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Abstract

We present an unsupervised method for registering range scans of deforming, articulated shapes. The key idea is to
model the motion of the underlying object using a reduced deformable model. We use a linear skinning model for
its simplicity and represent the weight functions on a regular grid localized to the surface geometry. This decouples
the deformation model from the surface representation and allows us to deal with the severe occlusion and missing
data that is inherent in range scan data. We formulate the registration problem using an objective function that
enforces close alignment of the 3D data and includes an intuitive notion of joints. This leads to an optimization
problem that we solve using an efficient EM-type algorithm. With our algorithm we obtain smooth deformations
that accurately register pairs of range scans with significant motion and occlusion. The main advantages of our
approach are that it does not require user specified markers, a template, nor manual segmentation of the surface
geometry into rigid parts.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—Geometric algorithms

1. Introduction

Acquiring surface models from the real world is an impor-
tant task in the area of computer graphics. To create a com-
plete, high-quality surface model, a key processing step is to
accurately align range scans of the surface captured at mul-
tiple viewpoints. This problem has been solved for the case
where the object stays rigid, but the case where the object
moves or deforms remains a challenging open problem. In
this case, the motion of the object needs to be determined
between each pair of scans.

We observe that in the real world, the motion of many
objects can be described by a reduced deformable model
(RDM). This means that the motion can be specified by a
small number of deformation parameters. For example, ar-
ticulated objects consist of a few bones: parts of the object
that move together as a unit. By moving these bones, the rest
of the object moves accordingly. Therefore, the deformation
parameters of the RDM are only the position of the bones
and the assignment of parts of the object to each bone. Since
the parts are not required to be completely rigid, the model
is suitable to represent articulated characters.

In this paper, we propose a registration algorithm for
aligning range scans of articulated objects. We model the un-
derlying motion with an RDM to limit the number of defor-
mation parameters. We choose a linear blend skinning model
(LBS) due to its simplicity and because it allows for effi-
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Figure 1: Given a pair of range scans, our technique au-
tomatically finds the parameters of a linear blend skinning
(LBS) model to register the scans accurately.

cient optimization algorithms. Traditionally, the deformation
parameters of an LBS model are represented as the rigid
transformations of the bones and their influence weights,
also known as skinning weights. The weights indicate how
strongly the bone influences each vertex, or how much each
vertex “belongs” to a particular bone. In order to align range
scans using this model, we will solve for its deformation pa-
rameters. This means we need to solve for the movement of
each bone, i.e., its transformation, and the influence weights
at each point on the surface.

However, range scans usually have tens of thousands of
3D points, so the number of unknown weights that we must
determine quickly multiplies with the number of bones. In
addition, range scans are not in correspondence and typically
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suffer from missing data and disconnected surface geometry.
To address these problems, we propose a novel representa-
tion of the influence weights on a grid enclosing the range
scan surface. Not only does this reduce the number of vari-
ables, but it also provides a regular structure to define the
weight function that is decoupled from the incomplete sur-
face representation.

We formulate the registration problem using an objective
function that enforces close alignment of the 3D data and
includes an intuitive notion of joints. We develop a novel
algorithm to solve for the deformation parameters, i.e., the
bone transformations and their influence weights, in an al-
ternating fashion. To obtain a coherent deformation and to
prevent bones from becoming dislocated, we formulate joint
constraints directly on the grid. Also we propose an efficient
solution for solving the influence weights on the grid using
a combination of discrete labeling with continuous weight
optimization.

Using our algorithm, we demonstrate that we can effi-
ciently and accurately register pairs of range scans despite
significant motion and missing data. In contrast to other ap-
proaches, our method does not require user specified mark-
ers, a template, nor a manual segmentation of the surface
geometry. In summary, the contributions of our work are:

e A novel method to solve for a RDM using a grid-based
representation of the influence weights,

e A generalized deformation energy used to apply joint con-
straints when solving for the motion,

e A discrete labeling framework to efficiently solve for the
influence region of each transformation,

e And the ability to solve for continuous influence weights
on range scans.

2. Related Work

Non-Rigid Registration. The registration problem has a
long history in the graphics and vision literature. For reg-
istering rigid surfaces, the classic iterative closest points
(ICP) algorithm [CM91, BM92] and its many extensions
have proven to be very effective. Recently, there has been
a renewed interest in the registration problem for non-rigid
surfaces, and many have extended the basic ICP frame-
work for this case. To examine key differences from our
work, we categorize the literature based on how each method
models the motion of the non-rigid object. Methods that
model the motion using thin-plate splines [CR03, BR07]
are able to solve for a globally smooth deformation that
aligns the surfaces, but are unable to effectively express
large or piece-wise rigid deformations. Many techniques
model the motion of each individual point using an affine
or rigid transformation, and then solve the registration using
temporal coherence [HTBO3, ARVO07], user-placed mark-
ers [ACP03, PMG™05], or a template [ASP*04]. Some re-
cent methods model the deforming surface in 4D space-time
[MFO*07, WIH*07, SWGO08, SAL*08], effectively tracking
the motion of each point over time.

The key difference in our work is that we do not model the
individual motion of each point, but instead we explicitly
solve for skinning weights that determine groups of points
moving together. This is similar to the recent work by Huang
et al. [HAWGO8], which optimizes the deformation by clus-
tering the motion of the surface into rigid parts, and the
work by Chang and Zwicker [CZ08], which determines a
coherent assignment of transformations to the surface. How-
ever, neither approach solves for the skinning weights. In-
stead, Huang et al. solve for deformed sample positions and
interpolate the rest of the shape using prescribed influence
weights [SSPO7]. The transformation assignment by Chang
and Zwicker can be thought of as binary weights, but this
leads to unnatural deformations. This problem is alleviated
by optimizing continuous skinning weights in our method.

Li et al. [LSPO8] also use a reduced set of transforma-
tions to model the deformation. However, this work pre-
scribes weights on the surface in the form of a deformation
graph [SSP07], and the weights are not allowed to change
at all. Our grid-based approach allows us to optimize for the
weights dynamically based on the deformation expressed by
the examples. Sharp deformations (e.g. a ball joint connect-
ing two rigid parts) can be expressed automatically using our
system, whereas the graph-based approach requires that the
graph nodes to be placed carefully in advance.

Finally, the work by Pekelny and Gotsman [PGO08] solves
the problem using a manually specified segmentation to in-
dicate each rigid part of the scanned object, but our approach
does not require such user intervention.

Skinning from Examples. Since we attempt to directly
model a RDM, our work is closely related to techniques that
model surface deformation from motion parameters. Given a
mesh animation with associated skeleton parameters, many
algorithms improve on the basic LBS model to accurately
represent complex surface deformation [LCF00, SCFRCO1,
KJP02, WP02,MGO03, WPPO7]. Also, it is possible to extract
a model using only a mesh animation [AKP*04,JT05,SYO07,
dATTSO08]. Our work differs from these techniques because
the input to our algorithm is only range scan data with no
given correspondence or motion information.

3. Problem Formulation

Deformation Model. We propose to align depth scans of
a moving object by modeling the motion with a reduced
deformable model (RDM). Among the many RDMs avail-
able today, we choose LBS due to its simplicity and ease
of optimization. In addition, we adapt the “abstract” notion
of skeletal structure, where each “bone” of the skeleton is
described implicitly by the weight function associated with
each bone transformation [JTO05]. In this case, a deformation
is described by a function D(x) : R — R? representing the
deformation of space as a weighted sum of rigid transforma-
tions

D(x) = ZWJ(X)TJ(X) = ij(x) (Ri(x)+t;). (D
J j
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Here, T; € SE(3) is a rigid transformation (rotation R; and
translation t ), and we denote applying 7} to x as Tj(x). Also,
w;j(x) is a spatially varying weight function that defines the
continuous region of influence for the bone j. We also as-
sume that the weights are non-negative and normalized:

ij(x) =1, where w;(x) >0 Vj Vx € R3.
J

Grid Based Representation. Because our input data con-
sists of incomplete range scans without correspondence in-
formation, it is not possible to define the weight functions
directly on the surfaces. Instead, we propose representing
the weight functions on a regular grid enclosing the scanned
geometry. Let us denote a regular grid by specifying values
on a set of grid points

G = {(pe,ve) YLy,

where c is the index of the grid point, pc is the position of
grid point ¢, v¢ is the vector of weights at ¢, and m is the
number of grid points. Alternatively, we can think of the grid
as a collection of grid cells, denoted in capital letters C € G,
where each grid cell contains eight grid points, and adjacent
grid cells share four grid points. For the 2D case, this situa-
tion is illustrated in Figure 2.

To compute the value of the weight function w;(x) on
the surface geometry, we find the grid cell C that contains
x and perform trilinear interpolation of the values v, defined
at the cell’s grid points ¢ € C. This allows us to specify the
weight function everywhere within the grid, and leads to a
compact representation of the vertex weight function that is
well-defined even in the presence of missing data. In addi-
tion, we adapt the grid to the scanned geometry. This is ac-
complished by using only those grid cells that contain points
from the range scan. This reduces the numbers of variables
needed to solve, and localizes the deformation to the surface
geometry. We can also control the smoothness of the weight
function by adjusting the resolution of the grid.

Registration. Given this underlying model of the motion,
our goal is to find the deformation parameters that best align
the input range scans. The parameters of our model are the
set of transformations 7 = {7;} and the weight functions
W = {w;(x)}. We formulate an objective function E(7,V)
that describes the quality of a registration as a function of
these unknown parameters:

E(T7 W) = OCEdiSt(Tv W) + BEjOint(Tv W)
+ tEsmooth (V) +V Enorm (WV). 2)

The first term Egj measures the accuracy of the alignment
by evaluating the distance between the registered surfaces, as
discussed in the beginning of Section 4.1. The second term
Ejoint enforces a joint constraint that encourages transforma-
tions to act intuitively at joints. We discuss this term in more
detail in Section 4.1. The final two terms Egpootn and Enorm
are regularization constraints on the weight functions, which
we discuss in Section 4.2.
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Figure 2: We represent the motion of a range scan using
LBS, which consists of a fixed number of bone transforma-
tions and their associated influence weights. We decouple
the weights from the incomplete surface representation by
defining them on a grid enclosing the range scan data.

Algorithm 1 Registration Overview

1: Generate grid & initial segmentation (Section 4.3)

2: Generate initial correspondences using spin image fea-
tures and RANSAC (Section 4.3)

: repeat

Solve for the transformations 7 (Equation 5)

Update correspondences

Solve for discrete weights WV (Equation 11)

Update correspondences

: until Stopping criteria are met

: Solve for continuous weights VW (Equation 8)

D AN

4. Optimization Algorithm

We find the LBS parameters by minimizing the objective
function:

argmin E(7, V). 3)
VIR

We solve this problem in an iterative fashion, where we up-
date the model parameters 7 and YV until convergence. At
each iteration, we perform an alternating optimization simi-
lar to the EM algorithm [DLR77] where we

1. (T-step) fix the current weights W to be constant and
solve for the rigid transformations 7, then

2. (W-step) using the rigid transformations 7 from the T-
step, solve for the weight functions W on the grid.

The entire optimization procedure is illustrated in Figure 3
and Algorithm 1. In the following sections, we discuss the
T-step and the W-step in further detail.
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Figure 3: Overview of our optimization algorithm. The main optimization loop alternates between solving for the transforma-
tions (T-step), solving for the weights (W-step), and updating correspondences. We obtain the final registration result after a

weight refinement step that smooths unnatural deformations.

4.1. Solving the T-step

The goal of the T-step is to obtain the rigid transformations
7 that minimize the objective. In this step the weights WV are
fixed, therefore the optimization includes only the distance
term Egi and the joint constraint Ejoiy, term.

Distance Term. The distance term Egji measures how close
the deformation aligns the two shapes together. This term
uses point correspondences between the source and target
shapes. First, we generate a uniform sampling of points on
the source shape. We then update the corresponding points
on the target each time the transformations or weights are up-
dated in the optimization. Initially, the corresponding points
are found using feature descriptors (see Section 4.3). Dur-
ing the optimization, these points are updated using a closest
point strategy with a modified distance measure. This mea-
sure computes a weighted average of two components: the
distance between the points, and the distance between the
normals [Joh97]. Given these correspondences, the total cor-
respondence error is measured using the point-to-plane dis-
tance metric. To make this term more robust to outliers and
missing geometry, we do not include a correspondence when
the target point lies on a boundary, the distance between the
points exceeds a threshold, or the angle between the normals
exceeds a threshold [PGOS8]. The values of these thresholds
are discussed further in Section 5.

Joint Constraints. A joint is a region that is influenced by
more than one bone, and we naturally expect that the bones
always meet at these joints. Therefore, to solve for natural
bone transformations, we employ the joint constraint in our
optimization to keep the shape intact and prevent bones from
sliding away from each other (Figure 4).

Specifically, this constraint enforces that the joint region
is transformed to the same location by all bones that influ-
ence it. In order to determine which points in space are part
of a joint, we use the product of the weight functions. For
example, the joint region for a pair of bones 7; and 7 is
given by the points x € R> where w;(x)w j(x) > 0. For ev-
ery such point, we would like to enforce that T;(x) = T;(x).
Thus, we measure the total misalignment for each potential

joint between bone i and j as:

B = Y5 [ w700 Ty ) Pax. )
ij

where Tjj = ([yers wi(X)w;(x)dx) ~!is a normalization
constant. This term is similar to the deformation energies and
regularization terms proposed elsewhere [BPWGO07,SSP07],
which simply differ in the choice of weight functions.
While other techniques prescribe the weight functions (e.g.
[LSPOS]), our formulation allows joint constraints for arbi-
trary weight functions. This is especially useful since we al-
low the weight function to change each time the weights are
optimized in the W-step.

To compute the joint constraint term, we pull the unknown
elements of the transformations out of the integral, since they
are constants with respect to x. We then analytically evaluate
the integrals of the weight functions in each cell in closed
form, and these form coefficients of a quadratic function of
the unknowns 7;. Also, in our implementation, we specify
the joint constraint separately for each cell by integrating
only within the cell.

Optimization. Our final goal in the T-step is to minimize
the objective consisting of the distance and the joint terms,

arg?in O‘Edist(,2-7 W) + BEjOint(T7 W)a (5)

where o and B are coefficients to weight each term. Since
we require the transformations 7 to be rigid, this becomes
a non-linear optimization problem. Similar to Botsch et
al. [BPWGO7], we solve this problem iteratively using the
Gauss-Newton method, linearizing both the residuals and the
rotation matrices.

4.2. Solving the W-step

In the W-step, we keep the transformations 7 fixed and solve
for the weight functions W. Since the weight function is de-
fined on a regular grid and interpolated in between the grid
points, we just need to solve for the weight values at each
grid point. To provide regularization, the W-step includes the
smoothness term Egyootn and the normalization term Enorm.
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Figure 4: The joint constraint helps to overcome unde-
sired local minima in the optimization by preserving the joint
location between neighboring transformations. The initial
alignment (a) with labeling (c) does not register correctly
when the joint constraint is removed (b). By adding the joint
constraint, however, we converge to the correct result (d).

However, we leave out the joint constraint term Ejoip, for
computational efficiency. In theory, this means that the over-
all error could increase after each W-step iteration, but we
have not experienced any problems in practice.

The smoothness term penalizes variation between the
weights of neighboring grid points. It is defined as

Egmooth (W) = Z
(c,d)EEG

[ve —vall?, (6)

where Eg is the set of all edges between neighboring grid
points ¢ and d. The normalization term encodes our prefer-
ence that the weights sum to 1 at each grid point

2
Enorm(W) = Z (1 - Z‘Q‘j) s @)
J

c

where v,; is the jth component of v¢. Thus, in the W-step our
goal is to optimize

argmin - 0 Egis((7, W)+t Esmooth (W) +V Enorm (W)
w

subjectto v.; >0 Vj, Vvc€G. 8)

We have observed that optimizing this objective directly of-
ten converges to a local minimum that does not correspond to
an intuitive solution. With continuous weights, the system is
underconstrained because even a single transformation can
be expressed as a weighted combination of one, two, three,
or more transformations. Thus, instead of obtaining weight
functions that are localized to each rigid part, the weights
tend to be very smooth and influence large parts of the shape.
At the same time, the transformations 7 are overfitted in the
successive T-steps.
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Figure 5: We solve for the influence weights by formulating
it as a labeling problem on the grid cells.

Therefore, we use a two step procedure that starts out with
a more aggressive regularization. Since articulated models
are composed of nearly rigid parts, we expect that the weight
function is mostly O or 1, except at joints where nearby trans-
formations blend together. So instead of solving for a vector
of continuous influence weights at each point, we first solve
a discrete labeling problem. We find a single label at each
cell that indicates which bone the cell belongs to. This setup
is illustrated in Figure 5. Later in a weight refinement step,
we adjust the weights using a continuous optimization step.

Labeling. In the labeling step we assign a label (a bone in-
dex) to each cell. We assign labels to each cell as opposed
to each grid point. The reason for this is that in the subse-
quent optimization we will evaluate a correspondence error
for each label. This is straightforward if each label deter-
mines a transformation of a cell.

We replace the continuous smoothness term with a dis-
crete version

Y Ve s), ()

(C,D)EAG

where fc is the bone index (or label) assigned to cell C, and
Ag is the set of adjacent grid cell pairs C, D € G. The discrete
smoothness term assigns a constant penalty when neighbor-
ing cells have different labels:

V(fe,fo) = {0 if fe = Jp (10)

1 otherwise.

This term controls the degree to which the labels form con-
tiguous regions over the grid. In addition, it also satisfies
Enorm and the non-negativity constraint automatically. Thus,
the overall optimization objective becomes

argmin o Y W(C,fc) + u Y, V(fe.fp). (1D
feve CeG (C,D)EAG

Here, W(C, fc) is the discrete version of Egig, and it is es-
sentially the same as in the continuous case, measuring the
point-to-plane distance in each grid cell.

This labeling approach dramatically reduces the complex-
ity of the problem. We solve it efficiently using the graph
cuts algorithm. First, we construct an instance of graph cuts
where the grid cells C € G are the sites and adjacent cells
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(a) Before weight refinement (b) After weight refinement

Figure 6: In many cases, discrete labeling causes unnatural
deformations between neighboring transformations. With
the final weight refinement step, we solve for a smooth blend
between neighboring transformations at the joint.

(C,D) € Ag are neighbors. We then apply the a-expansion
algorithm [BVZ01, KZ04] to find the cell labeling that min-
imizes this objective. Once the optimal labeling is obtained,
we update the weights v.; at each grid point c in each cell C
by assigning a binary value

*'_{1 if j = fc

= 12
« 0 otherwise, 12

where f¢ is the label assigned to cell C.

Reusing Labels. If the smoothness weight is set too high,
or if some transformations are very similar, the smoothness
term will dominate the distance term. In these situations,
two separate parts may be labeled with the same bone in-
dex. This often results in unused labels that are not assigned
to any grid cell, with little chance that the label will be rein-
troduced. Therefore, we give a second chance for these un-
used labels by introducing them into regions with the highest
registration error. The optimization then proceeds to the T-
step, giving a chance to adapt the transformations before the
next W-step.

In our implementation, we first find the regions with the
highest registration error according to W(C, f¢), and split
each region randomly in half. The split is performed in the
same fashion as we initialize the weights (Section 4.3). We
continue this process until the registration error is below a
threshold (typically 0.1 times the vertex sampling distance)
or until there are no remaining unused labels.

Weight Refinement. The binary weight assignment accord-
ing to Equation 12 has the limitation that the surface may
deform unnaturally at joints, as illustrated in Figure 6. In or-
der to smooth these regions, we perform an optional weight
refinement step by solving for the continuous weights ac-
cording to the original optimization objective in Equation 8.
Since we would like the weights to be as similar as possible
to the discrete weights, we add an additional term to Equa-
tion 8 that pulls the weights to their discrete counterparts:

Egie = Y (vej = Vi)’ (13)
C

where ij is the binary weights defined using the discrete
labeling result. We solve the resulting non-negative least
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Figure 7: Some registration examples from the car, robot,
walk, and hand datasets. The red shape is the source, the
blue shape is the target, and the green shape is the source
deformed to match the target.

squares (NNLS) problem using the approach by Schaefer
and Yuksel [SYO7]. This technique solves the least squares
problem without the non-negativity constraint and repeat-
edly removes variables with the smallest negative values,
effectively forcing their value to zero, until it arrives at a
non-negative solution.

4.3. Initialization

To start our algorithm, we automatically initialize the weight
functions and find initial correspondences using feature de-
scriptors and RANSAC. The user specifies the total number
of bones used to estimate the motion of the range scans. This
parameter does not need to be exact, since the graph cuts op-
timization tends to combine regions and throw away extra
labels.

Initial Segmentation. To initialize the weight function, we
generate a random segmentation of the range scan, similar
to the k-means clustering algorithm [L1082]. First, we ran-
domly pick initial bone locations for each bone j on the
source shape. In this step, we ensure that these locations
are sufficiently spaced apart by using best-candidate sam-

(© 2008 The Author(s)
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Figure 8: Registration Error. The color-coded visualization
shows the distance to the closest point as a percentage of the
bounding box diagonal.

pling [Mit91]. Then, we initialize binary weight values v, at
each grid point. To do this, we find the bone j whose loca-
tion is closest to the grid point, and then we set the jth weight
component to be 1 and the rest to 0. Even though this seg-
mentation is often incorrect (e.g. Figure 4c), the subsequent
weight optimization is able to adjust the weights to express
the motion accurately.

Initial Correspondences Using RANSAC. When the input
scans are initially close together, we can use closest point
correspondences. To provide better correspondences when
the object has moved significantly, we use spin images as
a feature descriptor and use Johnson’s spin-image matching
engine to determine reliable correspondences [Joh97]. We
use these initial correspondences for only the first iteration
of the T-step and use closest point correspondences for the
rest of the optimization.

Since spin images are local descriptors, matching with
them alone gives rise to many incorrect correspondences due
to repeated shape features. To deal robustly with such out-
liers, we treat each labeled region independently and per-
form RANSAC [FB81] to estimate a rigid transformation
and remove spurious correspondences. This step proved to
be useful in our experiments: on average anywhere from
20% to 40% of correspondence candidates were removed as
outliers. In some cases, even 60%~70% were outliers, most
likely because the scan contained a large amount of sym-
metry or because regions in the initial segmentation over-
lapped multiple rigid parts. Occasionally this method con-
fused symmetric parts, because it still relies on the compar-
ison of local feature descriptors. However, it provided rea-
sonably accurate starting guesses in almost all of our exper-
iments.

5. Experimental Results

We tested our algorithm with five datasets: one synthetic
dataset of a walking figure generated by Pinocchio [BPO7],
two real datasets of a car and a robot [PG08], a dataset
of a moving hand [WLGO07], and a dataset of human body
scans [ACP02]. Each dataset consists of a sequence of depth
scans of a moving object. All tests were performed on a sin-
gle core of an Intel Core 2 Duo 2.66GHz with 2GB of RAM.

(© 2008 The Author(s)
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Figure 9: More difficult registration tests, each with a sig-
nificant amount of motion and occlusion.

Figure 7 shows some registered example pairs and the re-
sulting influence weight function on the grid. In the color-
coded visualization of the skinning weights, we can see that
our algorithm determines intuitive weights for each rigid
part. In addition, we were able to obtain an accurate reg-
istration with small registration error, visualized for some
examples in Figure 8.

Our algorithm also worked well with a severe amount of
occlusion in the examples. The car example shown in Figure
9 is completely missing the arm in one of the pairs. Also,
one of the robot pairs is completely missing the torso region,
and only a small part of the whole surface is observed in
the example of the walking figure. Nevertheless, we are able
to successfully align all three examples. We also tested our
algorithm using a few examples from the human body scan
dataset [ACPO02], shown in Figure 10. Our method produces
accurate registrations, and the quality is comparable to that
of previous work [HAWGOS8]. To test the robustness of our
method, we degraded the data by manually cutting holes into
the geometry, shown in the bottom of Figure 10. We were
able to obtain a successful registration even in this case.

We tested our implementation with pairs of adjacent
frames in the datasets. In order to evaluate the registration
results, we verified the registration of each pair visually.
For the car dataset, out of a total number of 89 registra-
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Figure 10: Registration examples from the human body
dataset. The bottom example, a modified version of the top
example, shows that our method is robust to missing data.

tion pairs, 85 examples were registered correctly with only
4 pairs exhibiting an objectionable misalignment. The algo-
rithm worked well with the more complex robot dataset as
well, with 67 out of 89 pairs registered correctly. In addition,
167 of the 189 pairs were registered correctly in the syn-
thetic walking figure dataset, and 31 out of 46 for the hand
dataset. Some results that were less successful are shown in
Figure 11. In these cases, the maximum correspondence dis-
tance was too low or high, causing local minima or wrong
part mappings (Figure 11la,c), the grid resolution was too
low or high, causing separate parts to be attached or sepa-
rated (Figure 11b), or there was too much missing geometry,
causing bad part mappings or misalignments (Figure 11d).
After retrying with different parameter settings, we were
able to reduce the misalignment rate to 0, 4, and 6 examples
for the car, robot, and walking figure dataset, respectively.
The remaining examples remained problematic because of
too much missing data or bad part mappings.

Creating Novel Poses. Since we solve for the skinning
weights, our technique is especially useful for creating novel
poses. Unlike previous work, we use the output of our al-
gorithm directly to perform both forward and inverse kine-
matics, either by specifying or solving for the bone transfor-
mations. In fact, by substituting the correspondences with
user-given constraints, we can use our T-step optimization
directly to perform inverse kinematics. We created an inter-
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Figure 11: Less successful registration examples, showing
errors due to local minima in (a), an undesired connection
between the left wing and left arm in (b), both legs mapping
to the left leg in (c), and insufficient data causing misalign-
ment in (d).

Novel Poses

Figure 12: Interactive posing using our system. The weights
(bottom left) were optimized by registering two scans (top
left). The user can interactively select and drag constraints
on the shape (shown as boxes) to generate a novel pose.

active application that allows the user to define and manipu-
late end effectors to create novel poses. Figure 12 shows that
interesting poses can be generated using our application.

Parameters. The number of bones, the number of corre-
spondences, the grid resolution, and the maximum corre-
spondence distance for each dataset is reported in Table 1.
The grid resolution is specified as the number of divisions
along the longest axis of the bounding box, and the maxi-
mum correspondence distance is specified as a multiple of
the range scan sample spacing. Using a coarse grid resolu-
tion covers larger holes between parts. However, if the grid
is too coarse, then it becomes harder to localize the weights
to smaller parts. Also, a coarse grid may cause undesired
parts to be connected, causing difficulties in the registration.
For the maximum correspondence distance, a larger distance
increases the running time for searching initial correspon-
dences, because a greater number of spin images must be
compared. This allows for larger movement, but also may
cause similar parts (e.g. arms, legs) to be mapped incor-
rectly. In addition to the maximum distance, we use a dy-
namic threshold for the maximum normal angle (decreasing
from 80 to 20 degrees) similar to [PGOS8].

For the weights of each error term, the weight of Egjs was
o = 1.0 for both the T-step and the W-step. For the joint
constraint term Ejoin, We decreased the weight from 1.0 to
0.05 in 5 iterations of the main optimization loop accord-

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.



W. Chang & M. Zwicker / Range Scan Registration Using Reduced Deformable Models

Car Robot Walk Hand
Bones 7 7 10 12
Corresp. 1200 1200 1000 1500
Vertices 5389 9377 4502 34342
Max Dist 20 40 20 30
Grid Res. 60 65 50 40
Grid Cells 1107 1295 1014 814
Grid Points 2918 3366 2553 1884
Setup 0.185s 0.234s 0.136s 0.078s
RANSAC 8.089s | 20.001s 5.517s N/A
Align 9.945s | 19.644s | 23.092s | 49.918s
Weight 6.135s | 10.713s | 10.497s 3.689s
Total Time | 24.355s | 50.591s | 39.242s | 53.684s

Table 1: Average performance statistics for our tests. Tim-
ings (in seconds) represent the total time spent in each stage.
ing to the function KNO003)/5 \yhere k is the iteration num-
ber starting from 0. This allows the registration to be refined
precisely during the latter part of the optimization. For the
weight smoothness term Egpoon, @ constant between 0.5 and
1.0 times the grid spacing size worked well. For Enorm we
used v = 1.0, and for Egjsc we chose a value between 0.1
and 0.5 depending on how close we wanted to be to the dis-
crete weights. Finally, for generating the spin images, we set
bin size equal to the grid spacing, the image size to 15, and
the maximum support angle to 90 degrees.

Performance. We report averaged statistics and timings of
our method in Table 1 using our implementation. The setup
time is spent creating and initializing the data structures, the
RANSAC step generates the initial correspondences using
spin image matching, the align time is the total time the algo-
rithm processes the main loop, and the weight time is spent
performing the final NNLS weight refinement step.

6. Discussion and Future Work

Our algorithm is currently limited to registering pairs of
shapes. A promising area for future work is to extend it to
the multiple scan case. This would allow us to reconstruct
a complete 3D articulated model. Preliminary experiments
show that accumulating the geometry successively in each
frame causes registration error to also accumulate and throw
off the registration. Formulating a simultaneous optimiza-
tion could avoid this problem.

We are currently using the LBS deformation model for
its simplicity. In case LBS exhibits artifacts, such as the
well known “candy wrapping” effect, our method could
be adapted to optimize other RDMs, for example dual-
quaternion blending [KCZO07]. However, this would likely
make the optimization procedure more computationally ex-
pensive.

Our method requires sufficient separation between differ-
ent parts of the shape in the source scan. If two parts are
joined together, this causes the grid cells to be connected be-
tween these parts, and the joint constraint will constrain the
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parts to move together. In the future, we plan to address these
topological issues by using a spatially varying smoothness
weight that allows the deformation to disregard problematic
joints. Also it would be interesting to use a multiresolution
hierarchical grid to represent the skinning weights.

We believe that improving the initial correspondences will
make the algorithm more robust to problematic cases. Us-
ing a more discriminative feature detection, or using spec-
tral clustering (as proposed by Huang et al. [HAWGOS])
could help our algorithm to avoid local minima and wrong
part mappings in the registration. Our discrete labeling step
also resembles clustering algorithms [CSAD04, HAWGO08],
which could be used as an alternative to the graph cut opti-
mization.

7. Conclusions

We have presented a method to register deforming range
scans by modeling the motion with a reduced deformable
model (RDM). We have chosen linear blend skinning for its
simplicity, but more sophisticated approaches could be used
if necessary. A key idea of our approach is to represent the
weight functions on a 3D grid surrounding the scanned ge-
ometry. This allows us to apply linear blend skinning (LBS)
to range scans with occlusions and missing data. We solve
for the parameters of the deformation model using an EM-
type algorithm.

We have demonstrated that our approach is able to register
articulated shapes robustly and with significant occlusions
and missing data. The advantages of our technique are that
it does not require any manual segmentation, user specified
markers, nor a surface template. We believe that our work
is a significant step forward in automatically reconstructing
fully rigged 3D articulated models from range scans.
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