
Ipes3 = isp " 17

return

c====> Input formats

8 0 0 format(3i1)

c====> Output formats

9 0 0 formate / ' Wait between frames, double film advance, debug trace:',
& / ' eO:no, 1 :yes) 3i1 form at:1)

9 0 6 formate / ' Target output device:',
& / ' ei:0icomed, 2:lkonas) free format: ')

9 1 0 formate / ' Resolution : 1024, 2 0 4 8 , 4 0 9 6 : free format: ')
9 1 5 formate / ' Type of frame buffer:',

& / ' eO:actual, 1 simulated) free format: ')
9 2 0 formate / ' Frame buffer debug output desired?1,

& / ' eO:no, 1 :yes) free format: ')
9 2 5 formate / ' By default, centre portion of ATOMLLL data will be displayed ',

' on frame buffer.', / ' Do you wish to change area displayed?',
/ ’ eO:no, 1 :yes) free format: ')
formate / ' x, y coordinates (in Dicomed raster units) o f centre of area ',
'to be displayed : free format:',
/ ' (M ust be in range ', I7, ' to ', i7 ') ')

9 4 0 formate / ' Init : midxd, midyd = ', 2 i8 , ' minx, maxx = ', 2 i8 ,
& ' mlny, maxy = ', 2 i8)

9 5 0 formate / ' Compute highlights?1, / ' (0:no, 1 :yes) free format: ')

end

in teger function itorgb(inten, ¡color)

c:::: This function converts an 8-b it integer intensity for 1 o f 7 colours
c:::: (R, G, Y, B, M, C, W) to its equivalent 2 4 -b it RGB code in a format
c:::: compatible with Ikonas simulator I/O routines.
C::::
C:::: Input :
c:::: inten : integer in the range [0 , 2 5 5]
c:::: (out of range values will be changed to the appropriate
c: : : : boundary values)
C::::
C:::: Output :
c:::: 3 2 -b it integer word containing the 4 bytes
C:::: 0 B G R
c::::
c:::: S tatistics are gathered on the maximum & minimum intensity requested for
c:::: each colour.
C::::

include 'coltbl.cm'
include 'debug.cm'
include 'fbparm.cm'
Include 'manif.cm'

data Ish8 / 2 6 6 / ,
& Ish16 / 6 5 5 3 6 /

inten = maxO(inten, 0)
inten = minO(inten, 2 5 5)

If ((icolor .lt. 1) .or. (icolor .gt. 7)) then
w rite (6 , 9 0 0) icolor
call e x it

eise
go to (20 , 5 0 , 80, 110 , 140, 170 , 2 0 0), icolor

endif

c red:
2 0 itorgb = Inten

go to 3 0 0

c green:
5 0 itorgb = inten * Ish8

go to 3 0 0

c yellow = red + green:
8 0 itorgb = inten + inten * Ish8

go to 3 0 0

c blue:
1 1 0 itorgb = inten * Ish16

go to 3 0 0

c magenta = red + blue:
1 4 0 itorgb = inten + inten * Ish16

go to 3 0 0

c cyan = green + blue:
1 7 0 Itorgb = Inten * Ish8 + inten * Ish16

go to 3 0 0

c w hite = red + green + blue:
2 0 0 itorgb = inten + inten * Ish8 + inten * Ish16

300minrgb(icolor) = min0(inten, minrgb(icolor))
maxrgb(icolor) = max0(inten, maxrgb(icolor))

c====> Output formats

6 0 0 format('itorgb : icolor = ¡5 ,1 out of range for computed go to*)

return
end

73

c:::: This routine is called to change the current colour & update the
c:::: associated intensity minimum & range values.
c:::: For Dicomed output, the appropriate colour filter is selected.
c::::
c:::: Input :
c:::: ncol : new colour
C::::
c:::: Output :
c:::: a : scaled-up minimum intensity for this colour
C::::
c:::: bp : scaled-up range of intensity for this colour .
c::::

subroutine newcol(ncol, a, bp)

include 'coltbLcm'
include 'manif.cm'

nowcol = ncol
bp = bpp(ncol, Ihilit)
a = app(ncol, ihilit) * 2 5 5 * two15
if (ihilit .eq. 2) then

c select neutral filter
iadd = 15

else
c ncol => which colour filter to select
c Reference : Table 3 -1 , p. 3 -2 , Dicomed Manual

iadd = 8 + ncol
end if
call output(jnoop, iadd)
return
end

8»
 fi»

c:::: This routine channels output according to the user-selected display
c:::: device. It replaces all calls to dicowd & dicemp in the original version;
c:::: hence it is assumed that such calls are made in the correct order
c:::: for controlling the Dicomed.
c::::
C:::: Input :
c:::: ic n t l: Describes the interpretation of the parameter iword.
c:::: It can be 1 of the following, defined in / MANIF / :
C:::: Jnoop
C:::: jsavex
c:::: jsavey
C:::: jpacki
C:::: junpki
C:::: jemiti
C:::: Jflush
c::::
c:::: iword : 32 -b it integer destined for output device
C::::
c:::: When the Ikonas frame buffer has been selected as the output device :
C::::
c:::: 1. x , y coordinates must be rescaled down from the range (1 , 4 0 9 6)
c:::: to (1 ,1 0 2 4), as the Dicomed permits illumination of
c:::: n by m rectangular 'meta-pixels' when used a t less than
c:::: its maximum resolution of 4 09 6 .
c::::
c:::: 2. Only pixels within the frame buffer visible window will be
c:::: displayed.
C::::
c:::: 3 . Pixels are processed along horizontal scanlines.
C::::
c:::: 4. When highlighting, white is added individually to
c:::: each of the 3 colour components (R, G, B) previously stored
c:::: in that pixel, to avoid overflow of any colour component into
c:::: adjacent one(s).
C::::

subroutine output(icntl, iword)

include 'coltbl.cm'
Include 'debug.cm'
include 'fbparm.cm'
include 'Ispace.cm'
include 'manif.cm'
include 'pgmctl.cm'

logical vlsibx,
& visiby

integer and,
ecmask,
itorgb

«6 «S «ò

&
dimension mask (3),

ishift (3)

c
20

2 5

3 0

c
4 0

6 0

c
6 0

70

c
8 0

9 0

c
100

110
112

data ecmask
mask
ishift
Iwhite

/ z'OOOOOfff' / ,
/ z'OOffOOOO', z'OOOOffOO', z'OOOOOOff ' / ,
/ 6 5 5 3 6 , 256 , 1 / ,
m

visibx(x) = (x .ge. minx) .and. (x .le. maxx)
visiby(y) = (y .ge. miny) .and. (y .le. maxy)

If ((icntl .It. 1) .or. (icntl .gt. 7)) then
w rite (6 , 9 1 0) icntl
call ex it

else
go to (20, 40 , 60, 80, 1 0 0 ,1 2 0 , 2 4 0), icntl

endif

jnoop:
go to (25 , 3 0), idvice

call dicowd(iword)

return

jsavex: starting x raster coordinate
go to (25 , 5 0), idvice

nextx = iword / jsp
return

jsavey: y raster coordinate
go to (25 , 70), idvice

nexty = iword / jsp
return

Jpacki: output intensities packed 2 /w ord in rightmost 16 bits
go to (25 , 9 0), idvice

(start = 2
go to 1 12

Junpki: 1 output intensity/word
go to (2 5 ,1 1 0) , idvice

(start = 3
lend = 3
Icount = and(iword, ecmask)
return

c Jemlti: compute & emit frame buffer output intensity

8»
 8

«
9»

C
c
c
c

120

130

c
c
c

&

&

&

&

&
1 7 5

200

In p u t: 8 -b it value of (cos(theta) * * 2) used
to index colour lookup tables.

Output: 2 4 -b it RGB intensity (shaded/unshaded)
corresponding to input index.

acminy = minO(acminy, nexty)
acmlnx = minO(acminx, nextx)
acm axy = maxO(acmaxy, nexty)
acm axx = maxO(acmaxx, nextx)
go to (2 5 ,1 3 0), idvlce

If (visiby(nexty)) then
ly = nexty - miny
do 2 0 0 i = Istart, lend

Plot only visible raster positions,
omitting possible extra intensity
emitted by quad.

if (visibx(nextx) .and.
(icount .ge. 0)) then

icos2 = and(iword, mask(i)) /
Ishift(i)

lx = nextx - minx
minfby = mlnO(minfby, iy)
maxfby = maxO(maxfby, iy)
minfbx = minO(minfbx, ix)
maxfbx = maxO(maxfbx, ix)

intenc = itorgb(fthet2(icos2+1),
nowcol)

Intenh = ftorgb(gthet2(icos2+1),
Iwhite)

intout = 0
do 175 j= 1, 3

ibyte = and(intenc,mask(j))
/ Ishlft(J) +
and(intenh,mask(j))
/ ishift(J)

ibyte = minO(ibyte, 2 5 5)
intout = intout +

Ibyte * ishift(J)
continue
call Fputpx(ix, iy, intout)

endif
nextx = nextx + 1
Icount = icount - 1

continue
endif
return

c
2 4 0

jflush: flush Dicomed output buffer
go to (2 4 5 , 2 5 0), idvice

77

2 4 5 call dicemp

2 6 0 return

c====> Output formats

9 1 0 format('output : Icntl = IS, 1 out of range for computed go to 1)

end

o
n

subroutine quad(k1, k2, k3, nw)

C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
c:
C:
c:
C:
C:
C:
C:

This routine represents an efficient calculation of cos ”* 2 (theta)
along a vertical scanline, as described in

"ATOMLLL - A Three-D Opaque Molecule System"
(Lawrence Livermore Laboratory Version),
N. L Max, Jan. 1 979 (UCRL-52646)

Input :
k1 : Initial intensity for shading
k2 : First difference in intensity
k3 : Second difference in intensity

(constant since stepsize = 1)
nw : Number of pixels to plot

The routine always produces an even number of points. The extra
byte will be ignored by the Dicomed because the preceding count
word was correct.

2 8 -b it exposure codes are packed, right-justified, into a 3 2 -b it word.

include 'manlf.cm'

data idenom / 4 1 9 4 3 0 4 /
c====> 2 * * 2 2 (==> shift 2 2)

limit = (nw + 1) / 2
do 10 i = 1, limit

ie x p l = k1 / Idenom
k1 = k1 + k2
k2 = k2 + k3
Iexp2 = k1 / idenom
k1 = k1 + k2
k2 = k2 + k3
call output(jemiti, 2 5 6 * iexp l + Iexp2)

10 continue
return
end

subroutine reed (n, len, ier)

c:::: This routine reads a block of data produced by the ATOMLLL program Into
c:::: the 11 consecutive arrays of / PARAM / .
C::::
C:::: In p u t:
c:::: n : Starting address of the 1st o f the 11 arrays in / PARAM /
c::::
c:::: len : no. o f words of input data to read
C ::::
c:::: ier : error indicator:
c:::: < 0 :end-of-file
C:::: = 0 : a l ! i s w e l l
c:::: > 0 terror occurred during read
C::::

include 'manif.cm'

integer n(len)

open(9 , file = 'fort.9')
rewind(9)
read(9 , 100 , iostat = ier) n

1 0 0 formati 1 0 i7)

3 0 0 return
end

subroutine setabl

c:::: When th e output device is the Dicomed film recorder:
c:::: This routine computes & emits Dicomed colour translation tables
c:::: which compensate for nonlinearities on the output device & film.

c:::: It uses the file 'fo rt.41, containing a table of measured film
c:::: densities stored as -log base 10(intensity)
c:::: i.e., the fraction of light transmitted by the film.
c:::: These densities decrease as output intensity level increases.
C:::: The format of this file is as follows:
c:::: 3 2 rows representing intensity levels, each containing:
c:::: film densities for all 7 colour filters at this level
c:::: a single value to trigger debug output (if > 8 0 0 0)

c:::: A table o f 2 5 6 exposure codes per colour is computed as follows:
c:::: 1. measured intensity I is obtained from corresponding measured
c:::: d e n s ity :
c:::: 1 = 1 0 * * (-den / 100)
c:::: 2 . Desired output intensities are interpolated from measured
c:::: Intensities, using the equations
c:::: F(theta) = .1 + .9 * ((cos(th eta)) * * 2) **.61
C:::: for colour
c:::: G (theta) = .8 * F + .39 * (.8 *((co s (th e ta)) ** 2) * * 14 +
c:::: .2 * ((cos(theta)) * * 2) ** (1 4 /4))
c:::: for highlights,
c:::: suitably scaled to produce values within the range of measured
c:::: intensities obtained from the input film densities.
c:::: These equations are approximately equivalent to Lambert's Law
c:::: for the representation of diffuse and specular reflection:
c:::: i.e., f(th e ta) = A + D cos(theta)
c:::: g (theta) = C (cos(theta)) * * n, n large.
c:::: except:
C:::: 1. they are In terms of cos**2 rather than cos
c:::: 2 . G has extra terms to eliminate Mach band e ffec ts
C::::
c:::: The 8 sub-tables are calculated & emitted In the order
c:::: black & white, red, green, yellow, blue, magenta, cyan, neutral.
c:::: [Black & white calculations use film densities for neutral (w hite).]
C::::
c:::: The Dicomed saves these lookup tables; each emitted illumination
c:::: level from the quadratic differencing computation is actually a
c:::: cos**2 treated as an index into the appropriate colour lookup table,
c:::: Then, according to options previously selected, the film is exposed
c:::: proportional to -k>g(base 1 0) of the indexed table value.
C ::::
c:::: When th e output device is the Ikonas:
c:::: The task is simplified, as the file of film densities can be
c:::: ignored. It is necessary only to compute & save the tables for F & G,
c:::: scaled to the range 0 -2 5 5 (assuming we wish to allow the full range
c:::: of intensities for each colour).
c:::: G = 0 if no shading is desired.
C ::::
c:::: N.B. "Do nothing" code from N. Max's original program has been

g
o

g
o

g
o

p
g

o
p

g
»

go

o

g

o
go

61

c:::: commented out, and the input parameter removed.
C::::

include 'coltbl.cm'
include 'debug.cm'
include 'fbparm.cm'
include 'manif.cm'
include 'pgmctl.cm'

dimension iden(32, 7),
z i(32),
jcode(32)

dimension itb l(2 0 48)
equivalence (zimax, z i(32)),

(zimin, z i(1))

d a ta b l / . 1 0 / ,
C1 / -00 / ,
e1 / 61 / ,
b2 / -08 / ,
c2 / .39 / ,
e2 / 1 4 . / ,
fbmin / 0 .0 / ,
fbm ax / 2 56 .0 /

data ifs1 / z '2 0 0 0 ' / ,
& Ifs2 / z'dOOO1 /

c Ifs1 FES (Deferred status; p. 3.8 in Dicomed manual)
c tfs2 F6 - load translation table & ES - read from Input
c until element count satisfied, (p. 3 -1 4 , 3 -3 4)

c Options selected:
c 8 -b it exposure codes
c exposure on film increases as input exposure code
c increases.
c proportional to Inverse log of exposure
c code.

c====> da ta isub / 1 /

c====> * * Modification **
c====> Film densities read for all data types - atoms, bonds, or
c====> a mixture of both; previously not done for bonds.
c====>if (kind .eq. ksph) then

if (idvlce .eq. idico) then
open (4 , file='fort.4l)
rewind (4)
do 1 0 i = 1 ,3 2

4
 4

10
read (4 , 8 0 0) jcode(i), (iden(l, J), j = 1 ,7)

continue

A A A A A A
II

II
II

II
II

n
II

II
II

II
II

ii
■I

II
ll

II
II

II
II

ll
ll

ll
ll

ll
o o o o o u

read (4 , 8 0 0) idum
else

if (kind .na k c y l) then
write (6 , 9 0 0)
return

endif
endif

call output(jnoop, ifs1)

c====> 2 0 4 8 (= 8 * 2 5 6) is element count
c====> l.e., the number of entries In the table,

call output(jnoop, ifs2 + 2 0 4 8)

do 5 0 0 m = 1, 8

AllllIIllu i f (m .eq. 1) then
Use neutral filter values

J = 7
else

j = m - 1
endif

AiillllllO

Obtain measured intensities from measured film densities

3 0

do 3 0 i = 1 ,3 2
zi(i) = 10.0 * * (float(- iden(i, j)) / 100 .)

continue
zs = zlmax - zimin
do 4 0 0 k = 0, 2 5 5

cos2th = float(k) / 255 .

n ii ii ii ii V Compute des, the desired intensity

o
o

o
o

ii
ii

ii
ii

n
ii

ii
it

n
ii

ii
ii

n
ii

ii
ii

V
V

V
V if (kind .eq. kcyl) then

des = zimin + cos2th * zs
else

kind .eq. ksph
d1 = b1 + c l * cos2th ** e1
If (m .eq. 1) then

c====>

&
&

Compute black & white table values
d2 = b2 * d1 + c2 *

(.8 * cos2th ** e2 +
.2 * cos2th ** (e2 / 4.))

des = zimin + zs * d2
else

des = zimin + zs * d1

o II II II II V Compute colour values
endif

c endif

o II II II II V Now find an intensity .gt. des
do 80 I = 2 , 32

«0 «8

83

8 0

70

Wl s zi(l)
If (wl - des) 80, 7 0 , 9 0
mnt = jcode(l) * 16
go to 110

continue

c====> Interpolate exposure index from nearest measured Intensity
9 0 f jc = float(jcode(l))

fjc1 = float(jcode(l - 1))
wl1 = zi(l - 1)
if (k .eq. 0) then

mnt = 0
else

c====> If ((m .eq. 1) .and. (kind .eq. kcyl)) then
c====> mnt = 4 * k
c====> else

mnt = ifix (((des - wl1) * (f jc - fJc1) /
& (w l-w l1) + fjc1) * 16. + . 5)
c====> endif

endif
c====> mnt is exposure code

1 1 0 call output(Jnoop, mnt)
c====> itbl(isub) = mnt
c====> Isub = isub + 1

if (idbg .eq. 6)
& write(7, *) mnt

if (idum .ge. 8 0 0 0 + m)
& write (7 , 9 1 0) m, k, I, mnt, des

4 0 0 continue
6 0 0 continue

call output(jflush, jflush)
c====> w rlte(1, 9 9 9) itbl

else
c====> Output device Is frame buffer

do 6 0 0 k = 1 ,2 6 6
cos2th = float(k - 1) / 255 .
fbscal = fbmax - fbmtn
d1 = b1 + c1 * cos2th ** e1
fth e t2 (k) = ifix (d1 * fbscal + fbmin + 0 .6)
if (shdctl .eq. ion) then

gthet2(k) = ifix((b2 * d1 + c2 *
(0 .8 * cos2th * * e2 + 0 .2 * cos2th **
(e 2 /4 .))) * fbscal + fbmin + 0 .5)

else
gthet2 (k) = 0

end If
6 0 0 continue

if (ifbdbg .eq. ion) w rite(7, 9 9 9) fth e t2 , gthet2
end if
return

c====> Input formats

8 0 0 format (8 i5)

c==3=> Output formats

9 0 0 format (1 Error in s e ta b l: input parameter is not sphere1,
& 1 or cylinder1)

9 1 0

9 9 9
end

format (4i6, f 11 .4)

format(2 5 (1018/), 618, / / /)

subroutine shdah(nw, x, y)

c:::: This routine shades above entire highlight line with quadratics on
C:::: horizontal lines.
C::::
C:::: Input :
c:::: nw : number of pixels to shade in y direction
c:::: x , y : starting plot position
C::::
c:::: The calculated intensity at each y is a function o f the top & middle
c:::: x coordinates of the region to be shaded.
C::::
c:::: N.B. This routine was originally part of the subroutine trapez.
c::::

Include 'bond.cm'
include 'debug.cm'
include 'dicntLcm'
include 'ispace.cm'
Include 'manif.cm'
Include 'qdiff.cm'

c FES - single element plotting of nw elements
c computed in following loop

call output(jnoop, ifep l)
call output(junpki, ifep2 + nw)
if (idbg .eq. ion) write(7, 1 9 8 0)

do 3 8 0 j = 1, nw

if ((j t .It. 1) .or. (j t .gt. 3)) then
wrfte(6, 9 0 0) j t
call exit

else
c Case on top line type:

go to (3 2 0 , 3 20 , 3 3 0), j t
endif

c Convex down / up:
3 2 0 x t = (y - Ht) / st

go to 3 4 0

c Straight line:
3 3 0 x t = lit + y * st

3 4 0 if ((jm .It. 1) .or. (Jm .gt. 3)) then
w rite(6, 9 1 0) jm
call exit

else
c Case on middle line type:

go to (3 5 0 , 3 60 , 3 6 0), jm
endif

66

c Convex down:
3 5 0 xm = (y - rim) / sm

go to 3 7 0

c Convex up / staight line:
3 6 0 xm = rim + y * sm

3 7 0 id = fs * (1 . - ((x - x m)/(x t - xm)) ** 2) + ad
id = min0(2 55 , max0(0, id))

c====> Plot 1 element in horizontal direction at exposure
c====> level id

call output(jemiti, ifp + id)
if (idbg .eq. 2) w rite(7, 1990)
y = y + f jsp

3 8 0 continue
return

c====> Output formats

9 0 0 format('shdah: Jt = I 6 , 1 out of range for computed go to*)
9 1 0 format('shdah: jm = I5, 1 out of range for computed go to ')

1 9 8 0 formate 'trapez #9')
1 9 9 0 formate 'trapez #1 O')

end

c:::: This routine shades below entire highlight line with quadratics on
c:::: horizontal lines.
c::::
C:::: Input :
c:::: nw no. of pixels to shade in y direction
c:::: x , y : starting plot position
c::::
c:::: The calculated intensity for each y is a function of the corresponding
c:::: middle & bottom x coordinates of the region to be shaded.
C::::
c:::: N.B. This routine was originally part of the subroutine trapez.
c::::

subroutine shdbh(nw, x, y)

include 'bond.cm'
include 'debug.cm'
include 'dicntl.cm'
include 'ispace.cm'
include 'manif.cm'
include 'qdiff.cm'

c FES - single element plotting of nw elements computed
c in following loop

call output(jnoop, ifep l)
call output(junpki, ffep2 + nw)
if ((dbg .eq. 2) w rite(7, 1 9 5 0)

do 7 8 0 J = 1, nw
if ((jb .It. 1) .or. (Jb .gt. 3)) then

w rite(6, 9 0 0) jb
call exit

else
c Case on bottom line type:

go to (7 2 0 , 730 , 7 3 0), jb
endif

c Convex down:
7 2 0 xb = (y - rib) / sb

go to 7 4 0

c Convex up / straight line:
7 3 0 xb = rib + y * sb

7 4 0 if ((Jm .It. 1) .or. (jm .gt. 1)) then
w rite (6 , 9 1 0) jb
call exit

else
c Case on middle line type:

go to (7 5 0 , 760 , 7 6 0), jm
endif

c Convex down:
7 6 0 xm = (y - rim) / sm

88

go to 7 7 0

c Convex up / straight line:
7 6 0 xm = rim + y * sm

7 7 0 id = fs * (1 . - ((x - xm) / (xb - xm)) * * 2) + ad
id = mln0(265 , max0(0, id))

c Plot 1 element in horizontal direction a t exposure
c level id

call output(jemiti, ifp + id)
if (idbg .eq. 2) w rite(7, 1960)
y = y + f jsp

7 8 0 continue

return

c====> Output formats

6 0 0 format('shdbh: jb = i 6 , 1 out of range for computed go to')
9 1 0 format('shdbh: jm = IS ,1 out o f range for computed go to ')

1 0 5 0 formaté 'trapez #6 ')
1 9 6 0 formate 'trapez # 7 ')

end

subroutine shdcyK iyb, iyt, x)

c:::: This routine shades trapezoids belonging to cylinders (bonds),
c:::: It is more complex than shading spheres, since cylinders become
c:::: cones a fte r a perspective projection is applied, and the
c:::: directions of the projected edges may lie in d ifferent quadrants.
c::::
C:::: Input :
c:::: iyb, i y t : scaled-up bottom & top y coordinates of cylinder
c:::: x : current x coordinate
C::::
c:::: The top, middle, & bottom y coordinates of the bisecting (highlighting)
c:::: line are computed. Then the trapezoid is shaded in 2 phases :
c:::: above & below its bisecting line (unless the bisecting line is strictly
c:::: vertical, in which case the entire trapezoid is shaded with a single
C:::: quadratic.
C::::
c:::: N.B. This routine was originally part of the subroutine trapez.
C::::

include 'bond.cm'
include 'debug.cm'
Include 'dicntl.cm'
Include 'ispace.cm'
include 'manif.cm*
include 'qdiff.cm'

iyb = iyb - i2 to14
Iyt = Iyt - l2 to14
y = iyb + jsp2
if(idbg .eq. 2) w rite(7, 5 9 5) jt , jm, jb

if ((Jt .It. 1) .or. (j t .gt. 3)) then
w rlte (6 , 9 0 0) j t
call e x it

else
c Case on top line type:

go to (5 1 0 , 5 2 0 , 5 3 0), j t
endif

c Convex down:
6 1 0 y t = st * x + rit

go to 5 3 0

c Convex up:
5 2 0 y t = (x - rit) / st

6 3 0 if ((jb .It. 1) .or. (jb .gt. 3)) then
w rite (6 , 9 1 0) jb
call e x it

else
c Case on bottom line type:

go to (6 4 0 , 6 6 0 , 6 6 0), jb
endif

c Convex down:
6 4 0 yb = sb * x + rib

go to 5 6 0

c Convex up:
6 6 0 yb = (x - rib) / sb

6 6 0 if ((jm .It. 1) .or. (jm .gt. 3)) then
w rite(6 , 9 2 0) jm
call ex it

else
c Case on middle line type:

go to (5 7 0 , 6 80 , 6 2 0), jm
endif

Convex down:
ym = sm * x + rim

go to 6 9 0

Convex up:
ym = (x - rim) / sm
if (ym .gt. rmaxl) ym = rmaxi

if (ym .it. -rmaxi) ym = -rmaxi
if (idbg .eq. 2) w rite(7, 6 9 5) iyb, iyt, yb, ym, y t
iym = int((ym - fjsp2) / fjsp) * jsp
if (iyb .gt. iym) then

nw = (Iyt - iyb) / jsp + 1
go to 8 0 0

else if (iy t .It. iym) then
nw = (iyt - iyb) / jsp + 1

else
nw = (iym - iyb) / jsp + 1

end if
if (nw .le. 0) return
if (markb .eq. ihoriz) go to 710

c====> Shade below highlight line with quadratics on vertical lines

call shvlin(y, ym, yb, nw)
y = y + nw * jsp
go to 7 90

c====> Shade whole vertical segment with quadratics on horizontal lines
c====> This loop is executed when the bisecting line of the trapezoid is
c====> strictly vertical; a single quadratic can then be used to shade
c====> the entire region.

c Straight line:
6 2 0 nw = (iy t - iyb) / jsp + 1

if (nw .le. 0) return

6 7 0

6 8 0
6 9 0

c
c

FES & single element plotting of nw elements
computed in following loop

&

c

c
6 3 0

c
6 4 0

6 5 0

c

c
6 5 5

c
6 6 0

6 6 5

c

c
6 7 0

c
6 7 5

91

call output(jnoop, ifep l)
call output(junpki, Ifep2 + nw)
if (idbg .eq. 2) w r ite (7 ,193 0) i fe p l , ifep2 + nw

do 7 0 0 J s 1, nw
if (idbg .eq. 2)

write(7, 1 93 2) y, rit, st, rim, sm, rib, sb
If ((Jm .It. 1) .or. (jm .gt. 3)) then

write(6, 9 2 0) jm
call exit

else
Case on middle line type:
go to (6 3 0 , 6 40 , 6 4 0), jm

endif

Convex down:
xm = (y - rim) / sm

go to 650

Convex up / straight line:
xm = rim + y * sm

If ((Jt .It. 1) .or. (j t .gt. 3)) then
write(6, 9 0 0) j t
call exit

else
Case on top line type:
go to (6 5 5 , 660 , 6 6 0), j t

endif

Convex down:
x t = (y - rit) / st

go to 6 6 5

Convex up / straight line:
x t = rit + y * st

if ((jb .It. 1) .or. (jb .gt. 3)) then
write(6, 9 1 0) jb
call exit

else
Case on bottom line type:
go to (6 7 0 , 6 76 , 6 7 5), Jb

endif

Convex down:
xb = (y - rib) / sb

go to 680

Convex up / straight line:
xb = rib + y * sb

680 if ((x - xm) * (xb - xm)) 685, 690, 690

92

C < 0 :
6 8 5 id = fs * (1 . - ((x - xm) / (x t - xm)) ** 2) + ad

go to 695

C >= 0 :
6 90 id = fs * (1. - ((x - xm) / (xb - xm)) ** 2) + ad

c Plot 1 element in horizontal direction at exposure
c level ad

6 9 5 call output(jemiti, ifp + id)
if (¡dbg .eq. 2) write(7, 1 9 4 0) ifp, id, ifp + id
y = y + f Jsp
if (idbg .eq. 2)

& w rite(7, 1 94 2) x, x t, xm, xb, y, fs, Id
7 0 0 continue

if(idbg .eq. 2) w rite(7, 6 9 6) id, xb, xm, x t, x, fs, ad
return

c====> Shade below highlight line with quadratics on horizontal lines

7 1 0 call shdbh(nw, x , y)
7 9 0 If (iyt .le. iym) return

nw = (iy t - iym) / jsp

8 0 0 if (nw .le. 0) return
if (markt .eq. ihoriz) then

c====> Shade above highlight line with quadratics on horizontal lines
call shdah(nw, x , y)

else

c === -> Shade above highlight line with quadratics on vertical lines
call shvlin(y, ym, yt, nw)

end if
return

c====> Output formats

6 9 5 fo rm a t(3 i7 ,3 f1 0 .2)
1 9 3 0 format('trapez # 4 ' , 2110)
1 9 3 2 format (' y rlt s t rim sm rib sb: ', 7 (f1 0 .2 , 1 x))
1 9 4 0 format('trapez # 5 \ 3110)
1 9 4 2 format(' x x t xm xb y fs i d : 6 (f 1 0 .2 , 1 x), 110)
6 9 6 form at(2h d, ¡7, 6 f 10.2)
9 0 0 form at(' shdcyl: Jt = ', I 5 , 1 out of range for computed go to')
9 1 0 format(' shdcyl: Jb = ', I 5 , 1 out of range for computed go to*)
9 2 0 format(1 shdcyl: jm = ', 15,' out of range for computed go to1)

end

subroutine shdsph(nw, iyb, x)

C:
c:
c:
C:
C:
C:
c:
C:
c:
C:

This routine shades a trapezoid within a sphere,
using a quadratic differencing algorithm.

Input :
nw no. of pixels to shade in y direction
iyb y coordinate of bottom of trapezoid

N.B. This routine was originally part of the subroutine trapez.

include 'debug.cm'
include 'dicntl.cm'
include 'ispace.cm'
include 'manif.cm'
include 'qdiff.cm1
include 'sphere.cm'

c====> FES - initiate plot of nw elements
c====> (elements are computed & emitted by quad)

call output(jnoop, ife s l)
call output(jpacki, ifes2 + nw)
if (idbg .eq. 3) w rite(7, 1 9 1 0)

y = yc - (iyb + jsp2 - i2to14)
k1 = d - c * ((x - x c) ** 2 + y * y)
k2 = e * y - f
if (idbg .eq. 2) w rite(7, 9 8 7 6) nw, k1 , k2, k3
call quad(k1, k2, k3, nw)
return

c==== Output formats

1 9 1 0 format(1 trapez #2 ')
9 8 7 6 format(6hparms , 4110)

end

64

subroutine shvfin(y, ym, ybnd, nw)

c:
c:
C:
C:
C:
C:
C:
C:
C:
C:
C:
c:

This routine shades entire region above/below highlight line with
quadratics on vertical lines using the quadratic differencing algorithm.

In p u t:
y bottom y coordinate
ym middle y
ybnd: y boundary value (either top or bottom)
nw : no. of pixels to shade

MB. This routine generalizes 2 segments of nearly identical code
fo r the above & below cases In the original version of trapez.

include 'dicntLcm'
include 'ispace.cm'
Include 'manif.cm'
include 'qdiff.cm1

yd = y - ym
ctrbnd = c / (ym - ybnd) ** 2
k1 = c - ctrbnd * yd * yd ♦ a
k2 = -ctrbnd * tjsp * (yd + fjsp)
k3 = -ctrbnd * tjsq

c====> Initiate plot of nw elements computed & emitted by quad
call output(Jnoop, ifes l)
call output(Jpacki, Ifes2 + nw)
if (idbg .eq. 2) w rite(7, 192 0)
call quad(k 1 , k2, k3, nw)
return

c====> Output formats

1 9 2 0 format('trapez #3')

end

95

c:::: This routine controls the processing of all trapezoids,
c:::: drawing them on a 4096 * 4096 grid with element spacing isp.
c::::
C:::: input :
c:::: I : index in arrays of / PARAMI / containing information
c:::: pertinent to the current trapezoid.
C::::
c:::: kind: tells whether the trapezoid belongs to a sphere (atom)
c:::: or a cylinder (bond).
C::::
c:::: 1. Radius & slope information for the top & bottom arcs of the trapezoid
c:::: are computed.
c:::: 2. The number of scan lines is obtained from the top & bottom y
c.*::: coordinates.
c:::: 3. The cursor is moved to the starting position on the 1st scanline,
c:::: 4. The appropriate routine is called to shade either a sphere or a
c:::: cylinder.

subroutine trapez(i,kind)

Include 'bond.cm'
include 'debug.cm'
include 'dicntl.cm'
include 'ispace.cm'
include 'manif.cm'
include 'param.cm'
include 'qdiff.cm'
include 'radius.cm'
include 'spherexm1

1x1 = xl(l) + jsp2
b(3 = mod(ix1, jsp)
if (ix3 .It. 0) ix3 = 1x3 + jsp
ixl = 1x1 - ix3
bc2 = xr(i) - Jsp2
ix4 = mod(ix2, jsp)
if (ix4 .It. 0) ix4 = ix4 + Jsp
bcr = ix2 - ix4

c====>Debugging statements

If (idbg .eq. ion) then
wrlte(7,9870) n(l), kt(i), kb(i), xl(l), xr(i), xct(l),

& yct(i), rt(i), xcb(i), ycb(i), rb(i)
wrfte(7,9875) xl(i), xr(i), ix 1 ,1x2,1x3,1x4, ixl, Ixr
write(7, 941) i, kind, It, lb

end if

if (ixr .It. ixl) return

66

It = kt(i)
lb = kb(i)

If ((It .It. 1) .or. (It .gt. 4)) then
write(6, 9900) It
call exit

else
c Top arc:

go to (900, 900, 910, 910), It
endif

c Convex down / up:
600 srt = float(rt(i)) ** 2

go to 920

c Straight line / special case:
610 slopt = float(xct(i)) / rmaxi

620 if ((lb .It. 1) .or. (lb .gt. 4)) then
write(6, 9910) lb
call exit

else
c Bottom arc:

go to (930, 930, 940, 940), lb
endif

c Convex down / up:
930 srb = float(rb(i)) ** 2

go to 950

c Straight line / special case:
640 stopb = float(xcb(i)) / rmaxi

c====> This loop sweeps across the trapezoid horizontally,
c====> generating vertical scan lines.

650 do 2 lx ~ ixl, Ixr, jsp
if(idbg .eq. ion .and. kind .eq. kcyl) wrlte(7,391) ixl, Ixr, lx
x = lx + Jsp2

If ((It .It. 1) .or. (It .gt. 4)) then
write(6, 9900) It
call exit

else
c Find top of quadratically shaded segment

go to (800, 810, 820, 830), It
endif

c Convex down:
800 ysq = srt - (x - xct(i)) ** 2

yt = yct(l) + sqrt(abs(ysq))
go to 850

c Convex up:

810 ysq = srt - (x - xct(i)) ** 2
yt = yct(i) - sqrt(abs(ysq))
go to 850

c Straight line:
820 yt = slopt * x + rt(i)

go to 850

c Special case:
630 yt = (x - rt(i)) / slopt

850 If ((lb .It. 1) .or. (lb .gt. 4)) then
write(6, 9910) lb
call exit

else
c Find bottom of quadratically shaded segment

go to (860, 870, 880, 890), lb
endif

Convex down:
ysq = srb - (x - xcb(f)) ** 2

yb = ycb(i) + sqrt(abs(ysq))
go to 430

Convex up:
ysq = srb - (x - xcb(i)) ** 2

yb = ycb(i) - sqrt(abs(ysq))
go to 430

Straight line:
yb = slopb * x + rb(i)

go to 430

Special case:
yb = (x - rb(i)) / slopb

yt = yt + r2to14
yb = yb + r2to14
lyt = int((yt + Jsp2) / jsp) * Jsp - Jsp
iyb = lnt((yb + Jsp2) / Jsp) * jsp
nw = (iyt - iyb) / jsp + 1
If (idbg .eq. ion) write(7, 9874) yb, yt, iyb, iyt, ysq, nw
If (nw .le. 0) go to 2

c====> Move CRT beam to following absolute position
call output(jnoop, ipos)
call output(jsavex, Iyb)
call output(jsavey, lx + i2to14)

if (idbg .eq. ion) write(7,1900)ipos, Iyb, ix + l2to14

if ((kind .It. 1) .or. (kind .gt. 2)) then
wrlte(6, 9920) kind

660

870

880

890

430

«8 o8 «8 o8 «8

98

call exit
else

go to (440, 460), kind
endif

c Shade Sphere:
440 call shdsph(nw, lyb, x)

go to 2

c Shade Cylinder:
460 call shdcyl(iyb, iyt, x)

2 continue

return

c====> Output formats

391 format(2h x, 3i6)
941 format(2h t, 6I6)
1900 formate 1 trapez #1 ', 3110)
9870 format(' n = ', I3 /

& ' kt = ', ¡3 /
& ' kb = ', I3 /
& • xl = ', 110 /
& ' x r s ' , n o /
8. 'x c t= ',110 /
& 'yet = ', ¡10 /
& 1 rt = ', 110 /
& 'xeb s ' ,110 /
& 'ycb =', ¡10 /
& ' rb = MO)
9874 format ('yb = ', 1 pel 0.4 /

■yt = \ 1 pel 0.4 /
'iyb = ', i10 /
■iyt =',110 /
■ysq = 1 pel 0.4 /
■nw = ', 14)

9 8 7 5 format(2(1 pel 4.4, 1 x), 6i10)
9900 format('trapez: It = ', I5,1 out of range for computed go to')
9910 format('trapez: lb = ', I5, 1 out of range for computed go to1)
9920 formaté 'trapez: kind = ', 15, 1 out of range for computed go to')

end

FC_interface.c

^include "/u/phbreslin/sim/manif.h "

/* Global Declarations for Ikonas Simulator Routines

These force storage allocation, and, where applicable,
initialization.

7

int frame_buffer;
char disc_fb;
char *fb_path;
Int current_scanline;
char scanline_modified;
long Nscan_line;
long WriteMask = OxFFFFFFFFL;

100

/* Interface Routines Between FORTRAN 77 & C Language
Ikonas Simulator I/O Software.

Calls : init_fb in /u/phbreslin/sim/fb_io.c

Finifb_ (create_new_f ile, dev_type)
/* This routine initializes global variables required to open

the appropriate frame buffer output pathname.

Input :
create_new_file
dev_lype : 0

1
V

0
> output on Ikonas
> output on file 'frame_buffer'

long *create_new_file,
*dev_type; \

extern long *get_storage ();
int kind;

scan_line = get_storage(RESOLUTION);
kind = (int) *dev_type;
switch (kind) {

case 0 : /* Actual Ikonas */

fb_path = "/dev/ike";
disc_fb = FALSE;
break;

case 1 : /" Simulated Ikonas*/

fb_path = "frame_buffer";
d isoib = TRUE;
break;

default:

printf("Invalid argument = % 6 to Finlfb\n", kind);
break;

u
lnit_fb ((int) "create_new_file);

Fputpx— (x, y, pixeLvalue)

/* This routine stores information in the specified pixel of the
current frame buffer pathname.

input :
x, y : destination pixel address; in range [0, 511]
pixeLvalue : 24-bit contents to be stored.

Format :
OBGR where B = blue

G = green
R = red

Calls : put_pixel in /u/phbreslin/s!m/fbJo.c

The Ikonas routine put_plxe! is a function.
However, Its returned value is ignored, since it is the rightmost 24
bits of pixeLvalue.

long "x,
*y.
"pixeLvalue; \
long rtn_val;
extern long put_pixel ();

rtn_val = put_pixel((int) *x, (int) *y, "pixeLvalue);

Fclofb_ () |

/* This routine closes the current Ikonas output pathname.
V

close(frame_buffer);

static long * get_storage(nwords)

/ * This routine is used to allocate 1 scanline of storage,
permitting output buffering to the Ikonas.
Nothing is actually transmitted to the device (or file)
until the scanline currently being accessed changes.

V

int nwords;
i

long ’"memory;

lf(¡(memory = (long I*)calloc(nwords, sizeof(long))))
\

put_string("\n** Out of memory **\n");
exit();

l
return(memory);

¡kslm_lo/fb_io.c

^include "externals.h"
^include "manif.h"

long
get_pixel(x, y)

int X;
Int y;

í
long high, low;

geLscanline(y);
high - scan_Une[x] « 16;
low = (scan_line[x] » 16) & OxFFFFL;
retum((high | low) & BITS_PER_PIXEL);

long
put_pixel(x, y, value)
int x;
int y;
long value;

{
long data, olcLdata;

get_scanline(y);
olcLdata = geLplxel(x, y);
scanline_modlfied - 1 ;
data = value & BITS_PER_PIXEL;
data = (olcLdata & ~WrlteMask) | (data & WriteMask);
scan_line[x] = (data « 16) | ((data » 16) & OxFFFFL);
retum(data);

J

105

init_fb(old_file)

int olcLflle;

char c;
register Int i;

prlntf("fb: %s\n", fb_path);
if(disc_fb && iolcLfile)

lf((frame_buffer = creat(fb_path, 0x187)) == -1)
l

put_string("Could not create frame buffer file.\n");
exlt(1);

j
/*

creat opens for write only. We want read/write.
7

close(framebuffer);
framebuffer = open(fb_path, 2);
lseek(framebuffer, ONE_MEG_BYTES, 0);
c = 0;
wrlteC framebuffer, 8>c, 1);

for(i=0; i < RESOLUTION; ++I)
8can_line[i] = OL;

current-scanline = 0;
J

else
lf((framebuffer = open(fb_path, 2)) == -1)

put_string("Could not open frame buffer!\n");
if(disc_fb)

i
put_string("Attempting to create...\n");
lnit_fb(0);

else
ex1t(1);

i
else

current_scanllne = -1;
scanlineunodified = 0;
get_scanline(0);

106

get_scanline(y)

register y;
I

register nbytes;

lf(current_scan1ine == y) return;
if(scanline_modified)

put_scanline();
lseek(frame_buffer, y * (long)(RESOLUTION * slzeof(long)), 0);
nbytes = read(framelbuffer, scanJJne, (RESOLUTION * slzeof(long)));
lf(nbytes != (RESOLUTION * sizeof(long)))

printf("framelbuffer read failed(%d)\n", nbytes);
current_scanllne = y;

put_scanline()
i

lseek(frame_buffer, current_scanline * (long)(RESOLUTION * sizeof(long)), 0);
write(framej>uffer, scanJine, RESOLUTION * sizeof(long));
scanlineLjnodified = 0;

\

