
UNIVERSITY OF CALIFORNIA, SAN DIEGO

RECONSTRUCTION OF DYNAMIC

ARTICULATED 3D MODELS FROM RANGE SCANS

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

William Young Chang

Committee in charge:

Professor Matthias Zwicker, Chair
Professor Serge J. Belongie
Professor Samuel R. Buss
Professor Henrik Wann Jensen
Professor Falko Kuester

2009

Copyright

William Young Chang, 2009

All rights reserved.

The dissertation of William Young Chang is ap-

proved, and it is acceptable in quality and form for

publication on microfilm and electronically:

Chair

University of California, San Diego

2009

iii

DEDICATION

To Mom and Dad

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . x

List of Algorithms . xi

Acknowledgments . xii

Vita and Publications . xv

Abstract of the Dissertation . xvi

1 Introduction . 1
1.1 Summary of Original Contributions . 4
1.2 Organization of the Dissertation . 5

2 Related Work . 7
2.1 Rigid Registration . 7
2.2 Non-Rigid Registration . 10
2.3 Silhouette Based Shape Capture . 16
2.4 Modeling Motion from Mesh Animations . 17
2.5 Non-Rigid Structure From Motion . 19

3 Technical Background . 20
3.1 Registration Using the ICP Algorithm . 21

3.1.1 Basic Algorithm . 22
3.1.2 Improving the ICP algorithm . 25
3.1.3 Gauss-Newton Algorithm . 31
3.1.4 Optimizing for Rigid Transformations using Gauss-Newton 33

3.2 Shape Descriptors for Local Surface Matching . 39
3.2.1 Estimating Normals and Curvatures . 40
3.2.2 Spin Images . 43

3.3 Clustering Using the Mean-Shift Algorithm . 47
3.4 Discrete Optimization With Graph Cuts . 50

3.4.1 Alpha-Beta-Swap and Alpha-Expansion Algorithms 51
3.4.2 Further Reading . 55

3.5 Deformation Models . 55
3.5.1 Linear Blend Skinning (LBS) and Dual Quaternion Linear Blending (DLB) 56
3.5.2 Other Improved Models . 57

v

4 Automatic Registration for Articulated Shapes . 59
4.1 Contributions . 59
4.2 Registration Algorithm . 60

4.2.1 Motion Sampling . 61
4.2.2 Graph Cuts Optimization . 66

4.3 Results . 72
4.3.1 Registration . 72
4.3.2 Registration Error Analysis . 75
4.3.3 Limitations . 77
4.3.4 Parameters & Performance . 79

4.4 Improving Performance by Subsampling . 80
4.5 Discussion and Future Work . 82
4.6 Conclusion . 84
4.7 Acknowledgments . 84

5 Range Scan Registration Using Reduced Deformable Models 86
5.1 Contributions . 86
5.2 Problem Formulation . 88
5.3 Optimization Algorithm . 91

5.3.1 Solving the T-step . 91
5.3.2 Solving the W-step . 94
5.3.3 Initialization . 99

5.4 Experimental Results . 101
5.4.1 Registration . 101
5.4.2 Comparison with Huang et al. [2008] . 103
5.4.3 Creating Novel Poses . 107
5.4.4 Parameters and Performance . 107

5.5 Discussion and Future Work . 109
5.6 Conclusions . 110
5.7 Acknowledgments . 110

6 Global Registration for Articulated Model Reconstruction 112
6.1 Contributions . 114
6.2 Algorithm Overview . 114
6.3 Global Registration . 117

6.3.1 Organization of the Transformations . 117
6.3.2 Sample Set and All-Samples Graph (ASG) 118
6.3.3 Propagating the initial registration . 123
6.3.4 Global Registration . 124
6.3.5 Optimization . 131
6.3.6 Treating Occlusion . 135
6.3.7 Reappearing Parts . 136

6.4 Post-Processing . 137
6.5 Experimental Results . 138

6.5.1 Reconstruction . 138
6.5.2 Parameters . 146

vi

6.5.3 Performance . 146
6.5.4 Inverse-Kinematics Application . 147
6.5.5 Sequential Registration vs. Simultaneous Registration 147
6.5.6 Grid-Based Weights vs. Graph-Based Weights 149
6.5.7 Comparison with Wand et al. [2009] . 150

6.6 Summary and Conclusion . 151
6.7 Acknowledgments . 153

7 Conclusions and Future Work . 154
7.1 Contributions . 154
7.2 Future Research Directions . 155

Bibliography . 157

vii

LIST OF FIGURES

Figure 1.1: Range scanning technology measures the three-dimensional geometric
content of a scene. 2

Figure 3.1: Rejecting closest points mapping to the boundary. 26
Figure 3.2: Point-to-point vs. point-to-plane ICP. 28
Figure 3.3: Examples of accumulation error using a sequential alignment strategy. . . 29
Figure 3.4: Organization of the transformations for simultaneous registration. 30
Figure 3.5: Optimizing in SE(3), the space of rigid transformations. 34
Figure 3.6: Estimating per-vertex normals on a triangle mesh. 40
Figure 3.7: Illustrating the concept of the normal curvature of a surface. 41
Figure 3.8: Generating spin images. 44
Figure 3.9: A spin image is a histogram, where the bins are concentric rings stacked

along the normal direction. 45
Figure 3.10: Example of clustering using the mean-shift algorithm. 49
Figure 3.11: Constructed graphs and edge weights for the swap (left) and expansion

(right) algorithms. 53

Figure 4.1: Motion sampling overview. 61
Figure 4.2: Visualizing the set of estimated transformations T from the source (a,d) to

the target (b,e). 65
Figure 4.3: Illustration of the cost function. 68
Figure 4.4: Comparing non-symmetric and symmetric graph cuts. 70
Figure 4.5: Examples used for testing our algorithm. Shown are the twelve poses in the

horse dataset (a) and the arm dataset (b). 72
Figure 4.6: Registration results for the synthetic horse dataset. 73
Figure 4.7: Registration with significant missing data. Even after manually removing

parts in both source and target, our method is able to align the meshes well. 74
Figure 4.8: Registration for an arm dataset pair. 74
Figure 4.9: Registration results for hand dataset examples. 75
Figure 4.10: Detailed error analysis of examples in each dataset. 76
Figure 4.11: Histogram of maximum error for all pairs in the horse and arm datasets. . . 77
Figure 4.12: Special cases for our algorithm. 78
Figure 4.13: The alignment of boxes with missing corners fails when the ICP verification

is not performed. 78
Figure 4.14: Comparison between the original and simplified transformation assign-

ment methods. 81
Figure 4.15: Typical errors in the registration. 83

Figure 5.1: Given a pair of range scans, our technique automatically finds the parame-
ters of a linear blend skinning (LBS) model to register the scans accurately. 87

Figure 5.2: We represent the motion of a range scan using LBS, which consists of a
fixed number of transformations and their associated influence weights. . 89

Figure 5.3: Overview of our optimization algorithm. 90
Figure 5.4: Overview of the distance and joint terms in the T-step optimization. 91

viii

Figure 5.5: The joint constraint helps to overcome undesired local minima in the
optimization by preserving the joint location between neighboring trans-
formations. 93

Figure 5.6: Solving for smooth weights leads to overfitting in the optimization. 96
Figure 5.7: We solve for the influence weights by formulating it as a labeling problem

on the grid cells. 97
Figure 5.8: Refining the discrete weights with smooth weight values. 98
Figure 5.9: Initializing correspondences and weights. 99
Figure 5.10: Some registration examples from the car, robot, walk, and hand datasets. 102
Figure 5.11: Registration Error. 103
Figure 5.12: More difficult registration tests, each with a significant amount of motion

and occlusion. 104
Figure 5.13: Registration examples from the human body dataset. 105
Figure 5.14: Less successful registration examples. 106
Figure 5.15: Comparison with Huang et al. [2008], using an arm example with holes and

a pair of robot frames. 106
Figure 5.16: Interactive posing using our system. 107

Figure 6.1: Selected range scans from the 90 frame robot sequence. 113
Figure 6.2: Organizing the transformations for simultaneous registration. 117
Figure 6.3: We use sample points on all input frames to measure the global alignment.

For each frame, we only keep the samples that are from new geometry that
has not been observed in any previous frames. 118

Figure 6.4: Illustrating how we filter out overlapping points. 121
Figure 6.5: To measure alignment, we compute distances between sample points x

and target points y(g)
j on the reference frame Fref. 126

Figure 6.6: Estimating and constraining joints in our optimization. 128
Figure 6.7: Reconstruction results for the robot dataset. 139
Figure 6.8: Reconstruction results for the car dataset. 140
Figure 6.9: Reconstruction results for the first Pink Panther dataset. 141
Figure 6.10: Reconstruction results for the second Pink Panther dataset. 142
Figure 6.11: Reconstruction results for the synthetic Walking Man dataset taken using a

single virtual camera. 144
Figure 6.12: Reconstruction results for the synthetic Walking Man dataset taken using

two virtual cameras. 145
Figure 6.13: Reposing the reconstructed robot. 148
Figure 6.14: Comparing sequential and simultaneous registration. 149
Figure 6.15: Comparing grid-based and graph-based weight representations. 150
Figure 6.16: Articulated registration on the hand-2 and popcorn tin datasets used by Wand

et al. [2009]. 150
Figure 6.17: Registration for a hand sequence, where the hand starts from an open pose

and gradually closes to a grasping pose. 152

ix

LIST OF TABLES

Table 4.1: A catalog of data cost functions. 69
Table 4.2: Averaged performance and timing statistics for a typical subset of our exper-

iments. 80

Table 5.1: Average performance statistics for our tests. 109

Table 6.1: Performance statistics for our experiments. The timings are expressed in
seconds, and the bottom row reports the average execution time per frame
in each sequence. 147

x

LIST OF ALGORITHMS

Algorithm 3.1: ICP(P,U,τ) . 23
Algorithm 3.2: LEAST-SQUARES REGISTRATION(x,y) . 25
Algorithm 3.3: α-β-SWAP(L,P,N,E(f), f) . 52
Algorithm 5.1: REGISTRATION OVERVIEW . 90
Algorithm 6.1: ARTICULATED GLOBAL REGISTRATION(F0, . . . ,Fn) 115
Algorithm 6.2: RESAMPLE ASG(S,W,T,F0, . . . ,Fnew) . 120
Algorithm 6.3: NONOVERLAP(V ,U f ,τsample) . 120
Algorithm 6.4: EXTRAPLABELS(Vi for each part i ,U f ,τsample) 122
Algorithm 6.5: CONSTRUCT ASG(S,W,T,τlen,τstretch) . 123
Algorithm 6.6: OPTIMIZE T,W (S,E ,T,W,F0, . . . ,Fnew) 132

xi

ACKNOWLEDGMENTS

“Trust in the LORD with all your heart and lean not on your own understanding; in

all your ways acknowledge him, and he will make your paths straight.” (Proverbs 3:5-6 NIV)

First and foremost, I thank the Lord for guiding me through the Ph.D. program at

UCSD. Through the easy and tough, the good and the bad, He has always been with me and

has strengthened me by my side. In addition, I owe much gratitude and thanks for the many,

many people who provided support and help during the formative years of my graduate study

here at UCSD.

I would like to thank my advisor, Matthias Zwicker, for his support and guidance

during my study. Early into the program, when I was struggling to define a research topic,

Matthias helped me to get involved with a valuable collaborative research experience. During

my last year, he graciously held skype meetings every week and supported me to keep pursuing

my research topic. I also feel very fortunate to have visited Bern, Switzerland during the last

summer to finish my thesis research. This dissertation would certainly not have been possible

without his continued help and support over the past several years.

I thank the members of my committee, Serge Belongie, Sam Buss, Henrik Wann

Jensen, and Falko Kuester, for their advice and their support. I will always remember their

kindness and their willingness to help when I came knocking on the door for help.

The graphics and vision lab at UCSD was a stimulating and supportive environment.

The countless hours of discussions and support from many friends helped to de-stress the

grad school experience, especially during the hectic paper deadlines. During the beginning of

my study, I was fortunate to have met many senior students, Sameer Agarwal, Kristin Branson,

Piotr Dollár, Craig Donner, Satya Mallick, and Josh Wills, who paved the way and showed

how it’s done. I thank Neil Alldrin, Manmohan Chandraker, Wojciech Jarosz, Neel Joshi, and

Vincent Rabaud, who were excellent lab mates and were always willing to entertain a question

or two. I also thank Boris Babenko, Steve Branson, Krystle de Mesa, Toshiya Hachisuka, Arash

Keshmirian, Wan-Yen Lo, Iman Mostafavi, Marios Papas, and Iman Sadeghi for many engaging

discussions and helpful feedback. It was especially fun to have a graphics reading group

xii

meeting and discuss a new research paper each week.

In the CSE department, I was fortunate to have met many wonderful teachers, in-

cluding Geoff Voelker, Russell Impagliazzo, T.C. Hu, Dean Tullsen, and Sanjoy Dasgupta. David

Kriegman and Serge Belongie taught excellent classes and got me interested in computer

vision, and Henrik Jensen’s rendering algorithms class was a fun challenge and also a great

software development experience. I also had a wonderful experience as a teaching assistant,

and I will cherish the many fond memories interacting with students, debugging code, and

solving math problems.

Personally, I would like to thank Hyun-Min Kang, Buhm Han, Won-Gyu Ju, and

Seung-Nam Jung for their prayers, advice, friendship, and support during my study and stay at

UCSD. During my undergraduate years at Harvey Mudd College, my thesis advisor Michael

Orrison supported me with a valuable thesis experience that prepared me for writing this

dissertation. I also thank Ran Libeskind-Hadas and Weiqing Gu for giving me an opportunity

to perform research during those years. This experience gave me a feel of what research was

like early on, even before I started grad school.

Through conferences and meetings, I met many researchers in my field who provided

me support and encouragement. I would like to thank Niloy Mitra, Qi-Xing Huang, Hao Li,

Michael Wand, Martin Bokeloh, and Alexander Berner, for their friendship, support, encour-

agement, and especially experimental comparisons and feedback. Even people who I have

not met provided support by making their data and software available for other researchers. I

would like to thank Brett Allen, Ilya Baran, Philip Fong, Craig Gotsman, Yuri Pekelny, Oliver

Schall, Johnathan Starck, Bob Sumner, Thibaut Weise, and Li Zhang for providing much needed

datasets for experiments. I also thank Gilles Debunne (libQGLViewer), David M. Mount and

Sunil Arya (ANN library), Yuri Boykov, Olga Veksler, Vladimir Kolmogorov, and Ramin Zabih

(Graph Cuts), Sivan Toledo (TAUCS), Tomas Akenine-Möller (Fast Triangle-Box Intersection

Code), and Mutsuo Saito and Makoto Matsumoto (SFMT) for providing implementations of

their software.

It has been thirteen years, through three schools and two universities, since I first set

xiii

foot alone in the US. During the first several years, my aunt and uncle gave invaluable help by

hosting me and supporting my studies. Through it all, my parents provided continued prayers,

support, and guidance in academics and in life. Mom always encouraged me to stay on track,

and Dad always gave valuable nuggets of advice as he recounted the days of his own graduate

study. This thesis is dedicated to them.

Portions of this dissertation are based on papers which I have co-authored with

others. My contributions to each of these papers are listed below.

• Chapter 4 is based on material published in the article:

Will Chang and Matthias Zwicker, “Automatic Registration for Articulated Shapes,”

Computer Graphics Forum (Proceedings of SGP), Vol. 27, No. 5, July 2008.

I was the primary investigator and author of this paper.

• Chapter 5 is based on material published in the article:

Will Chang and Matthias Zwicker, “Range Scan Registration Using Reduced De-

formable Models,” Computer Graphics Forum (Proceedings of Eurographics), Vol.

28, No. 2, April 2009.

I was the primary investigator and author of this paper.

• Chapter 6 is based on material that is in preparation for submission:

Will Chang and Matthias Zwicker, “Global Registration of Dynamic Range Scans

for Articulated Model Reconstruction.”

I was the primary investigator and author of this paper.

xiv

VITA

2004 Bachelor of Science, Harvey Mudd College

2005–2009 Teaching & Research Assistant, Department of Computer Sci-
ence and Engineering, University of California, San Diego

2006 Master of Science, University of California, San Diego

2009 Visiting Research Assistant, Institute of Computer Science and
Applied Mathematics, University of Bern, Switzerland

2009 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

Will Chang and Matthias Zwicker. “Range Scan Registration Using Reduced Deformable
Models.” Computer Graphics Forum (Proceedings of Eurographics), Vol. 28, No. 2, April 2009.

Will Chang and Matthias Zwicker. “Automatic Registration for Articulated Shapes.” Computer
Graphics Forum (Proceedings of SGP), Vol. 27, No. 5, July 2008.

Sylvain Paris, Will Chang, Oleg I. Kozhushnyan, Wojciech Jarosz, Wojciech Matusik, Matthias
Zwicker, and Frédo Durand. “Hair Photobooth: Geometric and Photometric Acquisition of
Real Hairstyles.” ACM Transactions on Graphics (Proceedings of SIGGRAPH), Vol. 27, No. 3,
2008.

E. Miller, R. Libeskind-Hadas, D. Barnard, W. Chang, K. Dresner, W. M. Turner, and J. R. Hartline.
“On the Complexity of Multicasting in WDM Networks with Tap-and-Continue and Multicast
Capable Switches.” IEEE Journal on Selected Areas in Communications (JSAC-OCN), Vol. 22,
No. 9, Pages 1601–1612, November 2004.

xv

ABSTRACT OF THE DISSERTATION

RECONSTRUCTION OF DYNAMIC

ARTICULATED 3D MODELS FROM RANGE SCANS

by

William Young Chang

Doctor of Philosophy in Computer Science

University of California San Diego, 2009

Professor Matthias Zwicker, Chair

Our vision is to enable efficient acquisition and synthesis of highly detailed 3D

surface models that are also easy to animate in a plausible and realistic way. The state-of-the-

art surface acquisition technology is range scanning, which can measure surface geometry

with a high degree of accuracy and speed. However, the output is only a partial view of the

surface that has much missing data, and there is no tracking of the surface motion in the case

of a moving subject. To reconstruct a complete model of the subject, we must align multiple

range scans taken from different times and viewpoints to fill in the missing data and track the

motion of the surface. At the same time, we would like to fit a reduced deformable model that

expresses the surface motion in terms of a few intuitive parameters.

In this dissertation, we develop algorithms to process and align multiple range scans

of a moving articulated subject. Our algorithms can automatically align multiple scans to

a common pose, thus reconstructing the full geometry of an articulated subject along with

a model of its motion. Our methods perform this alignment in a completely unsupervised

way: without markers, a template, or a user-defined segmentation of the surface. A key

contribution is the use of discrete optimization techniques to automatically estimate the

articulated structure of the surface based on its motion.

xvi

First, we describe a method to align a pair of 3D surfaces that is robust to large

motions and much missing data. This algorithm samples rigid transformations between the

surfaces and performs an alignment by optimizing an assignment of the transformations to

the surface. Its robustness to large motions makes it useful for initializing a registration.

Next, we present a technique to automatically fit an articulated surface motion

model to a pair of range scans. We efficiently solve for the transformations and weights of this

model by repeatedly estimating them in alternating fashion. The key benefit of this approach

is that the solved model parameters can be used to easily and intuitively edit the pose of the

scanned geometry.

Finally, we improve and combine these two approaches to automatically reconstruct

an articulated 3D model from multiple range scans. We reduce alignment error by simulta-

neously solving for the alignment of all input scans. We demonstrate that this method can

reconstruct a variety of poseable, articulated 3D models from partial surface data acquired by

a range scanner.

xvii

1
Introduction

IN computer graphics, digital representations of 3D curves and surfaces (i.e. 3D

models) are needed to generate virtual worlds and characters, which are then

used to create realistic images that look like actual photographs. In addition, realistic motions

and movement of these 3D models are needed to create natural animations and movies.

Traditionally, these 3D models and animations are produced manually by the hand of an

expert artist, with the help of highly specialized software tools. However, because of the great

difficulty of this task and the high cost in production, researchers have sought to automate this

task using two main approaches: physical simulation and capture.

Physical simulation can produce very accurate models and physical movement,

but it is generally computationally expensive and difficult to control by an artist or director.

In contrast, capture based methods provide a simpler approach that has been very popular

in recent years. A classic example of this is motion capture, where a set of highly reflective

markers are placed on a actor wearing a skin-tight suit. As the actor moves, the locations of the

markers are tracked by multiple cameras placed around the person. While motion capture can

acquire very natural stick-figure animations, it cannot capture fine surface movement such as

the details of the skin and clothes of the actor. Instead, these details are synthesized manually

or by physical simulation.

The vision of our work is to address this gap in the capturing of 3D models and

1

2

(a) (b)

Figure 1.1: Range scanning technology measures the three-dimensional geometric content of a scene.
(a) Range scanners capture high-resolution, per pixel depth that can be transformed into a detailed 3D
point cloud of the scene. (b) Examples of surfaces captured using range scanners. These surfaces only
offer a partial view of the object; notice that parts of the surface are missing. From Weise et al. [2007].

animations. The holy grail, so to speak, is to capture and generate highly detailed 3D surface

models that are easy to animate in a plausible and realistic way. By adjusting only a few easy-

to-understand parameters, an animator should be able to synthesize a realistic animation of a

3D model, incorporating effects such as the folding of skin, bulging of muscles, or wrinkling of

cloth. These models then could be placed in movies and games to obtain a high quality result.

We believe that the key technology to enable this vision to capture and analyze an

animated surface using range scanning. This technology allows us to acquire high-resolution,

per-pixel depth images, which can be directly transformed into a detailed 3D point cloud of

the scene (Figure 1.1a). While this was limited to the acquisition of rigid (i.e. static) objects in

the past, recently the technology has developed to the point where high-resolution, real-time

range scanners are available [Zhang et al., 2004; Zhang and Huang, 2006; Weise et al., 2007].

Unlike static range scans, the dynamic range scans (or range video, depth video) captured

by these cameras contain both information about the surface and also how it moves. This

provides an exciting opportunity to automatically acquire both a detailed surface and a model

of its motion.

Although the capture technology has improved in leaps and bounds, many chal-

lenges still remain in processing the captured data to reconstruct the shape and motion of an

entire object. First, since we typically cannot observe the entire surface of an object from a

single viewpoint, range scans can only acquire partial surfaces with occlusion and missing

3

data (Figure 1.1b). Second, even if we could observe the entire surface, range scanners do not

track the motion of the scanned points over time. Range scans just tell you the location of a set

of points on the surface, and they do not describe how each point on the surface moves over

time.

These two primary challenges can be formulated as solving the registration task:

the task of aligning multiple range scans based on the shape of the acquired geometry. If we

can perform registration correctly, we can easily solve both issues. For the first issue, we can

take multiple range scans from different viewpoints (or use multiple cameras), and align all

scans to fill in the holes with surface data from different viewpoints. For the second issue,

aligning the surface gives correspondences between the range scans, which allows us to track

individual point locations and thus figure out the movement of each point. While registration

offers a solution to these challenges, solving for an accurate registration is challenging in itself,

especially with moving surfaces that have much occlusion and missing data.

Many ideas have been proposed to solve this problem. One idea is to place markers

on the surface (much like motion capture) to track a few locations over time [Allen et al., 2003;

Anguelov et al., 2005; Pauly et al., 2005]. These markers then guide the registration into the

correct result. If we cannot physically place markers on the surface (because it affects the

motion or it obstructs the capture process), these locations must be selected manually by

clicking on corresponding points on the surface, which involves some manual work and may

be difficult at times. Another idea is to use a template, which is a highly detailed, complete 3D

scan of the object in a fixed, specific pose [Allen et al., 2002, 2003; Sand et al., 2003; Anguelov

et al., 2005]. If this is available, then we can just align the template to every range scan to

obtain an animation of the template that fits the data. However, with this type of approach,

most of the surface detail comes from the template and not from the captured data.

In this dissertation, we develop algorithms to reconstruct the shape and motion of

an object from range scans without using markers or a template. Instead, we focus on the

specific class of articulated motion, which means that the surface consists of multiple rigidly

moving parts. Many surfaces that we are interested in capturing have articulated motion (e.g.

4

people or animals), but it is less applicable to other common surfaces, such as cloth or liquid.

This idea has been used for surface and motion capture given a user-provided segmentation of

the surface (the division of the surface into parts) [Pekelny and Gotsman, 2008]. In our work,

we do not assume that we have a segmentation of the surface provided by the user. Instead,

we automatically estimate this segmentation automatically.

1.1 Summary of Original Contributions

To summarize our problem statement, we are given as input a set of range scans,

where the scans are taken from a moving subject. This means that the pose of the shape is

different in each range scan, so there is a spatially varying movement of the surface. Further-

more, we expect that there is a significant amount of missing data in each scan. We develop

algorithms to align these input scans to a common pose, so that all of the surface data can

be gathered in one place to obtain the complete surface of the subject. At the same time, our

methods use an articulated motion model to describe the motion of the object, which means

that we solve for (1) transformations aligning the surface and (2) the weights that associate

these transformations to each point on the surface. Solving for this articulated model auto-

matically gives us a reduced representation of the surface motion, which allows us to target

the reconstructed model into new poses and create animations. Now, we outline our specific

contributions below.

• Automatic Registration for Articulated Shapes: We present an unsupervised algorithm

for aligning a pair of shapes in the presence of significant articulated motion and missing

data. We explicitly sample the motion, which gives a priori the set of possible rigid

transformations between parts of the shapes. This transforms the problem into a discrete

labeling problem, where the goal is to find the assignment of transformations that

produces the best alignment of the shapes. We apply graph cuts to solve this optimization

problem. We demonstrate a good alignment can be obtained even when there is a large

motion, and when there is much missing data. This technique can be used as a pre-

processing step that gives a good initialization of the segmentation and registration

5

between a pair of range scans.

• Range Scan Registration Using Reduced Deformable Models: We present a method

for aligning a pair of articulated range scans. The key idea is to model the motion of

the underlying object using a reduced deformable model (RDM) suitable for modeling

articulated motion. We formulate the registration problem as estimating the parameters

of this model, and we describe how to solve this efficiently using an EM-type algorithm.

We demonstrate that this method can accurately register pairs of range scans with a

significant amount of occlusion. One draw back is that this method is limited to aligning

only a pair of scans, but we develop it further in the next contribution to handle multiple

scans.

• Global Registration for Articulated Model Reconstruction: We extend and combine

the algorithms of the previous chapters to develop an method capable of automatically

reconstructing an articulated 3D model from multiple range scans. We use the first

contribution as a pre-processing step to initialize the registration of the range scan

sequence. We extend the second contribution to refine this initialization and solve for

a consistent model of articulated motion that aligns all of the scans. Here, we develop

a framework to simultaneously align multiple scans to reduce alignment errors. We

demonstrate that we can reconstruct a complete 3D articulated model from a sequence

of dynamic range scans. In addition, the estimated articulated structure allows us to

target the reconstructed shape in new poses and create animations.

The main advantage of our algorithms is that they do not require user specified markers, a

template, nor manual segmentation of the surface geometry into rigid parts.

1.2 Organization of the Dissertation

This dissertation is divided into seven chapters. In Chapter 2, we provide an overview

of previous work that is related to the algorithms presented in this dissertation. In Chapter 3,

we discuss in detail several closely related algorithms that we use and extend in the remaining

6

chapters of the thesis. Chapter 4 presents our algorithm that uses a transformation sampling

and assignment strategy to robustly align articulated shapes, and Chapter 5 discusses our

method to solve for reduced motion parameters to align range scans. In Chapter 6, we extend

these algorithms to reconstruct a full articulated model from multiple scans, and we conclude

in Chapter 7 with a summary of our work and describe potential avenues for future work.

2
Related Work

W E divide the related work into five categories: (1) rigid registration, which

focuses on aligning surfaces of rigid objects, (2) non-rigid registration, which

handles moving objects, (3) reconstruction from silhouettes, which captures surface motion

from from multi-view video, (4) motion modeling from mesh animations, and (5) non-rigid

structure from motion.

2.1 Rigid Registration

Iterative Closest Points (ICP) Algorithm. The surface registration problem is a classic, well-

studied problem in computer graphics and vision. A popular and well-developed method for

aligning rigid surfaces is the Iterative Closest Point (ICP) algorithm, developed independently

by Chen and Medioni [1991] and Besl and McKay [1992]. This approach aligns a pair of surfaces

by iteratively pulling the surfaces together using closest point matches. This method works well

for producing accurate registrations of surfaces, but it does require a good initial alignment

of the surfaces. Without an initial alignment, the ICP algorithm may produce an incorrect

registration. In our work, we extend the ICP method to handle articulated surfaces. The

difference is that instead of having just one transformation that describes the movement, we

have multiple rigid transformations (one for each part), and neighboring parts are constrained

7

8

to meet together at joints. We will discuss the ICP algorithm in more detail in Chapter 3.

There have been many extensions to improve the robustness of the ICP algorithm

and to handle the registration of multiple surfaces. A good survey of these techniques is given

by Rusinkiewicz and Levoy [2001] and Rusinkiewicz [2001]. There are improvements in the

selection of points on the surface to include more salient features such as lines and corners

[Rusinkiewicz and Levoy, 2001], the matching of points for faster and reliable performance

(for example, projecting points from one surface to another [Blais and Levine, 1995; Bergevin

et al., 1996] or incorporating color, intensity, or surface normal information [Godin et al., 1994;

Johnson, 1997; Weik, 1997; Pulli, 1999]), and weighing/rejecting points based on boundary,

normals, distances, scanner angle, and occlusion [Turk and Levoy, 1994; Bergevin et al., 1996;

Weik, 1997; Dorai et al., 1998; Neugebauer, 1997; Pulli, 1999]. In addition, as an alternative to

the least-squares error minimization in the original ICP algorithm, a robust M-estimator can

be used instead to reduce the effect of outlier correspondences that bias the minimization

in favor or large residuals [Nishino and Ikeuchi, 2002]. We also incorporate many of these

improvements in our algorithm, and the specific improvements we use are discussed along

with the ICP algorithm in the next chapter.

Handling Multiple Range Scans. Although the ICP algorithm only applies to a pair of surfaces,

we can extend it to align multiple surface fragments to reconstruct a complete 3D surface

from multiple range scans. A basic strategy is to align each surface to all previously registered

surfaces [Chen and Medioni, 1991]. While this strategy works often for smaller datasets, it

causes an accumulation of alignment error for larger datasets. Researchers have explored

some alternative strategies, for example, repeatedly picking one surface and aligning it to all

other surfaces [Bergevin et al., 1996; Benjemaa and Schmitt, 1998; Williams and Bennamoun,

2000], or optimizing the alignment of all scans simultaneously [Stoddart and Hilton, 1996;

Neugebauer, 1997]. In our work, we apply the simultaneous registration idea to reduce align-

ment error, because it offers faster convergence compared to the methods that align only one

surface at a time.

One drawback of simultaneous registration is the memory requirement needed to

9

keep large sets of range scans in memory. Our method shares the same drawback, but the

simultaneous registration approach makes it straightforward to solve for a single articulated

structure that reflects the movement of all frames. An approach to reduce the memory re-

quirements is discussed by Pulli [1997], Pulli [1999], and Brown and Rusinkiewicz [2007]. In

this line of work, correspondences between pairs of scans are precomputed in advance, and

the registration of all scans is performed using this smaller set of correspondences. It may be

possible to precompute pairwise correspondences in our work, but we have not explored this

idea and leave it for future work.

As mentioned before, a limitation of ICP is that it is only effective if we have a good

initial registration of the surfaces. Although a user could interactively select correspondences

to provide an initial registration, this quickly becomes cumbersome for large datasets. A

popular technique to automate the initial registration is to directly match feature descriptors

derived from the surface geometry. This gives “informed correspondences” which we can

use to roughly estimate the initial registration of the surfaces. A variety of shape descriptors

have been proposed, for example, spin images [Johnson, 1997], 3D shape contexts [Frome

et al., 2004], 3D tensors [Mian et al., 2006], HMM descriptors [Castellani et al., 2008], scale

dependent/invariant features [Novatnack and Nishino, 2008], and many more. In addition,

geometric constraints between points can be used to identify matches as well [Aiger et al.,

2008]. In Chapter 4, we develop an algorithm that uses spin image descriptors to find a set

of correspondences between a pair of articulated surfaces. In contrast to other methods, we

go one step further by deriving transformations for each correspondence, clustering these

transformations, and optimizing for an assignment of the transformations to surface that

produces the best alignment.

Alternatives to ICP. Finally, we mention some alternatives to the ICP method that are different

from our work. The geometric hashing approach by Lamdan and Wolfson [1988] hashes a

collection of objects, or different poses of the same object. Then, given an object (or pose of an

object) that we want to identify, we can query the hash table to retrieve the object identity or

pose parameters. This can be a fast approach, but it does not produce as accurate results as

10

ICP and requires a significant amount of additional storage. Pottmann et al. [2004] develop a

technique to register a pair of surfaces by using precomputing approximations the squared

distance function to a surface, storing this approximation in a hierarchical structure called the

d2tree. This work has inspired researchers to combine the point-to-point and point-to-plane

error metrics in ICP, which we use in our articulated ICP registration method. Finally, Li and

Hartley [2007] describe a branch-and-bound approach on the space of rotations to find the

globally optimal alignment between two surfaces. This work is limited to solving for a single

rotation that aligns a pair of point clouds, and it is much slower than the ICP method because

it investigates the alignment error on the space of all rotations. In our work, we do not adopt

this approach because hundreds of rotations need to be estimated to align a collection of

articulated range scans. In this case, the search space is much larger, so the registration would

be computationally expensive using a branch-and-bound type method.

2.2 Non-Rigid Registration

In recent years, there has been a considerable amount of research interest in the

acquisition and processing of non-rigid surfaces from range scans. In this section, we discuss

techniques that address problems in non-rigid registration.

Template and Marker Based Methods. Acquiring shapes from range scans is a challenge

because they contain holes and occlusion, even when the scans are taken from multiple

viewpoints. To alleviate this problem, researchers have used a complete template shape and

fit it to the data, which results in a clean surface without any holes and artifacts. To solve the

problem of fitting the template shape to range scans, a number of algorithms rely on tracking

physical markers placed on specific locations on the surface. The markers are identified in

each scan, resulting in initial correspondences to guide the registration to the correct result.

Our work is different from these approaches because we do not use a template or markers to

reconstruct the shape of surface from range scans. However, we briefly survey some methods

that are related to our work.

One similar approach is the correlated correspondence algorithm by Anguelov et al.

11

[2004b]. Given a template shape, they find a good correspondence assignment by formulating

a Markov Random Field (MRF) optimization that best fits the observed data and preserves

the shape of the template. They are able to match range scans to the template shapes well, in

spite of significant changes in object pose. This technique has also been applied to analyze

human body shapes [Anguelov et al., 2005] by fitting a template mesh to the scans with the

additional help of a few markers. Our algorithm in Chapter 4 is similar to the correlated

correspondence algorithm, because our algorithm also formulates an MRF optimization

which is solved using graph cuts. However, our method differs because we find an optimal

assignment of transformations rather than an explicit assignment of corresponding points.

With our method it is possible to assign transformations even when no corresponding point is

available, so we do not require a template shape as additional input.

Allen et al. [2002] use range scans with marker positions to construct a deformable

human upper body model. The markers are used to determine the pose of the body, and

the fine details of the surface are reproduced by solving for a dense field of displacements

on a simplified cylindrical model. They also extend this technique for full body scans [Allen

et al., 2003] by fitting a full-body template model to the range scans. Sagawa et al. [2007]

rely on matching both color texture and shape features to register a sequence of deforming

range scans, using a similar optimization technique as Allen et al. [2003]. Also, the example-

based 3D scan completion work by Pauly et al. [2005] uses markers to optimize a per-point

displacement aligning complete examples to partial range scans. Other than the use of markers

and a template, these methods are different from our work because they focus on solving for

per-vertex displacements or transformations. Our work focuses on solving for a small number

of rigid transformations that are associated with many vertices, not just a single vertex. As a

result, we solve for a coarser, articulated alignment of the surface, whereas these methods focus

on more detailed, high-quality per-vertex alignments that capture more non-rigid surface

detail.

Finding Symmetries and Correspondences. Mitra et al. [2006] estimate symmetries within

and among shapes by clustering transformations sampled from a rough set of correspondences.

12

In a subsequent paper they further extend this to make a shape more symmetric, and also to

perform registration on an articulated shape [Mitra et al., 2007b]. In Chapter 4, we apply the

symmetry detection technique by Mitra et al. [2006] to estimate the partial movement of the

surface. However, if there are multiple parts that are shaped similarly (e.g. arms or legs of a

person), this technique alone cannot distinguish between these parts and results in multiple

possible matches. We address this limitation by optimizing an assignment of transformations

that penalizes incorrect matches causing excessive stretch on the surface.

Another class of methods focuses on finding a set of correspondences between a pair

of shapes. Notably, Zhang et al. [2008] extract a small set of correspondences by selecting the

set that minimizes the distortion between the surfaces. While this method tries to establish

only a few correspondences between different shapes of the same class (such as a dog and a

wolf, possibly in different poses), our work attempts to find dense correspondences among a set

of range scans acquired from the same object.

Starck and Hilton [2007] introduce a method similar to the approach by Anguelov

et al. [2004b] that formulates a MRF optimization of correspondences between a pair of free-

form surfaces. This method is applicable for complete, closed shapes, where geodesic distances

between points can be computed. As we have mentioned before, our work is different because

we optimize for an assignment of transformations on the surface, rather than optimizing for

correspondences.

Tevs et al. [2009] randomly sample a set of geodesically consistent correspondences

using an importance sampling based approach. The samples are drawn based on a probability

distribution that reflects (1) how well the shape descriptors match between corresponding

points, and (2) how well each correspondence preserves the geodesic distances to the set of cor-

respondences that have already been picked. While this method is purely a random sampling

approach to finding correspondences, our work additionally derives rigid transformations

from the correspondences and optimizes their assignment to the surface.

Parameterization Based Methods. A large body of work on mesh morphing solves the cor-

respondence problem by finding a common base parameterization across multiple meshes

13

of a common topological type [Kaul and Rossignac, 1991; Kent et al., 1992; Kanai et al., 1997;

Gregory et al., 1998; Lee et al., 1998, 1999; Kanai et al., 2000; Ohbuchi et al., 2001; Praun et al.,

2001; Takahashi et al., 2001; Kraevoy and Sheffer, 2004]. Most of these parameterization-based

methods use a set of common user-placed markers between the shapes. Recently Lipman

and Funkhouser [2009] developed a markerless approach based on flattening a pair of closed

surfaces to the complex plane. They observe that isometric deformations are related by a

Möbius transformation, and they develop an algorithm that aligns the flattened surfaces and

votes on mutually closest points to extract a reasonable set of correspondences between the

pair of shapes.

These parameterization-based approaches are usually not applicable for aligning

range scans, because finding a parameterization requires a closed surface with no holes or

boundaries. It is possible to overcome this limitation with a rough template and a few markers

providing correspondence [Kraevoy and Sheffer, 2005]. This method was used by Bradley et al.

[2008] for aligning and reconstructing deforming garments from 3D point clouds obtained via

multiview stereo. However, our work does not use markers or a template to reconstruct the

shape, but does this directly with range scans using no additional input.

Pairwise Non-Rigid ICP Methods. A well-studied class of algorithms align surfaces by gen-

eralizing the ICP algorithm to handle non-rigid deformation. These methods resemble the

ICP algorithm because they use the closest points between the surfaces as correspondences to

optimize for a non-rigid alignment. These algorithms can be roughly categorized by how they

model the motion of the deforming surface. Methods that model using thin-plate splines [Chui

and Rangarajan, 2003; Brown and Rusinkiewicz, 2007] are able to solve for a globally smooth

deformation that aligns the surfaces, but are unable to effectively express large or piecewise

rigid deformations. Many techniques model the motion of each individual point using an

affine transformation [Allen et al., 2003; Amberg et al., 2007] or just a per-point displacement

vector [Shelton, 2000; Hähnel et al., 2003; Pauly et al., 2005], but these techniques also con-

strain the overall deformation to be smooth. In contrast to these methods, our work solves for

a segmentation of the surface into rigid parts, which allows us to easily express piecewise rigid

14

motions.

In a related approach, Li et al. [2008] solve for a reduced set of transformations to

model the deformation by prescribing weights on the surface that associate the transforma-

tions to the surface points. Unlike traditional ICP algorithms, they do not maintain an explicit

set of correspondences, but instead rely on a 2D parameterization of range scan to automati-

cally detect overlapping regions and minimize the distance between the surfaces. Our work

does not require a parameterization of the range scans, and also we do not prescribe weights

but solve for the weights (i.e. segmentation) that associate the transformations to the surface.

Huang et al. [2008] describe a method to improve the traditional closest-point ICP

strategy by extracting a set of geodesically consistent correspondences using the spectral

matching technique [Leordeanu and Hebert, 2005]. This allows the technique to handle much

larger motions, but it requires constructing a graph on the surface that reflects the geodesic

distance between points on the surface. Unfortunately, constructing such a graph is not always

possible for range scans, because they may have too much missing data. In these cases, the

spectral matching does not produce good correspondences. In our work, we construct a graph

as well, but the graph does not need to approximate geodesic distances.

After determining consistent correspondences, Huang et al. [2008] efficiently solve

for transformations at many sampled locations on the surface, and interpolate the rest of the

surface using prescribed influence weights. Here, they accelerate the registration by clustering

the surface into rigid parts during the optimization. Although this idea sounds similar to

our work, it is different because it just merges samples that have similar transformations.

In contrast, we actually optimize for the assignment of transformations to the samples that

produces the closest alignment.

Multiple Frame Methods. So far, most of the techniques we have discussed involve aligning

a pair of frames. To solve the registration problem for multiple frames, a class of methods

models the deforming surface as a single surface in 4D space-time. For example, Mitra et al.

[2007a] model a sequence of range scans as a space-time surface and analyzes local kinematic

properties of this 4D surface for aligning an entire sequence of range scans. In addition,

15

Süßmuth et al. [2008] propagate a template mesh in space and time to reconstruct a 4D space-

time function. These techniques rely on dense temporal and spatial sampling to reconstruct

the 4D surface, and are less robust to larger motions or a coarser sampling of the surface.

In contrast, our method does not require a dense temporal sampling and can handle the

registration of reasonably large motions.

Sharf et al. [2008] apply a robust 4D surface reconstruction technique to find the 4D

space time volume that fits a sequence of range scans. This technique is applicable when most

of the surface is visible in the point cloud, and it focuses on filling holes in the surface. Also,

this method reconstructs a 4D volume and not a mesh animation; therefore, the reconstructed

3D meshes at each time are not in correspondence. In contrast, we produce a single 3D surface,

with associated transformations and weights that fit the surface to the data observed in each

frame.

The statistical optimization technique by Wand et al. [2007, 2009] offer an alternative

that is closer to the ICP-based methods. The recent method by Wand et al. [2009] presents a

hierarchical registration approach, where they align every two frames, merge, then align every

two pairs of frames, merge, and so on until they process the entire sequence. In addition, they

decouple the surface and deformation representations, and use an adaptive deformation field

to make the optimization more efficient. Their method is also robust to topological changes

as well. However, because they use a closest point strategy to align the frames, their method

is less robust to large motions caused by low frame rates or occlusions. Also, in contrast to

our method which focuses on articulated motion, the adaptive deformation field is defined

spatially and is more appropriate for smooth and non-rigid deformations.

Segmentation-Based Methods. A method that is closely related to this thesis is the method

by Pekelny and Gotsman [2008], who reconstruct a full 3D model and articulated skeleton

with the help of a user-provided segmentation. They perform ICP for each rigid part and

accumulate the scanned geometry from each frame. In Chapter 5 and 6 we also develop an ICP

based method to optimize the registration, but we estimate the segmentation automatically

based on the motion of the input data. Also, we apply the articulated registration algorithm

16

developed in Chapter 4 to make our method robust to larger motions.

2.3 Silhouette Based Shape Capture

The algorithms in our thesis reconstruct articulated models from detailed 3D point

clouds obtained by a range scanner. However, it is also possible to capture surfaces and

their motion using just video data. The main idea behind these approaches is to capture

the silhouette of the shape using multiple synchronized and calibrated video cameras placed

around the subject. To do this effectively, the subject usually needs to be in a special studio with

a green or white background so that the silhouette is clearly visible. Then, a rough estimate

of the 3D shape called the visual hull can be computed from the silhouettes, and this can be

used to estimate the pose of the subject and/or to fit a more detailed template shape.

For example, the method by Cheung et al. [2003] refines the visual hull extracted

from silhouettes in a multi-view video sequence to reconstruct the surface of the shape.

Furthermore, they estimate joints in the articulated model by analyzing sequences of videos

where one joint moves at a time. The resulting articulated model can then be used to track the

motion in new video sequences. The method by de Aguiar et al. [2004] represents the visual

hull using 3D voxels, to which ellipsoids are fit in order to track the pose of the subject. These

methods are outside the scope of our work, because the algorithms apply to fundamentally

different input data. While range scans offer high-quality, detailed surface capture, silhouettes

only capture the shape at very sparse locations and can only provide a rough estimate of the

overall shape.

To further improve the quality of the reconstruction, researchers have often used a

template model (which is typically a high-quality complete 3D scan of the subject) and fit this

model to the silhouettes. For example, Carranza et al. [2003] deform an articulated template

model to match multi-view silhouettes in a video sequence. Here, they try to maximize

the the overlap of the deformed template with the silhouettes by using an XOR operation

implemented on graphics hardware. Sand et al. [2003] use both markers and silhouette data

to deform a template to match a video sequence. The markers determine the initial pose of

17

the template, which is further refined to reproduce the surface shape by solving for a dense

set of displacements on the surface. Here, the actor needs to wear a skin-tight suit, so the

deformations captured by this method are limited. In addition, de Aguiar et al. [2007] use

silhouettes and optical flow to guide the deformation of a template, de Aguiar et al. [2008a] use

silhouettes, stereo reconstruction, and image features tracked on the shape, and Vlasic et al.

[2008] and Gall et al. [2009] use the visual hull to estimate the skeletal pose and deform the

template to fit the silhouettes exactly.

These template-based approaches are nice because they produce a single 3D mesh

that can be animated to reproduce the video sequence exactly. However, The drawback of

this work is that most of the fine surface detail in the video is lost in the reconstructed shape.

Instead, much of the surface detail comes from the surface of the template model itself. It is

possible also to “add back” the surface detail using the image data, but this has to be detected

and simulated in a separate step [Popa et al., 2009]. In contrast, range scans can directly

capture the fine surface detail and can produce higher quality results.

2.4 Modeling Motion from Mesh Animations

Methods that learn a surface motion model from a mesh animation is also related to

our work. A mesh animation is an animated, complete 3D surface, where the position of each

vertex moves to a known 3D coordinate at each point in time. Therefore, all of the animation

frames are in complete correspondence, so the surface and correspondence information is

already known. The focus of this area is not to estimate the shape of the object, but instead to

find correlated patterns of the surface motion.

The motivation is that specifying the location of every vertex to animate a shape is

difficult and very unintuitive for a user. In addition, since the position of each vertex is specified

separately, lot of storage space is required to store the animation. The main observation to

improve this situation is that the motion of each vertex is not independent; instead it is highly

correlated to the motion of other nearby vertices. Therefore, it should be possible to find

patterns of the surface motion, and further use this to extract a set of few parameters that

18

completely describe the motion of the surface. This can be thought as fitting a reduced model

of surface motion to a mesh animation. Once this model is fit, the mesh animation can be

stored more efficiently, or manipulated more easily in new poses to create new animations.

An example of this is to find an articulated skeleton that fits the shape, and associate

the vertices of the surface with the bones of the skeleton using “vertex weights” [Anguelov

et al., 2004a; Schaefer and Yuksel, 2007; de Aguiar et al., 2008b]. Then, by moving the bones,

the surface also moves accordingly. This process is also known as “rigging” or “skinning” in

the computer animation literature, but here the skeleton and vertex weights are computed

automatically from a mesh animation. James and Twigg [2005] take a more abstract approach

and do not construct an explicit skeleton. Instead, they directly approximate the surface

motion as a set of affine transformations that describe the motion of specific regions of

the surface. These regions are specified by the vertex weights, which also smoothly blend

boundaries between regions to faithfully reproduce the input animation.

Another example area is to analyze shape variation across a class of similar shapes.

The goal is to find a set of few parameters that describe the complete shape variation. For

example, a collection of human body examples can be analyzed to find a correlation between

body shape and age, sex, weight, or height, or to correlate between body shape deformation

and specific body poses or body types (e.g. muscle bulging when flexing arms, or skin folding

differently depending on body weight) [Allen et al., 2003; Anguelov et al., 2005; Allen et al.,

2006; Hasler et al., 2009].

In contrast to these methods, the algorithms developed in this thesis compute re-

duced motion models from incomplete range scans without a template or any predefined

correspondences. Our problem is more general, because we do not have predefined corre-

spondences nor a complete shape of the object. However, the idea that we would like to fit a

reduced motion model is similar in our work.

19

2.5 Non-Rigid Structure From Motion

A final area that is related to our work is the non-rigid structure from motion (NRSFM)

literature from computer vision. Given a non-rigidly moving shape, specified by several

2D coordinates tracked over time using a single camera, the goal is to reconstruct the 3D

coordinates of these points in every frame. In addition, some of the 2D features may be

missing in some frames due to occlusion, so an additional goal is to fill the 3D locations

of these missing features. Typically, only a small number of 2D locations (50-100) are used,

and the correspondence over time is already given as the locations are individually tracked.

Successful methods have modeled the shape movement as a linear combination of a few basis

shapes [Torresani et al., 2008a] or as a non-linear manifold [Rabaud and Belongie, 2008]. The

problem statement is different in our work: our method assumes that the 3D points are already

given, but no correspondences are given between frames. The goal in our work is to find

correspondences and gather the surface data from all frames to reconstruct the full shape of

the object. At the same time, we model the surface motion using an articulated deformation

model.

3
Technical Background

TO reconstruct an articulated model from range scans, we build on a variety of

work in computer graphics and vision. In this chapter, we explain in detail the

building blocks that we use to develop our algorithm.

Our problem statement is to align a set of range scans to a common pose, so that all

of the surface data can be gathered in one place to obtain the complete surface of the subject.

Here, the subject is moving to a different pose in each scan, and we assume that the motion is

articulated. Thus, to align the scanned surface, (1) we divide the surface into multiple rigid

parts and (2) align the surface of each part separately, with (3) methods to nicely blend the

transformations at boundaries between parts.

To align the surface of each part, we employ the ICP algorithm. This method is used

extensively in the next chapters, so we discuss the ICP algorithm in detail in the first part

of this chapter. A drawback of the ICP algorithm is that it requires a good initial alignment

of the parts. Therefore, we estimate an initial alignment by computing and matching shape

descriptors derived from many locations on the surface. In our work, we use spin images

and principal curvatures, and matching these descriptors gives “informed correspondences”

which we use to generate reasonable guesses of the initial transformations. This is used to

generate candidate transformations in Chapter 4, and also to generate initial correspondences

in Chapter 5. In addition, we employ the mean-shift clustering algorithm to identify groups of

20

21

similar transformations that affect significant portions of the surface. This is used in Chapter 4.

We discuss the spin images, principal curvatures, and the mean-shift clustering algorithm in

the second part of this chapter.

The other major component of our algorithm is to estimate the division of the surface

into multiple rigid parts. Our approach is to formulate this as a discrete labeling problem,

where we assign “part labels” to the vertices of the surface to produce the best alignment

between the input scans. Note that each part label is associated with a rigid transformation, so

we use the terms “assigning part labels” and “assigning transformations” interchangeably. To

solve the discrete labeling efficiently, we use the graph cuts algorithm. We use this technique

for Chapters 4, 5, and 6, and we discuss the algorithm in detail in the third part of this chapter.

Finally, we conclude this chapter with a discussion of articulated deformation models.

A discrete assignment of the part labels often causes artifacts at boundaries between different

parts. These deformation models describe how to smoothly blend the transformations at the

boundaries between rigid parts to remove artifacts and produce a higher quality result. We use

this technique in Chapter 5 and 6.

3.1 Registration Using the ICP Algorithm

The first building block we will discuss is the iterative closest point (ICP) algorithm

that is used for aligning the rigid parts of the surface Besl and McKay [1992]. Given two surfaces,

the ICP algorithm finds a rotation and translation that minimizes the distance between the

two surfaces, producing an alignment or registration. We use this algorithm because it gives

a fast and accurate registration, compared to alternatives that require more storage, time, or

precomputation.

In the following sections, we will discuss the basic ICP algorithm, followed by a

discussion of relevant extensions. For this discussion, we will denote the source shape as P, the

target shape as U, and we will assume that each shape is just a set of 3D points. Note that this

algorithm is applicable beyond just 3D point sets; it applies to the registration of line segment

sets, implicit curves/surfaces, parametric curves/surfaces, triangle meshes, etc., as long as

22

there is a routine to compute the closest points between the source and target shapes.

3.1.1 Basic Algorithm

To minimize the distance between the source and target shapes, we first need a good

description of the distance between the shapes. In the ICP algorithm, we define a distance

between a source point x ∈P and the target shape U as

d(x,U) = min
y∈U

‖x−y‖2, (3.1)

that is, the distance between the x and the closest point y ∈U. By summing the total distance

over all points in P, we obtain a measure of distance between the two shapes:

d(P,U) = ∑
x∈P

d(x,U). (3.2)

Now, the goal is to apply a rotation and translation to P so that the above distance is minimized.

We can express this optimization problem in the following objective function:

argmin
R,~t

∑
x∈P

min
y∈U

∥∥Rx+~t−y
∥∥2 . (3.3)

Thus, we want to find the optimal rigid transformation (R,~t), such that when we apply the

transformation to the source points as Rx+~t, the total distance to the closest points in U is

minimized. Note there are two minimization problems in this objective: (1) finding the closest

points in U, and (2) finding the best (R,~t) minimizing the total distance.

Notice that for each value of (R,~t), the closest point y ∈U can change to a different

location on the shape. It would be nice if we could find an equation for the closest point

y in closed-form, but this does not seem easy to do in general. To solve this problem, the

basic strategy of the ICP algorithm is to perform an alternating optimization. Each step

of the optimization minimizes one component of the objective function, keeping all other

components fixed. Specifically, in the first step we first keep the (R,~t) fixed, transform the

23

Algorithm 3.1: ICP(P,U,τ)

Data: 3D points of the source shape P and target shape U, convergence
tolerance τ

Result: Optimal aligning rigid transformation (Rk ,~tk)
begin1

Let the iteration number k ← 0;2

Let the initial rotation and translation R0 ← I ,~t0 ←~0;3

Let the initial alignment error d0 ←∞;4

while Not converged do5

Increment iteration count k ← k +1;6

Compute the closest points Uk for this iteration:7

Uk =
{

yk

∣∣∣ for each x ∈P, yk = argminy∈U

∥∥Rk−1x+~tk−1 −y
∥∥2

}
;

Find the best transformation (Rk ,~tk) minimizing8

dk =∑
x∈P,yk∈Uk

∥∥Rk x+~tk −yk
∥∥2;

Check for convergence by examining if |dk −dk−1| < τ;9

return Final transformation (Rk ,~tk);10

end11

source positions x according to (R,~t), and find the closest points y to each source position.

Then, in the second step we keep the closest points y fixed, and we estimate the optimal

transformation (R,~t) aligning the source positions to the target positions. This alternation

continues until it converges; i.e. the closest points do not change, or equivalently, the estimated

(R,~t) does not change any longer. This strategy is summarized in Algorithm 3.1.

The two main components of the algorithm are (1) determining the closest point

on the target shape U and (2) estimating the optimal (R,~t) given the correspondences x and y.

The efficiency of these two key steps determines the efficiency of the overall algorithm. We

will discuss these steps next. Note that the ICP is inherently a local search method, and it does

not guarantee to find the global minimum of the objective (3.3). Thus, having a good initial

alignment is important for the success of this method.

Efficient Closest-Point Queries. The simplest way to search for the closest point on the target

shape is to compare the distance between the query point and all points on the target, and

choose the point that produces the minimum distance. However, this approach is costly at

O(N) time per query (where N is the number of points on the target), especially when the

24

query is repeated for all points in the source.

We can reduce this cost by precomputing a kd-tree of the points in the target shape

[Bentley, 1975]. This tree allows nearest neighbor queries to be answered much faster, in

expected-case O(log N) time [Maneewongvatana and Mount, 1999]. Although the precom-

putation takes O(N log N) time [Maneewongvatana and Mount, 1999], this only needs to be

computed once for the target shape 1.

If the target shape is a range scan, then an alternative to nearest-neighbor search

is the projection method, also known as inverse (or reverse) calibration [Blais and Levine,

1995; Neugebauer, 1997]. A range scan is a digital image where each pixel value is a depth,

measuring the distance from the camera to the corresponding point in the scene. By using

the calibration information of the camera, we can map each pixel in the image to a 3D ray in

the scene. Then, combining this with the depth values, we can convert each pixel in the range

scan to a 3D location in the scene. This process converts the range scan into a 3D point cloud,

where the points represent sampled locations on the surface of the captured scene.

The projection method uses the calibration information to project any position in

the scene to a pixel location on the camera image. Thus, given a source position x, we can use

the point in the target range scan corresponding to the projected pixel coordinate of x. This

corresponding point is not necessarily the closest point on the target range scan. However, it is

a fast approximation that works well in practice [Blais and Levine, 1995; Neugebauer, 1997;

Rusinkiewicz and Levoy, 2001].

Optimizing for Rigid Transformations for Two Point Sets. The second key step in the ICP

algorithm is to optimize for the optimal rigid transformation to align the source positions x

to the corresponding closest points yk . Fortunately, there exist closed-form solutions in the

case of minimizing the squared Euclidean distance between corresponding points. The most

well-known methods are the method of quaternions by Horn [1987] and the SVD method by

Arun et al. [1987]. There are also other methods; however a comparison study by Eggert et al.

[1997] shows that there is little practical difference between them.

1There are also many good implementations of kd-tree based nearest neighbor search. A popular implementa-
tion that is publicly available is the Approximate Nearest Neighbor (ANN) library [Mount and Arya, 2006].

25

Algorithm 3.2: LEAST-SQUARES REGISTRATION(x,y)

Data: A set of N corresponding points x,y
Result: The optimal rotation and translation minimizing

∑
∀ x,y

∥∥Rx+~t−y
∥∥2

begin1

Compute centroid of the two point sets, µx = 1
N

∑
x,µy = 1

N

∑
y;2

Compute the cross-covariance matrix Σ:3

Σ= 1

N

∑
∀ x,y

(
x−µx

)(
y−µy

)> = 1

N

∑
∀ x,y

xy>−µxµ
>
y ;

Form the matrix Q from Σ:4

Q(Σ) =
[

tr(Σ) ∆>

∆ Σ+Σ>− tr(Σ)I

]
,

where ∆= [A23, A13, A12]>, Ai j =
(
Σ−Σ>)

i j ;

Find the eigenvector q = [q0, q1, q2, q3]> of Q(Σ) corresponding to the5

maximum eigenvalue;
Convert the quaternion into a rotation matrix6

R(q) =
q2

0 +q2
1 −q2

2 −q2
3 2

(
q1q2 −q0q3

)
2
(
q1q3 −q0q2

)
2
(
q1q2 +q0q3

)
q2

0 +q2
2 −q2

1 −q2
3 2

(
q2q3 −q0q1

)
2
(
q1q3 −q0q2

)
2
(
q2q3 +q0q1

)
q2

0 +q2
3 −q2

1 −q2
2

;

Compute the optimal translation~t =µy −R(q)µx;7

return R(q),~t;8

end9

We summarize two well-known methods of finding the optimal rigid transformation.

The approach by Horn [1987] transforms the problem into finding the optimal quaternion

representation of the rotation. This method is summarized in Algorithm 3.2. The SVD method

[Arun et al., 1987] is even simpler: after computing the cross-covariance matrix Σ, we compute

the SVD Σ=UΛV >, and the matrix R =V U> is our desired rotation. Here, it may be the case

that det(R) =−1, then we have a reflection. We correct this by checking if one of the singular

values (e.g. λ3) is zero. If this is the case, we flip the sign of the corresponding column (e.g.

the third column) of V . Otherwise, the point correspondences form a degenerate case for the

algorithm.

3.1.2 Improving the ICP algorithm

The basic algorithm discussed above can be improved in a number of different ways.

First, the basic algorithm is applicable only when the source is a subset of the target shape; i.e.

it does not handle the case where there is no corresponding point in the target shape. Second,

26

(a) (b)

Figure 3.1: Rejecting closest points mapping to the boundary. Here we would like to move the bottom
curve to match the top curve. (a) Many points on the source curve map to the boundary of the target
curve, heavily biasing the distance between the curves. (b) By removing the correspondences that map
to the boundary of the target, we minimize the distance between the shapes only where they overlap.

for shapes that overlap well but need to “slide” into the correct alignment, the algorithm may

converge slowly to the correct result. We would like to improve the convergence speed in this

case. Third, we would like to extend the algorithm to handle the alignment of multiple scans.

In the following discussion, we describe improvements that have been made to the algorithm,

extending its applicability to these other cases.

Handling Incomplete Data. To motivate the problem with incomplete data in the target

shape, consider the 2D alignment example shown in Figure 3.1. Many points on the source

curve (bottom) map to the boundary of the target curve (top). This biases the distance between

the two shapes, and minimizing this distance moves the shape to the right. This is an example

where the source shape is not a subset of the target, which is a condition where the ICP

algorithm may fail to give a good result.

There are several strategies to handle this case [Rusinkiewicz and Levoy, 2001]. One

of the most effective strategies is to remove the correspondences that map to the boundary of

the target shape. This is illustrated in the right side of Figure 3.1. Notice that this allows us to

measure the distance between the shapes only in the region where they overlap.

Another strategy to handle this case is based on the observation that the overlapping

surface regions should be relatively close together, and the surface normals in the overlapping

region should match closely. Therefore, we can remove correspondences where the distance

between the points or the angle between their surface normals exceeds a threshold. This

threshold is a user-specified parameter, and changing this parameter can result in different

alignments of the surfaces.

27

A final heuristic we want to mention is to use mutually closest point correspondences.

In this strategy, given a correspondence we check to see if the target point is closest (among

all target points) to the source point, and also if the source point is closest (among all source

points) to the target point. In practice this criteria may be too strict, and we can relax it by

checking if the distance between the source point and the closest point (on the source shape)

to the target point exceeds a small threshold. This strategy produces a similar result when

applied to the example of Figure 3.1, but it is more costly to evaluate (since it involves two

closest point queries), and its success could depend on an appropriate choice of the threshold.

Improving Convergence via Point-To-Plane Metric. Chen and Medioni [1991] describe an

alternative formulation of the ICP algorithm. The difference in their approach is the choice

of distance function between the two shapes. Instead of minimizing the Euclidean distance

between the corresponding points

dpt
((

Rk x+~tk
)

,yk
)= ∑

x∈P,yk∈Uk

∥∥(
Rk x+~tk

)−yk
∥∥2 , (3.4)

their formulation measures the distance between the source position Rk x+~tk to the plane

passing through yk with normal equal to the surface normal~nk at yk :

dpl
((

Rk x+~tk
)

,yk ,~nk
)= ∑

x∈P,yk∈Uk

[((
Rk x+~tk

)−yk
) ·~nk

]2 . (3.5)

In contrast to the point-to-point metric, the point-to-plane metric gives a small residual as

long as the source point x is close to the plane at yk . The difference between the two approaches

is illustrated in Figure 3.2. While the point-to-point metric produces “sticky” constraints, the

point-to-plane metric allows the surface to “slide” on the planes passing through the target

points yk . This provides faster convergence in many cases [Rusinkiewicz and Levoy, 2001].

Perhaps one drawback of this method is that, unlike the point-to-point metric, we cannot

solve the optimal rotation and translation in closed form. Instead, we use the Gauss-Newton

algorithm to optimize this metric, which we describe shortly in Section 3.1.3.

An important observation here is that the point-to-point and point-to-plane dis-

28

(a) (b)

Figure 3.2: Point-to-point vs. point-to-plane ICP. Here we would like to move the top curve to match the
bottom curve. (a) The point-to-point metric produces “sticky” constraints, specifying that the source
positions match the exact location of the closest target points. (b) In contrast, the point-to-plane metric
gives “slippery” constraints by minimizing the distance between the source points and the plane at
each target point. This can allow the surface to slide easily in the flat planar region, where the surface
normal is mostly perpendicular to the blue line.

tances using the closest point are approximations of the squared distance function between

the source and target shapes. This was noticed by Mitra et al. [2004], performing a detailed

convergence analysis of their behavior with experimental results. They demonstrate that using

quadratic approximations of the squared distance function of the surface result in more stable

convergence properties than either metric alone.

Motivated by this analysis, Huang et al. [2008] propose a simpler method by combin-

ing the point-to-point and point-to-plane metrics using a weighted average to get a hybrid

distance metric:

dhybrid
((

Rk x+~tk
)

,yk ,~nk
)= ∑

x∈P,yk∈Uk

ηpt
∥∥(

Rk x+~tk
)−yk

∥∥2 +ηpl
[((

Rk x+~tk
)−yk

) ·~nk
]2 .

(3.6)

Huang et al. [2008] use the weights ηpt = 0.6 and ηpl = 0.4, but the user could adjust these

weights to give a different convergence behavior.

Simultaneous ICP for Multiple Scans. So far, we have focused on strategies to align a pair of

shapes. However, when we want to build complete 3D models, we often need to align multiple

29

(a) (b)

Figure 3.3: Examples of accumulation error using a sequential alignment strategy. In both examples,
the range scans wrap around the object and should form a closed ring. (a) We see that the alignment
error accumulates and the vase “twists” upwards. (b) Here the first and the last scans do not align well
as a result of accumulated error. From Rusinkiewicz et al. [2002]; Brown and Rusinkiewicz [2007].

range scans taken from multiple viewpoints. For this case, a straightforward way to extend the

pairwise ICP registration is to sequentially align each scan to the previous scan, or to all previ-

ous scans [Chen and Medioni, 1991]. However, small errors in each alignment can propagate

to the alignment of future scans, eventually creating a large accumulated error [Bernardini

and Rushmeier, 2002; Rusinkiewicz et al., 2002]. This behavior occurs especially for a large

number of scans which wrap around the surface of an object [Brown and Rusinkiewicz, 2007].

Some examples of accumulated alignment error are shown in Figure 3.3.

An alternative to sequential registration is to solve for the optimal alignment (from

each frame to all other frames) simultaneously over all frames. Neugebauer [1997] describes

such a simultaneous registration for multiple scans, using the point to plane metric and the

projection method for establishing correspondences. In contrast to a sequential approach,

this type of simultaneous registration method is good at distributing the alignment error over

all scans, rather than creating a gradual accumulation of error.

The basic idea of simultaneous registration is to solve for an aligning transformation

Ti from each range scan Si to a hypothetical world coordinate system. Here, Ti denotes both

the rotational and translational components; i.e. Ti =
(
Ri ,~ti

)
, and the subscript represents

the transformation for frame i rather than the iteration number in the ICP algorithm. This

situation is illustrated in Figure 3.4. Just like the pairwise case, the alignment is measured

30

World Coordinate
System

Frame 1
. . .

Frame 2

Frame 3

Frame 4

Frame nT1

T2
T3

T4

Tn

Figure 3.4: Organization of the transformations for simultaneous registration. We solve for the transfor-
mations that align all frames to a common world coordinate system.

quantitatively by establishing correspondences between each pair of scans Si ,S j (in their

pairwise region of overlap). These correspondences are generated by projecting each position

x(i)
k ∈ Si into all other scans S j (see Section 3.1.1), obtaining a corresponding point y(j)

i k ∈ S j

with surface normal~n(j)
i k . Once we have these correspondences, a good alignment should

transform each correspondence to the same location in the world coordinate system. Thus,

we can express the alignment distance by measuring how close the transformed positions are

in the world coordinate system. Using the point-to-plane metric in Equation (3.5) we get

argmin
T1,T2,...,Tn

n∑
i=1

∑
x(i)

k ∈Si

∑
y(j)

i k ∈S j

dpl

(
Ti

(
x(i)

k

)
,T j

(
y(j)

i k

)
,T j

(
~n(j)

i k

))
. (3.7)

Here, Ti

(
x(i)

k

)
is the location x(i)

k transformed to the world coordinate system, T j

(
y(j)

i k

)
is the

location y(j)
i k transformed to the world coordinate system, and the same for T j

(
~n(j)

i k

)
. This is an

optimization problem, and we can solve for the optimal Ti using the Gauss-Newton algorithm

(described in the next two sections). This is similar to the pairwise case, except that we have a

larger optimization solving for many transformations at once.

Note that simultaneous registration is still inherently a local search method that

requires a good initial alignment of the scans. Neugebauer [1997] obtains this initialization via

an interactive user interface, where the user needs to click at least three corresponding points

from each scan to all previously integrated scans. Perhaps another drawback of the method is

that it requires that all range scans are in memory, since we need to project the points to each

31

scan to find correspondences during the registration. Depending on the size of the dataset,

this requirement may be prohibitively expensive. Alternative strategies for automating the

initial registration and for lowering the memory footprint are discussed in Section 2.1.

3.1.3 Gauss-Newton Algorithm

In this thesis, we often want to optimize for the best rigid transformation g = (R,~t)

that minimizes a residual r (g) in the least-squares sense (e.g. Chapters 5 and 6). The main

difficulty in such a minimization is that R is strictly constrained to be a rotation in SO(3), i.e.

R>R = I . An alternative to constrained optimization is to explicitly parameterize the rotation

matrix, and such parameterizations result in a non-linear least-squares objective. We take this

latter approach and use the Gauss-Newton algorithm to solve the non-linear objective.

The Gauss-Newton algorithm is a generic algorithm for optimizing non-linear least-

squares problems. It is based on the observation that it is often much easier to solve a linearized

version of the non-linear problem, rather than trying to solve the non-linear problem directly.

At each step of the algorithm, the non-linear residual function is approximated by a linear

residual function, and the optimal parameters minimizing the linear residual are computed.

By repeating this linearization and optimization, the hope is to arrive (or converge) to a locally

optimal set of parameters. The following details are based on Heath [2002].

Suppose we want to find the optimal parameters x which minimize a non-linear

least-squares residual function r (x) in the least squares sense; for example

argmin
x∈Rm

r (x) = f (x)− y, r :Rm →Rn .

The first-order Taylor expansion about a point a ∈Rm is

r (x) ≈ r (a)+ Jr (a)(x −a),

where Jr is the Jacobian matrix of r with respect to variables x. The Gauss-Newton algorithm

says that, given an initial guess x = x0 for minimizing r (x), we can iteratively update x to a

32

location that has a smaller residual, based on a linearization of the residual (as above). At each

step k of the iteration with current location xk , we use the Taylor expansion to approximate

the residual function at this location:

r (x) ≈ r (xk)+ Jr (xk)(x −xk). (3.8)

The last term here (x − xk) = sk is considered as the “step” that we should take to improve

our minimization of r (x). Thus we find the sk that minimizes the above expression in the

least-squares sense:

r (xk)+ Jr (xk)sk ≈ 0 (3.9)

Jr (xk)sk ≈−r (xk). (3.10)

This minimization can be solved using a variety of methods, such as the method of normal

equations, using an orthogonal factorization of the left-hand side, or using the SVD. Once we

have obtained a solution for sk , we then update the current location using the formula

xk+1 = sk +xk . (3.11)

To detect if the optimization has converged, we can monitor the change of the objective

function Fk = r (xk), its gradient, and the magnitude of the step sk [Gill et al., 1989]:

|Fk −Fk+1| < ε (1+Fk)

‖Fk‖∞ < 3
p
ε (1+Fk) (3.12)

‖sk‖∞ <p
ε (1+‖sk‖∞) ,

for some small ε. The Gauss-Newton algorithm has excellent quadratic convergence when the

initial parameters x0 are started close to the optimal solution. However, the algorithm may

fail to converge unless it is started close enough to the solution. A line search improves the

robustness of the algorithm, but it is not necessarily the case that the step sk taken here is a

33

descent direction. Also, in cases with a large residual, the linear approximation used here may

be inaccurate.

The problem with these cases is that the Gauss-Newton step direction may be a

direction where the overall residual is increasing, rather than decreasing. For a better guarantee

of convergence, one can also employ an extension to the Gauss-Newton method known as

the Levenberg-Marquardt method. This method has an additional parameter µ that blends

between a Gauss-Newton step and a gradient step, the latter of which is guaranteed to be a

descent direction. Even better, one can maintain an explicit “trust region”, which indicates how

far you can travel from the current solution and still produce a step that reduces the overall

error. Powell’s Dog Leg Method is an example of such an approach [Madsen et al., 2004]. It

selects between a Gauss-Newton step and a gradient step within the trust region to always

reduce the residual error, and it automatically adjusts the size of the trust region from feedback

of how much the residual has actually decreased in the previous iteration. In our work, we

found that the Gauss-Newton method was sufficient for our experiments, but these advanced

methods could be used to produce a faster convergence to the solution.

3.1.4 Optimizing for Rigid Transformations using Gauss-Newton

In this section, we adapt the Gauss-Newton algorithm to specifically address the

problem of optimizing a residual function of a rigid transformation. The main component

in the Gauss-Newton algorithm is the linearization of the residual function about a current

estimate of the xk solution. Once we have this linearization, then we can solve the system

for a step and iterate to minimize the residual. For rigid transformations, our mathematical

tool to derive this linearization is the axis-angle formulation of a rotation, or twist coordinate

formulation for a rigid transformation g = (R,~t). We first demonstrate that these formulations

locally parameterize the space of rotations and the space of rigid transformations about the

identity. We then use these tools to derive a linearization of a residual function r (g) 2.

We begin with the hat ·̂ operator, which converts a cross product in R3 to a matrix

2A similar discussion is in Taylor and Kriegman [1994] and Krishnan et al. [2005].

34

SE(3)

(R , t)k k

se(3)

ξ

se(3)

I

ξe

(a) (b)

SE(3)

Figure 3.5: Optimizing in SE (3), the space of rigid transformations. (a) At each iteration, we linearize the
space of rigid transformations about the current estimate of the solution. This is depicted as a tangent
plane se(3) on the manifold of rigid transformations, SE(3). (b) Once we minimize the residual in the

tangent plane, we project the solution ξ̂ back to the manifold via the exponential map e ξ̂. This allows us
to take a step in the optimization algorithm.

that can be multiplied with a vector. Given a vector ω ∈R3, the operation of taking the cross

product ω×x between the vector ω and some x ∈R3 can be described as the product ω̂x where

ω̂=

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (3.13)

Here, ω̂ is a skew-symmetric matrix, which means that taking the transpose is the same as

multiplying by −1, or ω̂> = −ω̂. It is also the case that any skew symmetric matrix can be

expressed as ω̂ for some ω ∈R3. Interestingly, the space of skew-symmetric matrices forms a

Lie algebra so(3) [Ma et al., 2003]. In addition to this property, some manipulation reveals that

ω̂2 =ωω>−‖ω‖2I , ω̂3 =−‖ω‖2ω̂. (3.14)

It turns out that the space of rotations R ∈ SO(3) around the identity I can be described using

the set of skew-symmetric matrices [Ma et al., 2003] (The following discussion is taken from

Ma et al. [2003]). This can be shown by taking a derivative of a trajectory R(t) :R→ SO(3) that

describes a continuous rotational motion. The rotation must satisfy the constraint R(t)>R(t) =

35

I , or equivalently

R(t)R(t)> = I . (3.15)

Taking the derivative of this with respect to t , we obtain that

Ṙ(t)R(t)>+R(t)Ṙ(t)> = 0

Ṙ(t)R(t)> =−R(t)Ṙ(t)>

Ṙ(t)R(t)> =−(
Ṙ(t)R(t)>

)>
. (3.16)

This last equation shows that the matrix Ṙ(t)R(t)> is a skew-symmetric matrix, and therefore

it must be the case that

Ṙ(t)R(t)> = ω̂(t),

Ṙ(t) = ω̂(t)R(t) for some ω̂(t). (3.17)

Here, we see that if t0 = I , then Ṙ(t0) = ω̂(t0). Thus, around the identity element, we can

approximate the rotations to the first order using the expression

Ṙ(t0 +dt) ≈ I + ω̂(t0)dt . (3.18)

This means that the rotations locally around I depend only on the parameter ω ∈R3. In fact,

the Lie algebra so(3) forms a tangent space of SO(3) at the identity element I . Moreover, we can

apply this formula to a residual function of a rotation to obtain a linearization of the function

about the identity.

This is almost what we need, except for three issues. First, this linearization is only

about the identity I ; we would like to linearize around an arbitrary rotation. Second, once we

solve for the optimal ω ∈ so(3) that locally minimizes the residual, we need a way to project

this solution (which is in so(3)) back to the original group SO(3). This is necessary because

we must apply this step to the current rotation to complete an iteration in the Gauss-Newton

36

algorithm. Finally, we would like to handle the case of a rigid transformation g = (R, t) where a

translation t is also involved.

For the first issue, suppose that we would like to linearize the local space of rotations

about a current estimate Rk . We can describe this space as the set of rotations produced by

the expression RδRk , where Rδ is a small rotation. We can verify this by observing that when

Rδ = I the result is Rk , which is exactly the current location. Also, a non-identity Rδ produces a

rotation on top of the current location Rk ; thus RδRk describes rotations relative to Rk . Taking

the tangent space of Rδ around the identity yields Rδ ≈ I + ω̂ for ω ∈R3 (from Equation (3.18)),

and applying this to our expression, we obtain (I + ω̂)Rk = Rk + ω̂Rk as the local description of

the rotations about Rk .

Second, the translation between R ∈ SO(3) and ω ∈ so(3) is done via the exponential

and logarithm maps. A simple expression of the exponential map exp : so(3) → SO(3), R = eω̂

is given by Rodrigues’ formula:

eω̂ = I + ω̂+ 1

2!
ω̂2 + 1

3!
ω̂3 +·· ·+ 1

n!
ω̂n +·· · (3.19)

= I + ω̂

‖ω‖ sin(‖ω‖)+ ω̂2

‖ω‖2 (1−cos(‖ω‖)) , (3.20)

which can be derived using the properties of the skew-symmetric matrix. Once we have solved

for an ω∗ that minimizes the residual locally around a current estimate Rk , we can map this to

a rotation matrix using the exponential map and apply it to the current estimate. Using the

exponential map for the linearized rotation (I + ω̂∗) we obtain

e(I+ω̂∗) = e I eω̂
∗

(since I ω̂∗ = ω̂∗I)

= Ieω̂
∗ = eω̂

∗
.

Applying this to the current rotation Rk results in the expression eω̂
∗
Rk to update the current

estimate.

Finally, we address the issue concerning the rigid transformations g = (R,~t). These

transformations, like the space of rotations, also form a special group denoted SE(3). In

37

addition, they can be parameterized locally around the identity (I ,0) using a twist, which is of

the form

ξ̂=

ω̂ v

0 0

 ∈ se(3).

As we see above, the twist is described by the parameters ω, v ∈R3, and has a total of 6 degrees

of freedom. ξ itself is called the twist coordinate, and consists of the parameters ξ= [v,ω] to

describe the twist matrix. Using a calculation similar to what we had done with the rotations

[Ma et al., 2003], we can show that for a continuous rigid motion g (t) :R→ SE(3),

ġ (t)g (t)−1 = ξ̂(t)

ġ (t) = ξ̂(t)g (t) for some ξ̂(t). (3.21)

If g (t0) = I we obtain the first order approximation g (t0 +dt) ≈ I + ξ̂(t0)dt . Thus the rigid

transformations about a particular gk is described by
(
I + ξ̂)gk , or equivalently gk + ξ̂gk =

gk + ω̂gk + v .

Similar to the rotations, the rigid transformations also have the exponential and

logarithm maps to translate between SE(3) and se(3). In particular, we are interested in the

exponential map for twists, which is the expression

e ξ̂ =

eω̂ (I−eω̂)ω̂v+ωω>v
‖ω‖2

0 1

 if ω 6= 0

I v

0 1

 if ω= 0.

(3.22)

This gives us the final component needed for a Newton iteration: once we have solved for a ξ∗

that minimizes the residual locally around a current estimate gk , we use the exponential map

to update the current estimate using e ξ̂
∗

gk .

38

Example Derivation of Gauss-Newton Using a Linearized Rigid Transformation

We give an example of linearizing the residual r (g) = y− g x in the context of the

Gauss-Newton algorithm to illustrate the tools introduced in this section. If we want to

linearize this residual about a location gk , we substitute the linearized expression for the rigid

transformations around gk yielding

r (g) ≈ y− (I + ξ̂)gk x (3.23)

= y− gk x− ξ̂gk x. (3.24)

Note that we need to use the homogeneous coordinates for x and y for the dimensions of the

matrices to match. Substituting the twist matrix for ξ̂,

r (g) ≈

y

1

−

Rk ~tk

0 1

x

1

−

ω̂ v

0 0

Rk ~tk

0 1

x

1

 (3.25)

≈

y− (
Rk x+~tk

)
0

−

(
ω× (

Rk x+~tk
))+ v

0

 . (3.26)

Now, for any x ∈ R3, ω̂x =ω×x =−x×ω=−x̂ω. Using this identity and removing the trivial

bottom row, we can rearrange this above in terms of the parameters ω, v as

r (g) ≈ y− (
Rk x+~tk

)−[
− á(

Rk x+~tk
)

I

]ω
v

 . (3.27)

We can then minimize this formula by finding the ω, v that takes r (g) as close as possible to 0

in the least-squares sense:

[
− á(

Rk x+~tk
)

I

]ω
v

≈ y− (
Rk x+~tk

)
. (3.28)

This is a linear least-squares problem that can be solved efficiently using the method of normal

equations, via a Cholesky factorization and back-substitution steps [Heath, 2002]. The resulting

39

solution ω∗, v∗ is a step that minimizes this linearized residual. We then use the exponential

map to apply the step to the current solution

gk+1 = e ξ̂
∗

gk , (3.29)

where ξ∗ = [v∗,ω∗]. This illustrates a complete iteration in the Gauss-Newton algorithm,

where the residual is a function of a rigid transformation.

3.2 Shape Descriptors for Local Surface Matching

A challenge of using range scans is to establish correspondences between multiple

range scans, because the scans themselves do not provide any correspondence information.

Given two range scans and a point in each scan, the objective is to determine if the points

belong to the same location on the surface. If this is true, then we say that the two points

“match” or “correspond” to each other. Shape descriptors are a useful tool for solving this

problem. These shape descriptors compactly encode the shape of small, localized patches

on the surface. By computing and matching the shape descriptors between the two points,

we can determine if the shape of the surface around the two points are similar or different.

This is useful because, at the very least, we can quickly determine incorrect matches when the

descriptors are very different.

In this section we will discuss two classic examples of shape descriptors: principal

curvatures and spin images. These two components are used to guess correspondences in

the motion sampling step of Chapter 4 and the initialization step of Chapter 5. The original

work on motion sampling used principal curvatures, and this is the reason why we use them

in our work. Since spin images are simple to implement and are more discriminative than

principal curvatures, we extend the original motion sampling work and use the spin images

in conjunction with the principal curvatures to improve the quality of the sampling. Using

other shape descriptors could make a difference, but spin images were robust enough in our

experiments, and our focus was not to investigate which descriptor performs the best.

40

x

x

a

b

A
n

n
n

n

n

n
1

2

x

3

4

5

nx

Figure 3.6: Estimating per-vertex normals on a triangle mesh. To estimate the normal at x, we take
a weighted average of the normals at the incident triangles of x, where the weight of each triangle is
A/(ab)2.

3.2.1 Estimating Normals and Curvatures

Some of the most basic descriptions of curves and surfaces in space come from the

study of differential geometry. The curvature of the surface, which measure how much the

surface bends at a point, is perhaps one of the most basic descriptions of a surface. Although

they may be less descriptive than spin images or other shape descriptors, they are still useful

for classifying regions of the surface based on how much the surface is flat or curved. In

addition, the principal curvatures are useful for defining a canonical frame for points on the

surface. In this section, we review these concepts and discuss a few approaches for estimating

them in the case of a triangle mesh.

Computing Normals. The surface normal of a surface S at a point x is the normal vector of

the plane tangent to S at x. It provides a first-order linear approximation of the surface at x,

and also it provides an orientation for the surface as well. In the case of a triangle mesh, the

surface normals are well-defined within each triangle (they are just the normal vectors of the

plane of the triangle), but are not naturally defined on the edges and vertices of the mesh. If

we think of the surface as a piecewise linear approximation of an underlying smoother surface,

then we can ask if it is possible to estimate the surface normal of the underlying surface at

each vertex of the triangle mesh. This is the definition of the per-vertex normal, which defines

a normal vector at each vertex that is different from the normals of the incident triangles.

Max [1999] shows that it is indeed possible to estimate an accurate per-vertex normal.

This approach generates per-vertex normals by taking a weighted average of the incident

41

x

n

t

Normal Plane

Surface

Tangent Vector

Incident Curve

Figure 3.7: Illustrating the concept of the normal curvature of a surface. On a point x with normal n on
the surface, the plane along the normal intersects the surface at the incident curve. The curvature of
this curve is the normal curvature at x in direction t . Note that both n and t lie on the normal plane.

triangle normals (Figure 3.6). Using the illustration on the right of Figure 3.6, the weight of this

incident triangle is the triangle area A divided by (ab)2, the squared product of the lengths

of the two edges of the triangle incident to x. This technique is fast to compute, and even

provides an exact normal vector in the case where the vertices of the triangle mesh lie on a

sphere.

Computing Curvatures. The surface curvature measures how much the surface bends in

different directions about a point. The basic idea, illustrated in Figure 3.7, is to take the

plane through the surface normal at x (which we call the normal plane) and examine the

incident curve on the surface. The curvature of this curve, which is the inverse of the radius

of the circle that best approximates the curve at x, is called the normal curvature of x in

direction t . Rotating the normal plane about the normal traces out different curves on the

surface, resulting in different curvatures. Then, the minimum and maximum curvatures (with

corresponding directions) are called the principal curvatures (and principal directions). The

principal directions are always orthogonal to each other and to the normal, so the three vectors

define a unique orthonormal frame at x.

A concise way of representing the varying curvatures at x is via the shape operator

(also known as the Weingarten Matrix or Second Fundamental Tensor). It is a 2×2 symmetric

matrix that expresses the linear relationship between a tangent direction on the surface and

the change of the normal in that direction. Given a basis~u,~v of the tangent plane at x, the

42

shape operator S is defined as

S =

D~u~n ·~u D~v~n ·~u
D~u~n ·~v D~v~n ·~v

 , (3.30)

where D~u~n and D~v~n are directional derivatives of the surface normal~n along the direction of

~u and~v on the tangent plane. The shape operator is a concise representation of all the normal

curvature information at x. For example, the principal curvatures are the eigenvalues of this

matrix, and the corresponding eigenvectors are the principal directions on the tangent plane.

In the literature, there are many methods developed to estimate the curvature on

triangle meshes, for example by fitting a quadratic surface or by estimating normal curvatures.

Perhaps one of the simplest and most effective approaches is to estimate the shape operator

S directly [Rusinkiewicz, 2004; Kalogerakis et al., 2007]. The key idea is that the per-vertex

normals provide direct constraints on the shape operator, so that we can estimate S that best

fits these constraints.

Given a direction vector ~d on the tangent plane, multiplying S with ~d gives the

derivative of the normal along direction~d. Applying this idea for the case of a triangle mesh,

given two points p,q in the vicinity of x with normals~np ,~nq , and a basis~u,~v for the tangent

plane at x, the shape operator S is constrained by

S11 S12

S21 S22

(p−q) ·~u

(p−q) ·~v

=

(
~np −~nq

) ·~u(
~np −~nq

) ·~v
 . (3.31)

Gathering these constraints for multiple pairs p,q, we can estimate the entries of S that best fit

the constraints in the least-squares sense.

Rusinkiewicz [2004] describes a technique to estimate per-vertex curvature by taking

a weighted average of incident per-triangle curvatures, similar in spirit to the technique of Max

[1999]. Given the per-vertex normals, we first estimate S at each triangle (with its own basis

u, v) using the edges of the triangle (and the per-vertex normals at the vertices) as constraints.

Note that this does not make sense if we use the triangle normal as constraints; then the

43

curvature would be zero. Next, at each vertex x, we transform S of each incident triangle to

express it in terms of the basis~u,~v defined at x, and take a weighted average, where the weight

equals the area of the part of the triangle that is closest to x. This an efficient algorithm and

gives accurate results, even exact results in the case of a sphere with exact vertex normals.

In our work, we use a more robust alternative developed by Kalogerakis et al. [2007],

because it does not require a triangle mesh, handles noisy data, and supports curvature esti-

mation at multiple scales. Unlike the method discussed above, this method directly estimates

S at each point x using constraints between every pair of points in a neighborhood around x.

Because there may be outliers among the constraints, the algorithm uses M-estimation to fit S

instead of using least-squares. This tends to give smoother and higher quality results especially

with noisy data, but the cost of the method is a little more expensive. Note also that taking

larger neighborhoods give smoother estimates of S, so we can also compute the curvatures on

multiple scales.

3.2.2 Spin Images

Spin images, introduced by Johnson [1997], is a 3D surface descriptor that converts

local patches of geometry into digital images that can be compared directly. These images are

a histogram of the points of the surface, generated by spinning a plane about the normal at a

point. We first describe how to construct the spin images and then how to match spin images

between two shapes.

Spin Image Construction. The input to the spin image generation algorithm is a triangle

mesh, where the resolution of the mesh (defined as the median of all the edge lengths) is

known. At each point p in the mesh, we must estimate the surface normal~n, because the spin

image generation depends on this normal vector.

Now, imagine a plane (with finite extent) that is attached to the normal. As we rotate

the plane about the normal, other points on the surface “hit” the plane at specific locations on

the plane. This is illustrated in the top of Figure 3.8, and the resulting projection of the points

are shown in the bottom. We keep track of these hit locations concisely by partitioning the

44

Figure 3.8: Generating spin images. (Top) Spin images are histograms of points on the surface created
by rotating a plane about the surface normal at locations on the surface. (Bottom) Examples of spin
images created at different points of the 3D model. From Johnson [1997].

plane in to a regular grid, and counting the number of hits per grid square. If we visualize these

bins in 3D, then we see that the bins of the spin image histogram are concentric rings stacked

along the normal direction (Figure 3.9). We can express the location of the hit point of x on the

plane (passing through p and~n) concisely using the formula:

S(x,~n,p) =
[√

‖x−p‖2 − (
~n · (x−p)

)2
~n · (x−p)

]>
. (3.32)

To obtain a higher quality histogram, we use bilinear interpolation that smoothly spreads the

contribution of each point to the neighboring bins, resulting in a “soft” floating-point count of

the number of points at each bin. The final result is a 2D image, which we call the spin image

at point p.

45

n

x

n

x

(a) (b)

Figure 3.9: A spin image is a histogram, where the bins are concentric rings stacked along the normal
direction. (a) Shows the analogy between a spinning normal plane and the histogram bin. (b) Several
stacked bins.

There are a few parameters here that control the generation of spin images: the size

of each grid bin, the total width of the image, and the support angle. The bin size determines

the resolution of the spin image: the smaller the bin size, the higher the resolution. Since

the image is sampled discretely, a very high resolution leads to many bins that contain no

points. A good value for the bin size is the mesh resolution (the distance between the points),

which gives a balance between the interpolation and the image resolution. The image width

determines how large of a geometric patch we want to encode in the image. This setting can

depend on how large of a patch we would like to compare. Finally, the support angle controls

which points actually contribute to the spin image. This is done by comparing the surface

normal~np at p with the surface normal~nx at x. If the angle between the normals exceeds the

support angle threshold, we discard the point and do not accumulate it on the spin image.

Since the rotating plane may hit other sides of the surface, the support angle is useful for

limiting the information to similarly oriented points.

Spin Image Comparison & Matching. Once we have the spin images computed at each point,

we can compare the images directly to see if the surface geometry around these points match.

However, even a slightly different sampling of points on the same object may produce different

46

spin images. Therefore, we cannot compare the images if the match exactly, but instead we

need a measure of how similar (or different) two images are. For this purpose, Johnson [1997]

applies the linear correlation coefficient to compare if corresponding bins in two images have

similar value across the entire image. Given two spin images P,Q, the correlation R(P,Q) is

defined using the formula:

R(P,Q) = N
∑

pi qi −∑
pi

∑
qi√(

N
∑

p2
i −

(∑
pi

)2
)(

N
∑

q2
i −

(∑
qi

)2
) , (3.33)

where pi and qi is the value in corresponding bins of P and Q, and N is the total number of

bins. The value of R ranges between 1 and −1, where a value of 1 means that the P and Q are

highly correlated, 0 means they are not correlated, and −1 means they are inversely (or anti)

correlated.

We may also consider the case where there is missing data or additional clutter of

other surfaces. Addressing the problem of missing data is especially important for range scans,

where most of the surface is occluded due to a limited viewpoint or the scanning technology.

Here, it is often the case that in spin image P there is a bin with a positive value, but in the

other spin image Q the bin has a zero value (because the geometry was missing). To reduce the

effect on the correlation coefficient on these cases, Johnson [1997] proposes to only include

bins in the computation of R(P,Q) that have a non-zero value in both P and Q; i.e. only use

the bins i for which both pi > 0 and qi > 0, or where the spin images “overlap.” This prevents

us from comparing bins where there is data in one bin but missing in the other. The value of N

then is the total number of bins where both pi and qi are positive. Here, note that the number

of bins N will also affect the final value of R. Taking this into account, Johnson [1997] propose

a similarity formula C (P,Q) of the form

C (P,Q) = atanh2 (R(P,Q))− λ

N −3
, (3.34)

where N is the number of overlapping pixels, and λ is the expected overlap between two

images. A higher value of C indicates that P and Q are similar, and a lower value of C indicates

47

that they are different. Intuitively this formula balances the similarity value when there is too

much (or too little) overlap relative to the expected number of overlapping bins λ.

Now, given a point x on shape P, we can find the most similar points y on the another

shape U. We simply compute the similarity C between the spin image at x and all spin images

for U. The points on U which produces the largest value of C are taken to be the matching

points. This allows us to find “informed” correspondences where the matching points have

similar geometric structure. However, we cannot expect the matches to be perfect. For example,

there could be repeating surface structures on the surface, leading to multiple matches with

very high scores. Also, it may be difficult to produce meaningful matches in flat, cylindrical,

or spherical regions where the surface is smooth and there are not many distinct geometric

features. Nevertheless, spin images provides a useful tool to match similar geometric patches

between multiple surfaces.

3.3 Clustering Using the Mean-Shift Algorithm

A key idea that we use in Chapter 4 is to identify points on the surface that move

together as a group, using the correspondences obtained by descriptor matching. This is done

by estimating the rigid transformation of each correspondence and clustering the resulting set

of transformations. This allows us to find rigid parts of the surface that move together, and

also to discard correspondences that are not consistent with others.

To perform the clustering, we use the mean-shift clustering method [Cheng, 1995;

Comaniciu and Meer, 2002], which is a robust technique to identify clusters in distributions

of points. Compared to traditional clustering techniques such as k-means, this method does

not need to know the number of clusters in advance, it works well with noisy data, and it is

suitable for finding clusters with arbitrary shapes. It has been successfully used previously to

identify rigidly moving parts of a deforming surface [James and Twigg, 2005; Tuzel et al., 2005;

Mitra et al., 2006], and we also use it in our work.

The mean-shift idea comes from estimating the density of a distribution of points

using kernel density estimation. Suppose we have N data points xi ∈ Rd . Then, the kernel

48

density estimate at some point x ∈Rd is given by

x f (x) = ck,d

N hd

N∑
i=1

k

(‖x−xi‖2

h2

)
, (3.35)

where k is the profile of a radially symmetric kernel, h is the bandwidth of the kernel, and ck,d

is a normalization constant for the kernel so that K (x) = ck,d k
(‖x‖2

)
satisfies the condition∫

Rd K (x)dx = 1. Some popular examples of the profile k include the profile of the Epanechnikov

kernel

kE (x) =

1−x 0 ≤ x ≤ 1

0 x > 1

(3.36)

and the normal kernel

kN (x) = exp

(
−1

2
x

)
, x ≥ 0. (3.37)

The main connection between clustering and density estimation is that clusters of densely

distributed points will show up as peaks of the density estimate. The key idea behind mean-

shift is to provide an efficient way to find these peaks of the density, by estimating the gradient

of the density function and following the direction of the gradient until it converges to a peak.

Without going into a detailed derivation, it turns out that the gradient of the estimated density

f (x) is proportional to the mean shift vector

m(x) =
∑N

i=1 xi g
(‖x−xi ‖2

h2

)
∑N

i=1 g
(‖x−xi ‖2

h2

) −x, (3.38)

where g (x) = −k̇(x) is the negative derivative of the profile k(x). Intuitively this mean-shift

vector is the difference between the current position x and the normalized weighted mean

of the points xi around x. Since it is proportional to the gradient of the density, it always

points in the direction of the maximum increase in the density. Thus, we can travel to the

nearest peak of the density by iteratively updating the current position with the mean-shift

49

Figure 3.10: Example of clustering using the mean-shift algorithm. From Comaniciu and Meer [2002].

vector as x ← x+m(x), until we converge to a specific location where m(x) = 0. This method is

guaranteed to converge, as proved by Comaniciu and Meer [2002].

We can identify all the peaks of the density function by performing this gradient

ascent starting at every data point xi , or at regularly spaced locations near the data points.

As we expect the number of peaks to be much smaller than the number of points, the set of

data points which converge to the same peak forms the basin of attraction of this peak. This

provides a natural way of clustering the set of data points, where locations of the peaks are

the cluster centers, and the basin of attraction of each peak are its cluster members. The one

parameter needed to be specified by this method is the bandwidth parameter h. This can be

estimated empirically by the user, or alternatively automatic bandwidth selection methods

can be used, which was proposed by Comaniciu et al. [2001].

Figure 3.10 shows an example of the clusters found using this procedure. The left

image shows the distribution of the data points, which are taken by plotting the colors of an

image (the L* and u* components in L*u*v* color space). The points are colored according

to the clusters classified by the mean-shift algorithm. The right image shows the estimated

density, with the dots representing peaks and the lines representing the trajectory of the mean-

shift algorithm. Although this dataset is noisy, we see that the procedure converges nicely to

the peaks, and the identified clusters form arbitrary shapes in the color space.

50

3.4 Discrete Optimization With Graph Cuts

A common problem in computer vision is to estimate some spatially varying quantity

from the given data. This can be formulated as assigning a label fp in a finite set of labels L

for each pixel p in an image P. Then, the goal is to find a labeling of the pixels that is smooth

and consistent with the data. For example, the labels may be disparity values that are assigned

to pixels in a stereo image pair. In this case, the assigned disparity values would match the

movement of the pixels in the pair of stereo images.

This type of formulation is also applicable to the articulated shape registration

problem in our work. In this context, the rigid transformations are the “labels” and the points

of the surface are the “pixels.” A labeling of the surface points produces a division of the surface

into multiple parts, where each part moves according to its assigned rigid transformation. The

objective is to find the labeling that minimizes the registration error.

We can express this kind of objective as finding a minimum of an energy function.

Commonly this energy function has two terms: (1) a data term Dp (fp) which measures how

well label fp is suited for pixel p, and (2) a smoothness term Vp,q (fp , fq) which can encourage a

smooth labeling by specifying that neighboring pixels p, q should have the same label fp = fq .

Summing up these terms over all pixels P and all neighbors N we obtain the energy function

E(f) of a labeling f as

E(f) = ∑
p∈P

Dp (fp)+ ∑
{p,q}∈N

Vp,q (fp , fq). (3.39)

A useful type of smoothness term V is a discontinuity preserving smoothness term.

This is useful because often in vision applications (e.g. stereo matching) the labels can suddenly

change at object boundaries. This is also true in our case, where we want to produce a

labeling of the shape into articulated parts. The Potts interaction model is a good example of a

discontinuity preserving smoothness term, where Vp,q (fp , fq) = u{p,q}T (fp 6= fq) where u{p,q} is

a constant for each neighbor pair {p, q} and T (·) is 1 if the argument is true, 0 otherwise. Under

this model, any discontinuity is penalized equally, allowing for large jumps in the assigned

51

label values equally as well as small jumps.

It turns out that finding the global minimum of this energy function for the Potts

energy is an NP-hard problem [Boykov et al., 2001], because it can be reduced to finding

a minimum cost multiway cut (which is NP-hard). However, Boykov et al. [2001] develop

a good approximation algorithm that can produce a strong local minimum of the energy,

via transformation to the binary max-flow/min-cut problem. We refer to this algorithm as

“graph cuts” in our work, and we use it extensively to optimize for an articulated matching of

deforming surfaces. The graph cuts algorithm is especially useful because it is fast and can

optimize a variety of objective functions, even non-linear ones as well. In the following, we

discuss graph cuts in detail, along with an intuitive explanation of the associated optimality

guarantees.

3.4.1 Alpha-Beta-Swap and Alpha-Expansion Algorithms

The basic idea of the optimization is to transform the multi-labeling problem into a

sequence of binary labeling problems. Each solution of the binary problem lowers the cost of

the overall labeling, until the algorithm converges to a local minimum. The idea used in this

transformation is the concept of the α-β-swap move and the α-expansion move.

Suppose that we have an initial labeling f of all pixels p ∈P. Given any pair of labels

α,β ∈L, the swap move swaps the label between α and β in a subset of all pixels labeled α or β

in the current labeling f . For the expansion move, given any single label α, this move expands

the region of pixels labeled α by changing a non-α pixel to have the label α.

Since each labeling produces an energy, the key question is: given the current label-

ing, is it possible to lower the total cost of the labeling by performing a single swap or expansion

move? Therefore, performing each swap or expansion becomes a binary decision problem. For

swap, we need to make a decision on each pixel (with current label α or β) whether to keep the

current label or to swap the label, in order to lower the total energy. Similarly, for expansion,

we must decide whether to keep the current label or to change it to α, for every pixel in the

entire image.

52

Algorithm 3.3: α-β-SWAP(L,P,N,E(f), f)

Data: A set of labels L, set of sites P, set of neighbors between sites N, energy
function E(f), and initial labeling f

Result: A final labeling f that is a local minimum of E(f) with respect to one
swap move

begin1

Given initial labeling f ;2

Define success ← true;3

while success == true do4

success ← false;5

foreach Pair of labels α,β ∈L (Label α ∈L) do6

Find the minimum energy labeling f ′ minimizing E(f ′) within one7

α-β-swap move (α-expansion move) from f ;
if E(f ′) < E(f) then8

f ← f ′;9

success ← true;10

return Final labeling f ;11

end12

As Boykov et al. [2001] show, we can construct a graph to efficiently solve these binary

decision problems via reduction to max-flow min-cut. This motivates an iterative algorithm to

efficiently minimize the energy E(f), summarized in Algorithm 3.3 (the α-expansion case is

similar, and it is indicated by the text in parentheses). In this algorithm, we repeatedly try to

minimize the energy E (f) by performing swap (expansion) moves for all pairs of labelsα,β ∈L

(all labels α ∈ L). We continue this until we cannot perform a swap move for any pair α,β

(expansion move for any α) to reduce the energy. In this sense, the algorithm converges to a

local minimum of the energy with respect to a single swap of any pair α,β (single expansion of

any α).

In order to solve the binary swap/expansion problem, Boykov et al. [2001] devise

a graph G = (V ,E) where solving for the minimum cut in the graph naturally corresponds to

finding the swap/expansion move that minimizes E(f). Recall that in the max-flow min-cut

problem, there are two terminal nodes s, t ∈ V denoting the source and the sink, and each

edge in the graph has a non-zero weight. Then, a cut is the partition of V into two sets, S,T ,

where s ∈ S and t ∈ T . The cost of this cut is the sum of the weights of all cut edges: edges

53

α

p q r s

β

tαqtαp tαr tαs

tqtβp t r t s
β β β

epq eqr ers

αα

α

tαqtαp tαu tαv

p q r vua b

tαp
tαa tαb

tαv

tαr

tαr

epa eaq eqr eru eub ebv

Terminal Nodes

Pixel Nodes

Auxiliary Nodes

Labeled Regions

Edge Weight For
tαp Dp (α)+∑

q∈Np

q∉Pαβ

V (α, fq) p ∈Pαβ

tβp Dp (β)+∑
q∈Np

q∉Pαβ

V (β, fq) p ∈Pαβ

epq V (α,β)
{p, q} ∈N

p, q ∈Pαβ

Edge Weight For

tαp ∞ p ∈Pα

tαp Dp
(

fp
)

p ∉Pα

tαp Dp (α) p ∈P

epa V (fp ,α) {p, q} ∈N, fp 6= fq

eaq V (α, fq) {p, q} ∈N, fp 6= fq

tαa V (fp , fq) {p, q} ∈N, fp 6= fq

epq V (fp ,α) {p, q} ∈N, fp = fq

Figure 3.11: Constructed graphs and edge weights for the swap (left) and expansion (right) algorithms.
In the graph for the expansion algorithm, additional auxiliary nodes are created between pixel nodes
whose current labels are different. From Boykov et al. [2001].

going between a vertex in the set S and a vertex in the set T . The main idea is that finding

the minimum cost cut of the graph is equivalent to finding the maximum flow from s to t

according to the edge weights defined on the edges. This problem can be solved using a

number of different algorithms, for example the Ford-Fulkerson algorithm.

The specific construction of the graph is shown in Figure 3.11. Given a labeling on

the pixels f , suppose that Pα is the set of pixels p such that its label fp =α. Also, let us denote

Pαβ =Pα∪Pβ. For the swap algorithm, the vertices of the graph are the two terminal nodes

α,β and a pixel node for every p ∈Pαβ. There are three types of edges: terminal edges from a

pixel node p to α with weight tαp , terminal edges from a pixel node p to β with weight tβp , and

neighbor edges between each neighbor {p, q} ∈N with weight epq . The values of the weights

are summarized in the above figure. The α-expansion case is similar, except that (1) we create

a pixel node for all pixels p ∈P, and (2) for each edge {p, q} ∈N where fp 6= fq , we create an

54

additional auxiliary node a and create three edges epa ,eaq , eαa .

Note that a cut on these graphs corresponds to a labeling on each pixel node. Let us

denote the set of all cut edges for a given cut (S,T) as C . Note that for each node, exactly one of

its terminal edges will be in C ; otherwise both s, t will be in S (or T). Therefore, for each pixel

p, we assign the label of the terminal corresponding to the cut edge for p in C . For example,

in the swap case we assign the label α if tαp ∈C or β if tβp ∈C , and for the expansion case, we

assign the label α if tαp ∈C or the label fp if tαp ∈C .

Using this labeling, we can show that the cost of a cut is exactly the cost of the

corresponding labeling (maybe plus some constant) for both the swap and the expansion

cases. The proof only works when the smoothness term V is a semi-metric (for the swap

algorithm) or a metric (for the expansion algorithm). This means that V (α,β) = 0 if and only if

α=β, V (α,β) =V (β,α) (to be a semi-metric), and additionally V (α,β) ≤V (α,γ)+V (γ,β) (to be

a metric). We will not reproduce the proof here, but provide a brief explanation. Conceptually,

the weights on the edges are engineered precisely so that the cost of a minimum cut on the

graph will produce exactly the energy of the corresponding labeling. The α-expansion case

is a little more complicated due to the auxiliary node, but this node is created because there

are three cases for the smoothness term when the labels on neighbors p, q are different: (1)

V (fp ,α), (2) V (α, fq), and (3) V (fp , fq). The triangle inequality requirement (i.e. requirement

that V is a metric) is required here for the minimum cut to include exactly one of the three

edges connected to each auxiliary node.

Boykov et al. [2001] go on to show that the energy of the E (f) local minimum obtained

by the α-expansion is at most a factor of 2c (as small as a factor of 2) of the cost of the global

minimum solution f ∗. Here c is the maximum ratio of any two smoothness costs of a neighbor

pair p, q . Along with this guarantee, the algorithm itself has a practical running time for a

variety of problems and smoothness energies. This has made the algorithm very popular in

recent years, and such graph cut methods have been successfully applied for stereo matching,

multi-camera scene reconstruction, surface reconstruction, shape matching, image resizing,

and many other applications.

55

3.4.2 Further Reading

Many further developments have been made to the basic algorithms discussed above.

Kolmogorov and Zabih [2004] have characterized the class of energy functions (called “regular”

or “submodular” functions) that can be solved via reduction to the min-cut problem, both

for smoothness terms involving pairs of sites or triplets of sites. They also discuss a simpler

construction of the graph for the α-expansion case. In addition, Boykov and Kolmogorov

[2004] discuss fast max-flow/min-cut algorithms that can be applied for graph cut algorithms.

Energy functions of the form that we have discussed in Equation (3.39) also arise

in the context of labeling Markov Random Fields. There are other algorithms that apply in

this context, such as loopy belief propagation (LBP). Szeliski et al. [2006] give a compara-

tive survey of these techniques in the context of stereo matching, image segmentation, and

other applications. More recently researchers have also investigated the application of graph

cuts to non-submodular functions [Kolmogorov and Rother, 2007], computing feature corre-

spondences for non-rigid motion in images [Torresani et al., 2008b], and strategies to speed

up graph cut computation by combining multiple solutions and reducing the number of

iterations [Lempitsky et al., 2009].

3.5 Deformation Models

The graph cuts algorithm is useful for obtaining a discrete segmentation of the

surface into rigid parts. However, the discrete assignment often causes an undesirable surface

deformation at boundaries between rigid parts. In our work, we use deformation models that

describe how to smoothly and continuously blend multiple transformations to create a smooth

transition at boundaries between parts. We use this technique as a post-processing step in

Chapters 5 and 6 to remove artifacts and produce a higher quality surface deformation.

The idea is to smoothly blend the boundary between parts by specifying weights

at each point on the surface. These weights specify exactly how much each point is influ-

enced by the transformations, and they are chosen so that there is a smooth transition at the

boundary between neighboring parts. Finally, the deformation model specifies how to blend

56

the transformations according to these weights. The method of choice for our work is the

simplest alternative, which is to linearly blend the transformation matrices (i.e. linear blend

skinning, or LBS). In this case, it is easy to optimize the weights, because the resulting position

is determined by a linear function of the weights. We also discuss higher-quality alternatives,

such as linearly blending the dual quaternion representations of the transformations.

3.5.1 Linear Blend Skinning (LBS) and Dual Quaternion Linear Blending (DLB)

There are two basic components to the deformation models: the weights and the

transformations. The transformations describe the configuration (or movement) of the bones

of the skeleton, and the weights define the association of each surface point to the bones.

Concretely, if we assume that there are a total of B transformations, each transformation

T j =
(
R j ,~t j

)
is a rigid transformation describing the position and orientation of each bone. In

addition, each weight is a B-dimensional vector wx assigned to every point x on the surface,

where the j th component of the vector wx j describes the weight or influence of transformation

j to x. To describe a movement of the surface, we first specify a weight on each point of the

surface. Then, the transformations move each point according to its weights via a weighted

sum of the transformed points. This is summarized by the function D(x) :R3 →R3, where

D(x) =
B∑

j=1
wx j T j (x) =

B∑
j=1

wx j
(
R j x+~t j

)
. (3.40)

Here, the weights are assumed to be non-negative and sum to 1 for all x on the surface S:

B∑
j=1

wx j = 1 and wx j ≥ 0 ∀ j ∈ {1..B} and x ∈ S.

This model can be also generalized to include affine transformations which include stretching

and shearing movements of the surfaces. This representation of the surface movement is a

popular and widely adopted strategy to describe movement, especially for articulated char-

acters. However, a key limitation of the model is that the linearly combined transformations

does not produce a valid rigid transformation. This results in well-known artifacts such as the

57

candy wrapper effect, where a twist causes the surface to shrink to a point, or extreme bending

causes an excessive loss (or increase) of volume in the surface.

An alternative that overcomes this limitation is the dual-quaternion linear blending

model introduced by Kavan et al. [2008]. It provides a natural way to blend rigid transfor-

mations so that the resulting transformation is also rigid. The idea is to convert the rigid

transformations T j =
(
R j ,~t j

)
into their dual-quaternion representation q̂ j , and compute the

normalized weighted sum of the dual quaternions:

DLB
(
wx, q̂1, . . . , q̂B

)= ∑B
j=1 wx j q̂ j∥∥∥∑B
j=1 wx j q̂ j

∥∥∥ . (3.41)

The resulting unit dual-quaternion corresponds to a rigid transformation, which is then

applied to transform the point x. This dual-quaternion blending is an approximation of exact

spherical averages of rotations [Buss and Fillmore, 2001] and removes the artifacts in LBS.

However, the model is non-linear, so the weights are not as easy to estimate as LBS. For our

work, we primarily use the LBS model, but we use DLB in one specific case to blend a set of

transformations (see Section 6.3.3).

3.5.2 Other Improved Models

In this section, we discuss a variety of other models that have been developed to

overcome the limitations of the basic LBS model. Although we mainly use LBS in our work,

we give a brief survey of these alternatives to inspire future work to model the surface motion

more accurately.

The main idea of these approaches is to learn a corrective model or fit a more general

deformation model from a set of example poses. Lewis et al. [2000] correct LBS by adding

surface displacements to the rest pose. The idea is to learn a mapping from the domain of

the skeleton parameters to the value of the displacements on the surface. This mapping

is learned from a set of example poses, and to generate poses beyond the example set, the

displacements are interpolated using Radial Basis Function (RBF) interpolation. Building on

this approach, Kry et al. [2002] reduce the space requirements by performing PCA compression

58

on the displacements. Wang and Phillips [2002] generalize LBS in a different way by adding

weights per matrix component in T j instead of having a single weight per T j . These per-

component weights are learned from example poses as well. Mohr and Gleicher [2003] improve

LBS by proposing to add extra joints to the skeleton, also based on examples. Finally, Wang

et al. [2007] takes the displacement idea one step further and adds deformation gradient

corrections [Sumner and Popović, 2004]. The general formulation involves solving a sparse

linear system to reconstruct the mesh that best satisfies the deformation gradients. However,

they develop a simplified formulation that generalizes LBS to add deformation gradients

directly to the transformations. Interestingly these deformation gradients themselves are

expressed as linear combinations of “key” deformation gradients.

4
Automatic Registration for

Articulated Shapes

OUR goal is to register multiple range scans of a moving, articulated subject.

While ICP produces a fast and accurate registration, it depends on having a

good initial alignment. Therefore, we need a robust way to find a registration that does not

depend on the initial alignment of the scans, but only on the shape of the scanned surface.

In this chapter, we present a method that robustly aligns a pair of surfaces. This

technique works well with large motions, and it does not depend on the initial orientation

of the surfaces. In addition, this method can disambiguate between different matchings of

surface parts and produces a registration that is consistent and does not distort the surface.

However, this method does not produce an articulated motion model. Later, in Chapter 6, we

use this algorithm to initialize the registration of multiple scans and integrate the registration

with a motion model.

4.1 Contributions

Our approach optimizes a novel cost function to evaluate the alignment between

two surfaces. The optimization is divided into two steps: sampling the motion between the

two surfaces, and applying graph cuts to assign the best spatially varying motion that aligns the

59

60

shapes while preserving its structure. Our method is able to disambiguate between multiple

possible assignments of similarly shaped parts given sufficient connectivity within the shape.

These contributions are summarized in the list below:

• We formulate the registration problem as a label assignment problem, where the labels

are rigid transformations that can be assigned to the surface.

• We develop a novel cost function for simultaneously solving a consistent assignment of

forward transformations (from the source to the target) and backwards transformations

(from the target to the source).

• We optimize this cost function using graph cuts, resulting in an assignment of transfor-

mations that aligns the shapes. In addition, contiguous regions with the same transfor-

mation give a segmentation of the shape into rigid parts.

We apply our approach to a number of real-world and synthetic datasets, and we demonstrate

that we can align the shapes accurately. In addition, our algorithm is robust to missing data in

both shapes, and the resulting alignment can fill in the missing parts of one shape with the

other. Once this basic registration is completed, one can perform higher level tasks, such as

constructing templates, interpolating shapes, automatically rigging skeletons, and building

general shape models.

4.2 Registration Algorithm

In this section, we describe our approach for automatically registering pairs of artic-

ulated shapes with significant missing data. We interpret the registration problem as finding,

for each point in one shape, a rotation and translation that moves it to the corresponding point

in the other. A solution would be to formulate this as a continuous optimization problem and

solve for a smoothly varying transformation field. However, this results in a difficult continuous

non-linear optimization problem.

In our approach, we take advantage of the observation that articulated objects consist

of a few rigidly moving parts. Our main idea is to first determine a finite set of significant

61

2a. Sampling 2b. Feature Matching

5. Pruning

Ti

4. Clustering

Transformation Space se(3)

Ti

Matching Region

1.5 fs

Matching
Features

Similarity Score

Candidate
Correspondences

3. Generate
Motions

Output: Candidate
Transformations

Figure 4.1: Motion sampling overview. After precomputing coordinate frames and feature descriptors,
we sample the shapes and compare spin image features to find candidate correspondences between
the shapes. Using the precomputed coordinate frames, we generate a rigid transformation for each
correspondence. Then, we cluster the resulting set of candidate transformations to obtain the final set
of transformations. Optionally, we prune unnecessary transformations based on matching regions.

motions between the mostly rigid parts of the pair of shapes. We show that it is possible to

extract the significant motions even if large parts of the shapes are missing. We then find the

registration by solving a label assignment problem, where each transformation corresponds to

a label.

A main challenge of this approach is that many shapes contain several similar parts,

as for example the four legs of a horse. Therefore, many significant transformations that lead

to good alignments of parts will not lead to consistent global registration. We formulate a cost

function for the labeling problem that prefers an assignment of transformations that keeps the

shape intact and ensures that each part is mapped in a globally consistent manner. Adding this

regularization enables us to apply graph cuts for solving the resulting optimization problem.

4.2.1 Motion Sampling

In this section, we describe an algorithm to find a finite set of rigid transformations

T = {T | T ∈ SE(3)} that describes the movement of each part of the shape. We follow the work

of Mitra et al. [2006] for estimating this set. The algorithm has the following steps, illustrated

62

in Figure 4.1:

1. Precompute per-vertex coordinate frames and feature descriptors

2. Sample the shapes and match similar features

3. Generate the motion for each match

4. Cluster the transformations

5. Prune transformations based on matching regions

The purpose of the feature matching, clustering, and selection steps is to narrow down on a

concise set of transformations that describes the movement of all rigid parts of the shape. Here

we discuss the specific design choices made in the implementation of this method, and we

refer the reader to Mitra et al. [2006] for additional details.

Coordinate Frames. As a preprocessing step, we estimate a coordinate frame on each vertex

of the shape. The frame (R, t) contains the 3D location (the position of the vertex, t) and

three orthonormal vectors (collected in matrix R) consisting of the normal vector and the

two principal curvature directions. The principal curvature directions are estimated by least-

squares fitting, as described in Section 3.2.1. These frames are used in Step 3 to find a rigid

transformation between a pair of corresponding points.

Feature Descriptor. Also in the preprocessing step, we compute the spin image at each vertex.

As we described in Section 3.2.2, a spin image is a histogram of the vertices where the bins are

concentric rings stacked along the normal direction. This is visualized as a sweeping plane

rotating about the normal direction, collecting vertices in a grid defined on the plane. Spin

images have been successfully used for computing correspondences in range data and are

robust to clutter and occlusion in static scenes. Since we assume that our object has articulated

motion composed of several rigidly moving parts, the spin images work well as long as they are

localized to small neighborhoods. We have also tried using multi-scale principal curvatures,

but we found that spin images were more discriminative.

Sampling and Feature Matching. In these steps, we use the precomputed feature descriptors

to find possible corresponding points between the source and target shapes. First, we randomly

63

subsample the set of vertices in each shape, in order to reduce the number of comparisons

during the matching step. Next, for a single point p in the source, we find corresponding points

in the target by computing the similarity score (higher is better) from p’s spin image to all of

the spin images in the target (Figure 4.1). Collecting these scores into a histogram, we find

the features that are significantly more similar than the rest—to such a degree that they are

outliers in the histogram. We use a moderate threshold of 1.5 fs +mu to determine outliers,

where mu is the median of the upper half of the measurements, ml is the median of the lower

half of the measurements, and fs = mu −ml . We repeat this matching process for all vertices

in P to obtain a large set of correspondence “candidates.”

Generating Motions. Now, for each correspondence candidate (p,u) where p ∈P and u ∈U,

we use the precomputed coordinate frames Tp = (Rp , tp), Tu = (Ru , tu) to generate a rigid

transformation T = (R, t) from p to u, given by

R = RuR>
p , t = tu −R tp .

Here, R is the rotation and t is the translation from Tp to the Tu , and SE(3) is the space

of all rigid transformations. As a result, we have a set of rigid transformations, where each

transformation is associated with a single correspondence candidate. Note that sometimes the

coordinate frames have opposite handedness (i.e. left handed / right handed frame) due to an

ambiguity in the sign of the eigenvectors. This results in R having negative determinant, and

so we address this case by flipping the principal direction in Ru that yields the smaller rotation.

Clustering Motions. In this step, we use a variant of the non-linear mean-shift framework to

cluster the set of transformations [Tuzel et al., 2005]. Mean-shift is a non-parametric clustering

algorithm that finds peaks of the local density of a point set using gradient ascent. When

mean-shift clustering is applied for rigid motions, the challenge is to define an appropriate

distance measure for comparing transformations. The non-linear mean-shift approach defines

64

the distance between any two transformations X ,Y ∈ SE(3) as

d(X ,Y) = ‖ log(X −1Y)‖

where log(X) maps a transformation X ∈ SE(3) to the corresponding element x in the Lie

algebra se(3), a 6D vector containing axis-angle rotation and linear velocity [Tuzel et al., 2005].

Considering the Lie group SE (3) as a differentiable manifold, this distance d(X ,Y) corresponds

to the length of the geodesic curve between X −1Y and the identity e ∈ SE(3).

This distance measure is a natural definition that is based on the structure of a Lie

group, but it is a non-linear function that is expensive to evaluate and cannot support a data

structure for fast range queries. Therefore, we opt for an approximation

d ′(X ,Y) = ‖−x + y‖

where x, y ∈ se(3) are the axis-angle and linear velocity representations of X ,Y ∈ SE(3), re-

spectively. The difference between d(X ,Y) and d ′(X ,Y) can be expressed in terms of the

Baker–Campbell–Hausdorff (BCH) formula:

log(X −1Y) = log(exp(−x)exp(y))

= log(exp(BCH(−x, y)))

= BCH(−x, y)

=−x + y +O([−x, y])

where [x, y] = x y − y x is the Lie bracket operator or commutator of the Lie algebra, and

BC H(x, y) is a series expansion based on nested iterated commutators. Blanes and Casas

[2004] show that x + y is a good approximation to log(ex e y) when the norm of the commutator

[x, y] is sufficiently small. Furthermore, since d ′(X ,Y) is just Euclidean distance in the Lie

algebra se(3), it is faster to evaluate and supports fast approximate range queries using a k-d

tree. This is particularly useful when we have a large number of rigid transformations to cluster.

65

(a) Source (b) Target

(d) Source (e) Target

(c) Visualized
transformations

(f) Visualized
transformations

Figure 4.2: Visualizing the set of estimated transformations T from the source (a,d) to the target (b,e).
We manually select a region in the source and plot a transformed copy of the region for each associated
transformation (c,f). We see that there are many transformations between different but similarly shaped
parts. The graph cuts optimization assigns the transformations to map each part correctly.

To utilize the distance d ′(X ,Y), we first map each transformation T = (R, t) ∈ SE(3)

to its corresponding element in se(3). The scale of the rotations R usually differs from the scale

of the translations t , so we perform zero mean, unit standard deviation normalization on the

translations. As a result, the range of norms for the rotational and translational components

are in ≈ [0,π]. Finally, we construct a k-d tree and apply mean-shift clustering using the

Epanechnikov kernel. As a result, we obtain a set of clusters, where each cluster is a group

of similar transformations. Finally, we compute the cluster modes and collect all of them to

obtain the final set of estimated transformations T. A visualization of these transformations is

shown in Figure 4.2.

Pruning. This is an optional step to further refine the set of transformations T. Even after

clustering, there are many spurious transformations resulting from incorrect correspondences.

Therefore, we want to retain the best transformations and get rid of unnecessary ones.

Most reliable transformations will have the largest matching regions (Figure 4.1).

Therefore, we find the matching region for each transformation, and retain only the top k

66

transformations with the largest matching regions. However, since good transformations

corresponding to very small regions may be potentially discarded, we found it acceptable to

optionally skip this step if the feature matching is sufficiently accurate and discriminative.

In our implementation, to find the matching region, we start at a random cluster

member (a pair of vertices on the source and target) and incrementally grow the region, only

to the point where applying the transformation keeps the region within a small distance of the

target. In addition, we refine the accuracy of the transformation during this time by performing

ICP at regularly scheduled intervals. When there is missing data in the mesh, there will typically

be boundary vertices, which are the vertices of edges that are adjacent to a single triangle. To

help ICP to be more robust to missing data, we slightly modify the point selection step: in

the case where the closest point u is on a boundary, we instead use the closest point on the

tangent plane at u. This strategy helps to provide accurate transformations when there are

large missing regions in the data.

Conclusion. The final output of the motion sampling is a finite set of rigid transformations

T = {T | T ∈ SE(3)} of the best transformations determined by the clustering or selection step.

4.2.2 Graph Cuts Optimization

The next step in our method is to assign the transformations to the shapes. This is

essentially a labeling problem, where the vertices of the shape are the nodes and the transfor-

mations are the labels assigned to each node. We first develop a cost function that measures

the quality of assigning the transformations, and describe how we apply graph cuts to optimize

this cost.

Cost Function. We expect that a good transformation assignment aligns the shapes well and

results in a consistent deformation that preserves the connectivity of the shape. We express

this preference as minimizing a cost function

argmin
{Tp∈SE(3) ∀p∈P}

∑
p∈P

D(p,Tp) + ∑
(p,q)∈EP

V (p, q,Tp ,Tq) (4.1)

67

where D(p,Tp) represents a data cost measuring how well the application of rigid transforma-

tion Tp matches p to U, EP specifies the connectivity of P, and V (p, q,Tp ,Tq) is a smoothness

cost measuring the consistency of the deformation between a pair of points (p, q) ∈ EP . This

cost function is reminiscent of one developed by Allen et al. [2003], except that they consider

Tp to be affine transformations. Stated purely in this form, minimizing this function results in

a continuous, non-linear optimization problem that is generally difficult to minimize.

Our observation is that motion sampling gives a priori the set of possible transforma-

tions to assign to each vertex p ∈P. Instead of finding each Tp in the continuous space of rigid

transformations, for each p we make a selection fp of some transformation in a prescribed set

T. Thus, we transform the above continuous optimization problem to a discrete one:

argmin
{ fp∈T ∀p∈P}

∑
p∈P

D(p, fp) + ∑
(p,q)∈EP

V (p, q, fp , fq). (4.2)

If we consider the transformations as labels to assign to each vertex, we see indeed that mini-

mizing the above cost function corresponds to solving for an optimal labeling of the vertices.

Therefore, we can use graph cuts for the optimization.

What remains is a definition of the data and smoothness terms in the objective

function. For the data term, we provide a catalog of useful functions in Table 4.1. The point-to-

point metric is the most basic matching function, illustrated in Figure 4.3b. Compared to the

point-to-point metric, the point-to-plane error metric is more robust to missing data and the

sampling of the surface. We prefer to use this metric when the sampling of the shape is very

sparse. The hybrid metric is designed for missing data and measures a combination of the

point-to-point and point-to-plane metrics, extrapolating the distance at the boundary of the

shape. We choose this term when there is a substantial amount of missing data. Finally, the

point-and-normal metric measures both the point-to-point distance and the difference of the

normal vectors. Here, ν is an additional parameter controlling the influence of the normals.

We use the point-and-normal term when precise normals are available.

For the smoothness term, the goal is to preserve the consistency of the shape. A

68

T (p)1

T (p)2T (p)3p
q

T (q)1

T (p)2

(a) Source (b) Data term

(c) Smoothness term (d) Consistent label term

T (p)3

T (p)i

u

T (u)j
1-

Figure 4.3: Illustration of the cost function from the source (a) to the target (b,c,d). The data term (b)
measures the distance of the transformed point T (p) to the closest point on the target. The smoothness
term (c) measures the change of length between neighboring points p, q after applying the transforma-
tions. The consistent label term (d) ensures that the transformation Ti assigned to p is consistent with
T j assigned to the closest point u, i.e. Ti = T j .

possibility is to directly compare the labels or to compare the transformations between neigh-

boring vertices. However, we do not want to penalize differing transformations due to potential

joints in the articulated shape. Therefore, we preserve the edge lengths of neighboring points

V (p, q, fp , fq) =
∣∣∣‖p −q‖−‖ fp (p)− fq (q)‖

∣∣∣. (4.3)

If fp = fq then we see that V (p, q, fp , fq) = 0, as is desirable for a smoothness function. In

addition, this expression does not penalize the assignment fp and fq as long as it preserves

the edge length ‖p −q‖. This means that we can assign completely different transformations

at neighbors p and q as long as it does not break the shape apart. As an example, in Figure

4.3c, we see that assigning T2 to p preserves the edge length, while T3 is penalized because it

69

Table 4.1: A catalog of data cost functions. For a vertex p with normal np and a selected transformation
fp , fp (p) applies fp to p (only rotation for normals), and u ∈ U is the closest point to fp (p) with
associated surface normal nu .

Data Cost Type Formula

Point-to-point Dp (p, fp) = ‖ fp (p)−u‖
Point-to-plane Dl (p, fp) = ∣∣(fp (p)−u) ·nu

∣∣
Hybrid Dh(p, fp) =

{
Dl if u ∈ boundary

Dp otherwise

Point-and-normal Dn(p, fp) =
√

Dh +ν‖ fp (np)−nu‖

stretches the edge.

Graph Cuts. To apply graph cuts to minimize the objective in Equation 4.2, we construct

an instance where the points p ∈ P are the sites, the edges (p, q) ∈ EP are neighbors, and

the transformations f ∈ T are labels. We then solve the resulting multiple-label assignment

problem using the α-expansion algorithm, as discussed previously in Section 3.4.

Symmetric Cost Function. In many cases swapping the inputs P and U gives different results,

because in Equation 4.2 we are only optimizing for an assignment of the forward transfor-

mations from P to U. To make maximum use of both shapes, we formulate a symmetric cost

function, where we simultaneously solve for a consistent assignment of the forward transfor-

mations T to P and backward transformations T′ = {T −1 | T ∈T} to U. For convenience, we can

assign forward transformation labels fu ∈T to points u ∈U, except that we apply the inverse

transformation when evaluating the cost functions.

To construct a symmetric graph cuts instance, first we include the vertices and con-

nectivity of both shapes P and U to simultaneously solve for the assignment in both directions.

Next, we enforce corresponding points under a transformation assignment to have the same

label. For example, in Figure 4.3d, we penalize the case where Ti 6= T j . Formally, for each

transformation T ∈ T, we introduce a new edge eT = (p,u) for all p ∈P and u ∈U such that

u ∈U is the closest point to T (p), or p ∈P is the closest point to T −1(u). Let ET be the set of all

such edges. Then the consistent label term W is given by

70

Smooth/Data (7.58/422.85)
Total Cost: 430.43

Smooth/Data (15.52/320.52)
Total Cost: 336.04

(a) Source vertices (closeup) (b) Target vertices (closeup)

(c) Non-symmetric solution (d) Symmetric solution

Figure 4.4: Comparing non-symmetric and symmetric graph cuts. In this example, the skin joining
the thigh and the torso is significantly stretched (a,b). The non-symmetric solution prefers to preserve
the edge lengths in this region (c), resulting in a sub-optimal local minimum where the front right leg
is aligned incorrectly. However, assigning consistent forwards and backwards transformations gives
enough incentive to afford the stretch in the front right leg (d).

71

argmin
fp , fu∈T

∀ p∈P,u∈U

∑
(p,u)∈ET

W (p,u, fp , fu). (4.4)

This term serves to penalize assignments where the transformations disagree between corre-

sponding points. Thus

W (p,u, fp , fu) =

cW

fp 6= fu and u is closest to fp (p) or,

fp 6= fu and p is closest to fu(u),

0 otherwise,

where cW is a constant penalty of an inconsistent label assignment. An example of the benefit

of this term is shown in Figure 4.4. Including the consistent label term and solving for labels

on both the source and the target, we obtain the symmetric cost function:

argmin
fp , fu∈T′

∑
p∈P

D(p, fp) + ∑
(p,q)∈EP

V (p, q, fp , fq)

+ ∑
u∈U

D(u, fu) + ∑
(u,v)∈EU

V (u, v, fu , fv)

+ ∑
(p,u)∈ET ,

p∈P and u∈U

W (p,u, fp , fu). (4.5)

One caveat in using graph cuts is that the smoothness term in Equation 4.3 is not a semi-

metric or a metric as required to obtain a strong local minimum. However, in practice we

obtain good results with the α-expansion algorithm. This may be due to the relatively few

number of smoothness constraints that actually violate the metric property. We have observed

that typically 0.01% ∼ 0.02% of the smoothness constraints (edges in the graph) violate this

property in practice. In addition, lower cost solutions have consistently yielded qualitatively

better results, which suggests that registration quality can be improved by using a stronger

optimization technique.

72

(a)

(b)

Figure 4.5: Examples used for testing our algorithm. Shown are the twelve poses in the horse dataset (a)
and the arm dataset (b).

4.3 Results

4.3.1 Registration

In this section we present results of aligning one synthetic dataset of a galloping

horse mesh animation, one real-world dataset of human arm scans, and another real-world

dataset of human hand scans [Sumner and Popović, 2004; Allen et al., 2003; Weise et al., 2007].

Some examples used in our experiments are shown in Figure 4.5. To our knowledge, ours is the

only algorithm which does not use any prior information about the shape or alignment, and is

robust to both significant motion and missing data.

We were successfully able to automatically align most pairs of the 12 galloping

horse examples (Figure 4.5a). To measure the quality of the alignment, we use the maximum

symmetric Hausdorff distance, which is the maximum distance to the closest point for each

vertex in both shapes. Out of a total 66 pairs, we obtained a good registration in 64 trials,

where the distance was at most 5.6% of the bounding box. In only 2 examples, some legs

were swapped, resulting in a maximum distance of 20% of the bounding box diagonal. This

demonstrates that our algorithm can handle a wide range of motion and is particularly robust

in this dataset.

Figure 4.6 shows an example of aligning two frames of this animation. Although

73

(a) Source (b) Target (c) Aligned result

2%

0%

(d) Registration Error

(e) Assigned labels (source, target) (f) With simplification

Figure 4.6: Registration results for the synthetic horse dataset. Given a pair of meshes (a) and (b), our
algorithm results in a close alignment (c). Notice that all four legs are matched to the correct part. We
also obtain a low registration error in (d), which shows the per-vertex distance to the target shape as a
percentage of the bounding box diagonal. In addition, our method gives a meaningful segmentation of
the model into rigid parts that is consistent in both shapes (e). The last image (g) shows the result of
aligning a 50% simplified version of the same pair. This demonstrates that our method performs well
independent of the sampling and parameterization of the shapes.

our method has no input other than just the shapes, we obtain an accurate alignment with

a registration error within 2% of the entire scene size (length of the shape’s bounding box

diagonal). All four legs in the source mesh have aligned to the correct leg in the target mesh,

demonstrating that our optimization can map similar parts correctly. We see that the assigned

transformations naturally give a high quality segmention of the mesh into rigid components

(Figure 4.6e), which can be used to automatically create a skeleton. In addition, the segmenta-

tion is consistent between both source and target shapes, as we can see in the figure where

corresponding parts are colored with the same label. Finally, we obtain a good registration

even when simplifing the meshes to 50%, demonstrating that our method is independent of

the specific parameterization of the shape.

To test our algorithm on examples with significant missing data, we have manually

removed parts of both the source and target meshes (Figure 4.7-abc). The holes were placed

in different locations so that the alignment result would complete the entire shape. Even

though the holes completely disconnect the meshes into several fragments, we obtain a good

74

(a) Source (b) Target (c) Alignment result (d) Registration Error

0%

5.3%

Figure 4.7: Registration with significant missing data. Even after manually removing parts in both
source and target, our method is able to align the meshes well.

(a) Source (b) Target (c) Aligned result (d) Assigned labels

Figure 4.8: Registration for an arm dataset pair. The source mesh (a) is aligned to the target mesh (b).
The hand region is missing a significant amount of data in both meshes, but after alignment the surface
of the hand is completed nicely (c). The assigned labels are shown in (d) for the source (bottom) and the
target (top), and corresponding parts have the same label assignment. Also, the segmentation naturally
corresponds to the different parts of the arm.

alignment result. This shows that our algorithm is robust to missing data and that it can be

used for automatic shape completion using a set of incomplete examples.

For the arm scan dataset, our algorithm successfully aligned all pairs of the 12

examples (Figure 4.5b). The registration performed well even when there was significant

missing data in both the forearm and the hand. In the example shown in Figure 4.8, notice that

the aligned result has nicely completed the thumb and index finger region of the hand area (c).

Just like the horse example, the assigned transformations segment the shape into meaningful

rigid parts (d), which can be used to automatically create a skeleton.

Finally our algorithm was able to align many examples for the hand grasping dataset.

This dataset is particularly challenging because of the occlusion in the fingers. Figure 4.9 shows

75

(a) Source

(e) Assigned labels

(b) Target

(f) Aligned result

(c) Source

(g) Assigned labels

(d) Target

(h) Aligned result

Figure 4.9: Registration results for hand dataset examples. Although the hand is missing a significant
amount of data in the fingers (b,d), our method is able to successfully align all four fingers (f,h). Notice
that the segmentation produced in (e,g) roughly corresponds to the actual segments in the fingers of a
hand.

two examples of aligning a pair of these scans. Despite significant missing data and movement

in the fingers, our method successfully aligns all four fingers to the correct position. As a result,

the holes in the fingers are filled in using data from the source shape.

4.3.2 Registration Error Analysis

To numerically quantify the registration error, we measure the registration error at

each vertex by computing the distance to the closest point on the other shape. Note that

we do not measure the distance when the closest point is on the boundary of the shape.

These vertices are indicated by a gray color in our visualizations. In Figure 4.10, we show a

visualization of the registration error for the registration examples that we have shown, and

next to this we plot a histogram of the distance for all vertices. Looking at the histogram, we

see that most vertices have a very low error, typically below 0.5% of the bounding box diagonal

length. Only a few vertices have higher error.

In Figure 4.11, we quantify the performance of our algorithm on an entire dataset. For

each pair, we compute the maximum symmetric Hausdorff distance, which is the maximum

distance to the closest point on the other shape taken over all vertices in the source and in

the target. This is purely an upper bound on the distance between two shapes, and it is a very

conservative estimate of the registration error. The figure shows a histogram of this distance

76

Right Side Left Side

3000

4000

5000

6000

7000

8000

m
be

r o
f v

er
tic

es

Histogram of Registration Error (Horse Example)

0

1000

2000

3000

4000

5000

6000

7000

8000

0.20% 0.40% 0.60% 0.80% 1.00% 1.20% 1.40% 1.60% 1.80% More

N
um

be
r o

f v
er

tic
es

Distance to closest point (% of bounding box diagonal)

Histogram of Registration Error (Horse Example)

Horse Dataset Example Histogram of Registration Error

Right Side Left Side

1000

1500

2000

2500

3000

m
be

r o
f V

er
tic

es

Histogram of Registration Error (Horse Holes Example)

0

500

1000

1500

2000

2500

3000

0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 4.50% 5.00% More

N
um

be
r o

f V
er

tic
es

Distance to closest point (% of bounding box diagonal)

Histogram of Registration Error (Horse Holes Example)

Horse Dataset Example with missing data Histogram of Registration Error

Right Side Left Side

2000

3000

4000

5000

6000

7000

m
be

r o
f V

er
tic

es

Histogram of Registration Error (Arm Example)

0

1000

2000

3000

4000

5000

6000

7000

0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 4.50% 5.00% More

N
um

be
r o

f V
er

tic
es

Distance to closest point (% of bounding box diagonal)

Histogram of Registration Error (Arm Example)

Arm Dataset Example Histogram of Registration Error

2000

3000

4000

5000

6000

um
be

r o
f V

er
tic

es

Histogram of Registration Error (Hand Example)

0

1000

2000

3000

4000

5000

6000

0.20% 0.40% 0.60% 0.80% 1.00% 1.20% 1.40% 1.60% 1.80% 2.00% More

N
um

be
r o

f V
er

tic
es

Distance to Closest Point (% of bounding box diagonal)

Histogram of Registration Error (Hand Example)

Hand Dataset Example Histogram of Registration Error

Figure 4.10: Detailed error analysis of examples in each dataset. On the left, we show visualizations of
the registration error. On the right, we plot the histogram of the registration error.

77

2

3

4

5

6

7

be
r o

f E
xa

m
pl

es

Histogram of Error in Galloping Horse Dataset (minimum over 3 trials)

0

1

2

3

4

5

6

7

0.
1

0.
4

0.
7 1

1.
3

1.
6

1.
9

2.
2

2.
5

2.
8

3.
1

3.
4

3.
7 4

4.
3

4.
6

4.
9

5.
2

5.
5

5.
8

6.
1

6.
4

N
um

be
r o

f E
xa

m
pl

es

Maximum Distance (% of bbox diagonal)

Histogram of Error in Galloping Horse Dataset (minimum over 3 trials)

2

3

4

5

6

7

m
be

r o
f E

xa
m

pl
es

Histogram of Error in the Arms dataset (1 trial)

0

1

2

3

4

5

6

7

0

0.
8

1.
6

2.
4

3.
2 4

4.
8

5.
6

6.
4

7.
2 8

8.
8

9.
6

10
.4

11
.2 12

12
.8

N
um

be
r o

f E
xa

m
pl

es

Maximum Distance (% of bbox diagonal)

Histogram of Error in the Arms dataset (1 trial)

Horse Dataset Error Distribution Arm Dataset Error Distribution

Figure 4.11: Histogram of maximum error for all pairs in the horse and arm datasets.

over all pairs of the horse and arm datasets. For the horse dataset we performed 3 trials per pair

and took the minimum distance, and for the arm dataset we performed 1 trial per pair. For the

horse dataset shown on the left, we see that the registrations were very successful because only

a few examples have maximum Hausdorff distance above 3% of the bounding box diagonal. In

the arm dataset, the distance is higher because the examples have more non-rigid bulging and

stretching deformations. These deformations are not modeled well by our discrete labeling of

transformations. Nevertheless, the maximum distance is below 10% for almost all examples in

this dataset.

4.3.3 Limitations

A key component of our algorithm is the motion sampling step. The discrete labeling

alignment depends on this step to produce the transformations that correctly describe the

movement of the shape. Therefore, we expect our algorithm to fail when the motions are

not correctly sampled. This can happen when there are few distinct features on the shapes,

or when the shapes exhibit extreme non-rigid deformation. To investigate the limits of our

algorithm, we tested our algorithm with boxes with missing corners, featureless spheres, and a

flapping flag.

The results of the alignment are shown in Figure 4.12. Even though are little or no

features in the box and sphere examples, our algorithm is able to sample enough transfor-

mations and assign the one that matches the shapes exactly. One critical step here is the ICP

verification that refines the sampled transformations. As an example, Figure 4.13 shows a

78

(a) Box with Missing Corner (b) Flag Example 1

(c) Sphere Example (d) Flag Example 2

Figure 4.12: Special cases for our algorithm. For each example, we show the source and target on the
left, the registration result in the middle, and the assigned labels on the right.

(a) Source and Target (b) Registration with
ICP Verification

(c) Registration without
ICP Verification

Figure 4.13: The alignment of boxes with missing corners fails when the ICP verification is not per-
formed.

79

case where the box example fails without the ICP step. Here, the “correct” transformation that

aligns the missing corner was not refined using ICP to produce an exact alignment. Instead,

an “incorrect” transformation that aligned the surfaces better (but not the corner) was chosen

instead.

For the flapping flag example, we see that our algorithm works reasonably for a small

deformation where the flag shape does not change much. However, for extreme deformations,

we see that the alignment fails completely. This is because there are no features that are

common in the two shapes, preventing our motion sampling step from finding the correct

transformations to align the meshes.

4.3.4 Parameters & Performance

For the feature matching, the spin images were quite discriminative, so we limited

the number of matching features for each vertex to 5-7 vertices. For the mean-shift clustering,

since we take the cluster modes to be the estimated transformations, we set the mean-shift

bandwidth to a small h = 0.1 in order to prevent over-smoothing of the transformations. We

use a fraction of the bounding box diagonal as parameter values because it naturally relates to

the data and smoothness costs which measure distances between points. We set the error of

an inconsistent label assignment cW to 100 times the bounding box diagonal. Also, we set the

closest point distance threshold to 0.5% of the bounding box diagonal for finding matching

regions in the pruning step and for determining corresponding points in Equation 4.4. Finally,

the data cost that we use for each dataset is summarized in the rightmost column of Table 4.2.

We set ν to be 2% of the bounding box diagonal for the point-and-normal metric. To control

the relative influence of the data and smoothness terms, we multiply each with a constant

weight cD and cV , respectively. In our experiments, we used cD = 1 for all datasets, cV = 5 for

the arm and hand datasets, and cV = 10 for the horse dataset.

The statistics and running time of the experiments are summarized in Table 4.2. The

most time-consuming portion of our algorithm is the graph cuts optimization, which depends

on the number of sites as well as the number of labels. Since our graph cuts instance optimizes

80

Table 4.2: Averaged performance and timing statistics for a typical subset of our experiments. The
running time statistics were gathered from testing our implementation on a single core of a dual core
2.4 GHz Intel processor.

Dataset Vertices Samples Labels Match Cluster Verify Graph Cuts Data Cost

Horse 8431 4339 1500 2.1 min 3.0 sec (skip) 1.6 sec 1.1 hr Dn
Arm 11865 6094 1000 55.0 sec 0.9 sec 12.4 min 1.2 hr Dp
Hand (Front) 8339 2945 1500 14.5 sec 0.7 sec 7.4 min 1.2 hr Dl
Hand (Back) 6773 2669 1500 17.3 sec 0.9 sec 9.4 min 1.6 hr Dl

the assignment of all vertices in both source and target meshes, we simplify the meshes using

the quadric error metric technique [Garland and Heckbert, 1997] to reduce the running time.

4.4 Improving Performance by Subsampling

The basic algorithm discussed so far solved for an optimal assignment on all vertices

of the source and target shape. With range scans that typically have several thousand, or even

several tens of thousands of points, this method is too slow to process an entire range scan

sequence with many frames. Therefore, we simplify the method by assigning the sampled

transformations only to a small subset of the points in each frame.

Specifically, we sample a small number of points (e.g. 500–1000) in the source

and target frames P and U using best-candidate sampling [Mitchell, 1991]. To replace the

connectivity of the vertices given by the triangle mesh, we construct a k-nearest neighbor

graph on the sampled points, where k is typically 15. The motion sampling step (Section 4.2.1)

is performed exactly in the same way as before to obtain a set of transformations from P to U.

For the symmetric graph cut instance, two components need to be adapted to work with this

reduced set of samples. First, to compute the data term D(p, fp) and D(u, fu) for each sample

p ∈P (u ∈U) and label fp (fu for samples in u ∈U), we transform the point p according to the

transformation fp and take the point-to-point distance to the closest point among all points

of frame U (similarly for points u ∈U). Notice that we do not take the distance to the closest

sampled point in the other shape. Second, for edges between the source and target frames that

enforce a consistent symmetric labeling, for each sample point p and label fp , we transform p

according to fp and create an edge from p to the closest sample point u ∈U (vice versa for all

81

(a) Source (b) Target

(e) Source Graph (f) Target Graph

(c) Source Labels (d) Aligned Result
(1330.4 secs)

(g) Source Labels (h) Aligned Result
(87.3 secs)

Figure 4.14: Comparison between the original and simplified transformation assignment methods.
The top row (a,b,c,d) shows the result with the original method, while the bottom row (e,f,g,h) shows
the result using a graph of 500 nodes on each frame. With the same parameters, the simplified method
produces a very similar alignment result in a fraction of the original time.

u and fu). Then, the smoothness terms V (p, q, fp , fq) and W (p,u, fp , fu) is specified the same

way as Equations (4.3) and (4.4). Finally, once we solve the labeling problem on the sampled

points, we can propagate these labels to all remaining points of each frame, by finding the

closest sample for that point and assigning its label. A comparison of the original method with

the new method is given in Figure 4.14. We can see that we get a good alignment in both cases,

while obtaining a significant speedup. Also, the use of the graph improves the connectivity

between parts that may be disconnected in the original mesh. In our experiments with this

example, we saw that this improved the robustness of the method by preventing the legs of the

robot from being swapped.

82

4.5 Discussion and Future Work

In this section we discuss the limitations of our method and point out several avenues

for future work.

Motion Sampling. The quality of our registration result depends on how accurately we sample

the transformations. A good sampling should have all the necessary transformations to align

each part, while accurately narrowing down on a concise subset of transformations. In some

horse examples, small parts such as hooves or legs were misaligned, because the correct

transformation was not in the set of estimated transformations T. In these cases, there were

too few samples to extract these transformations accurately. In our experiments, we found

that when the feature matching is noisy, the clusters found by our algorithm are spread out

more uniformly in the transformation space. In this case, the clustering acts somewhat like

a sampling strategy rather than finding densely clustered rigid components. It would be

interesting to investigate other sampling strategies for the motion sampling step, such as

adaptive sampling. Furthermore, it may be beneficial to adaptively sample the motion during

the optimization to automatically refine the registration result.

Another interesting avenue is to search for better ways to represent the range of

motions in a moving object. Automatically learning the space of motions using dimensionality

reduction techniques (e.g. PCA, MDS, LLE, ISOMAP, LSML [Dollar et al., 2007]) may lead to

an improved representation and also a more efficient optimization technique. When there

is non-rigid motion in the shape, there is a continuously varying range of motions that are

needed for alignment. Since our clustering step attempts to extract only rigid components, our

method has problems if the shapes are strongly non-rigid. A good extension, as also pointed

out by Mitra et al. [2006], is to incorporate a method for extracting a continuous set of motions

for non-rigid examples.

Another issue is that the assignment of transformations can disconnect or imper-

fectly match the boundaries between rigid components. In these cases, our method can be

used as an initialization for an additional refinement step (such as non-rigid ICP) to obtain a

smoother and more precise registration.

83

(a) Source (b) Target (c) Aligned result

(d) Source (e) Target (f) Aligned result

Figure 4.15: Typical errors in the registration. In the hand example (a,b,c), the missing data causes the
fingers to become stretched, slightly disconnected, or misaligned. In the horse example (d,e,f), the rear
legs are swapped.

Finally, an open problem is to characterize exactly how much data is required for

an accurate alignment. For example, the alignment in Figure 4.15-abc is less accurate. The

main difficulty with missing data in our method is that there is not enough data to estimate

the correct motion or to guide the optimization. It would be interesting to investigate what are

the fundamental limitations for resolving missing data.

Optimization. In general, the optimal labeling problem is known to be NP-hard [Boykov et al.,

2001]. However, utilizing recent methods such as sequential tree-reweighted message passing

(TRW-S) [Kolmogorov, 2006] or Log-cut [Lempitsky et al., 2007] may improve both the quality

and efficiency of the registration. Also, applying a coarse-to-fine optimization technique may

help as well.

In our experiments, we found that often there is a trade-off between minimizing the

smoothness and the data costs. If the smoothness weight is too high, then the optimization

can prefer a badly aligned solution in favor of preserving the edge lengths of the mesh (e.g.

Figure 4.4c). On the other hand, if the data weight is too high, the optimization may choose

to break the mesh and map parts incorrectly. For example, in Figure 4.15-def, the rear right

leg of the source is most similar to the rear left leg of the target. In this case, the low data

cost managed to compensate for the penalty of the smoothness term when the rear legs were

84

swapped. As an area of future work, it would be useful to determine the weights automatically.

Another interesting idea is to include a “dummy label” to explicitly label vertices with no

correspondence due to missing data. In our preliminary experiments, it was difficult to define

an appropriate penalty of assigning such a label. Investigating whether such a label could be

incorporated well in the optimization would be an interesting avenue for future work.

Finally, since our method is currently limited to a pair of shapes, extending it to

simultaneously align more than two shapes may help to resolve more missing data.

4.6 Conclusion

We have presented an automatic method for aligning a pair of articulated shapes in

the presence of significant motion and missing data. We formulate the registration problem as

assigning rigid transformations to each vertex of the shape. Our algorithm first determines a

finite set of possible motions of the shape by sampling the motion. Then, it uses graph cuts

to optimize a cost function, which measures the quality of an assignment for aligning the

shapes and preserving the consistency of the transformed mesh. Furthermore, we develop a

symmetric cost function for simultaneously obtaining a consistent assignment for both source

to target and target to source. Our experimental results show that despite no prior knowledge

of a template, user-placed markers, segmentation, or the skeletal structure, the algorithm is

able to find good alignments between different poses of the shape. We also obtain a natural

segmentation of the shape into rigid parts, given by contiguous regions with the same label.

4.7 Acknowledgments

We wish to thank Bob Sumner for the galloping horse animation, Brett Allen for the

body scans, and Thibaut Weise for the hand scan dataset. Additional thanks to Gilles Debunne

for providing the libQGLViewer library, David M. Mount and Sunil Arya for providing the ANN

library, and Yuri Boykov, Olga Veksler, Ramin Zabih for providing an implementation of their

graph cuts algorithm.

85

The material in this chapter is, in part, a reproduction of published material: Will

Chang and Matthias Zwicker, “Automatic Registration for Articulated Shapes,” Computer

Graphics Forum (Proceedings of SGP), Vol. 27, No. 5, July 2008. The dissertation author was

the primary investigator and author of this paper.

5
Range Scan Registration Using

Reduced Deformable Models

IN this chapter, we propose to align surfaces by modeling the motion of the surface

using an reduced, articulated deformation model. The two main components of

such models are: (1) the transformations, which describe the movement of each part, and

(2) the influence weights, which indicate how strongly each transformation influences each

point on the surface. In particular, we choose the linear blend skinning (LBS) model due to

its simplicity and ease of optimization. In order to align range scans using this model, we

will solve for its deformation parameters, i.e. the transformations for each part and influence

weights for each point on the surface.

Compared to the previous chapter that focused only on registration, the algorithm

in this chapter explicitly models the articulated motion, for example, modeling joints and

smoothly blending the boundary between parts. This allows an animator to easily target the

input range scans into new poses for creating an animation.

5.1 Contributions

We formulate the registration problem using an objective function that enforces

close alignment of the 3D data. We develop a novel algorithm to solve for the deformation

86

87

(a) Source and Target (b) Registration Result (c) Influence Weights

Figure 5.1: Given a pair of range scans, our technique automatically finds the parameters of a linear
blend skinning (LBS) model to register the scans accurately.

parameters in alternating fashion. Since range scans usually have tens of thousands of points,

determining the influence weights on every point would significantly slow down the optimiza-

tion. In addition, range scans have many occlusions and holes, resulting in disconnected

surface geometry. To address these issues, we propose a novel representation of the influence

weights on a grid enclosing the range scan surface. Not only does this reduce the number of

variables, but it also provides a regular structure to define the weight function that is decoupled

from the incomplete surface representation. Finally, to obtain a coherent deformation and to

prevent neighboring bones from moving apart, we formulate joint constraints directly on this

grid and incorporate it into the objective. Also, we propose an efficient solution for solving

the weights via a combination of discrete and continuous optimization. In summary, the

contributions of our work are:

• A novel method to align scans by solving for articulated deformation parameters,

• Formulation of influence weights and joint constraints using a regular grid,

• Application of discrete optimization for efficiently solving the weights,

• Solving for continuous weights on range scans.

Using our algorithm, we demonstrate that we can efficiently and accurately register pairs of

range scans despite significant motion and missing data. In contrast to other approaches, our

method does not require user specified markers, a template, nor a manual segmentation of

the surface geometry.

88

5.2 Problem Formulation

We assume that the scanned object is articulated, which means that we expect the

movement of the surface to be piecewise rigid. Therefore, we use the linear blend skinning

model (Section 3.5.1) to describe the motion of the observed surface. This means that we align

the pair of scans by solving for a set of transformations and the set of weights (for each point on

the scan) that associate the transformations with the surface. Because our input data consists

of incomplete range scans without correspondence information, we propose representing the

weight functions on a regular grid enclosing the scanned geometry. Let us denote a regular

grid by specifying values on a set of grid points

G = {(pc ,vc)}m
c=1,

where c is the index of the grid point, pc is the position of grid point c, vc is the vector of

weights at c, and m is the number of grid points. Alternatively, we can think of the grid as a

collection of grid cells, denoted in capital letters C ∈ G , where each grid cell contains eight

grid points, and adjacent grid cells share four grid points. For the 2D case, this situation is

illustrated in Figure 5.2.

To compute the value of the weight function w j (x) on the surface geometry, we find

the grid cell C that contains x and perform trilinear interpolation of the values vc defined at

the cell’s grid points c ∈C . This allows us to specify the weight function everywhere within the

grid, and leads to a compact representation of the vertex weight function that is well-defined

even in the presence of missing data. In addition, we adapt the grid to the scanned geometry.

This is accomplished by using only those grid cells that contain points from the range scan.

This reduces the numbers of variables needed to solve, and localizes the deformation to the

surface geometry. We can also control the smoothness of the weight function by adjusting the

resolution of the grid.

Registration. Our goal is to find the deformation parameters that best align the input range

scans. The parameters of our model are the set of transformations T = {T j } and the weight

89

1D Surface Profile

Grid cell C

Influenced by T

Influenced by T

1

2

(b) Deformation Result

Grid points c
belonging to cell C

Surface Point Samples

(a) Original Configuration

Figure 5.2: We represent the motion of a range scan using LBS, which consists of a fixed number of
transformations and their associated influence weights. We decouple the weights from the incomplete
surface representation by defining them on a grid enclosing the range scan data.

functions W= {wx}. We formulate an objective function E (T,W) that describes the quality of a

registration as a function of these unknown parameters:

argmin
T,W

αEdist(T,W)+βEjoint(T,W)+ µEsmooth(W)+νEnorm(W). (5.1)

The first term Edist measures the accuracy of the alignment by evaluating the distance between

the registered surfaces, as discussed in the beginning of Section 5.3.1. The second term Ejoint

enforces a joint constraint that encourages transformations to act intuitively at joints. We

discuss this term in more detail in Section 5.3.1. The final two terms Esmooth and Enorm are

regularization constraints on the weight functions, which we discuss in Section 5.3.2. We solve

this problem in an iterative fashion, where we update the model parameters T and W until

convergence. At each iteration, we perform an alternating optimization similar to the EM

algorithm [Dempster et al., 1977] where we

1. (T-step) fix the current weights W to be constant and solve for the rigid transformations

T, then

2. (W-step) using the rigid transformations T from the T-step, solve for the weight functions

W on the grid.

The entire optimization procedure is illustrated in Figure 5.3 and Algorithm 5.1. In the following

sections, we discuss the T-step and the W-step in further detail.

90

Algorithm 5.1: REGISTRATION OVERVIEW

begin1

Generate grid & initial segmentation (Section 5.3.3);2

Generate initial correspondences using spin image features and RANSAC3

(Section 5.3.3);
repeat4

Solve for the transformations T (Equation 5.5);5

Update correspondences;6

Solve for discrete weights W (Equation 5.11);7

Update correspondences;8

until Stopping criteria are met ;9

Solve for continuous weights W (Equation 5.8);10

end11

Initial Pose

T-Step W-Step Correspondence Update

Weight RefinementFinal Result

Converged?

No

Yes

Main Optimization Loop

Figure 5.3: Overview of our optimization algorithm. The main optimization loop alternates between
solving for the transformations (T-step), solving for the weights (W-step), and updating correspon-
dences. We obtain the final registration result after a weight refinement step that smooths unnatural
deformations.

91

(a) Distance Term 1 (b) Distance Term 2 (c) Distance Term 3

(d) Distance Constraints (e) Without Joint Constraint (f) With Joint Constraint

Figure 5.4: Overview of the distance and joint terms in the T-step optimization. The top row shows
the role of the distance term, which is to align the shapes by minimizing the distance between the
correspondences (shown as the black points and lines). The bottom row shows the role of the joint
term, preserves the structure of the shape by constraining a joint region.

5.3 Optimization Algorithm

5.3.1 Solving the T-step

The goal of the T-step is to obtain the rigid transformations T that minimize the

objective. In this step the weights W are fixed, therefore the optimization includes only the

distance term Edist and the joint constraint Ejoint term. To give an overview of these two

terms, we illustrate the each term with an example in Figure 5.4. The distance term tries to

align the shapes as closely as possible with the help of correspondences between the shapes.

Then, the joint term tries to preserve the structure of the shape by constraining neighboring

transformations to move the joint region to the same location. We now discuss each term in

more detail.

Distance Term. The distance term Edist measures how close the deformation aligns the two

shapes together. This term uses point correspondences between the source and target shapes.

Suppose that we are registering a pair of range scans P and Q, where P is the source and Q is

the target. First, we generate a uniform sampling of points x on P. For each of these points, we

92

find a corresponding point y on Q. Denoting the set U= {
(x,y) | x ∈P,y ∈Q

}
as the entire set of

correspondences from P to Q, the distance term Edist is given by

Edist(T,W) = ∑
(x,y)∈U

[(∑
j

wx j T j (x)−y

)
·~ny

]2

, (5.2)

where~ny is the surface normal associated with y ∈Q. This is exactly the point-to-plane distance

discussed in Section 3.1.2, which we favor because it allows the surface to slide easily into the

right location. Initially, the corresponding points y ∈Q are found using feature descriptors,

which we describe in more detail in Section 5.3.3). However, during the optimization, we

switch to the closest-point strategy, where we find the point y ∈Q that is closest to the currently

deformed position D(x).

To improve the robustness of this term, we use a modified distance measure to

compute the closest point [Johnson, 1997]:

d(x,y,~nx,~ny) =
√

‖x−y‖2 +ω~n‖~nx −~ny‖2, (5.3)

where ~nx is the surface normal of x, ~ny is the surface normal of y, and ω~n is a weighting

constant to control the relative influence of the normal distance. In our experiments, we set

ω~n = 2s, where s is the range scan grid spacing. In addition, we consider y as invalid when the

y is on the boundary of Q, the distance between the points exceeds a threshold, or the angle

between the normals exceeds a threshold [Pekelny and Gotsman, 2008]. We then remove these

correspondence entirely from Edist. The values of these thresholds are discussed further in

Section 5.4.

Joint Constraints. A joint is a region that is influenced by more than one bone, and we

naturally expect that the bones always meet at these joints. Therefore, to solve for natural bone

transformations, we employ the joint constraint in our optimization to keep the shape intact

and prevent bones from sliding away from each other (Figure 5.4 and 5.5).

Specifically, this constraint enforces that the joint region is transformed to the same

location by all bones that influence it. In order to determine which points in space are part

93

(a) Initial Pose and Labeling (b) Without Joint Constraint (c) With Joint Constraint

Figure 5.5: The joint constraint helps to overcome undesired local minima in the optimization by
preserving the joint location between neighboring transformations. The initial alignment (a) with
labeling (c) does not register correctly when the joint constraint is removed (b). By adding the joint
constraint, however, we converge to the correct result (d).

of a joint, we use the product of the weight functions. For example, the joint region for a pair

of bones Ti and T j is given by the points x ∈ R3 where wi (x)w j (x) > 0. For every such point,

we would like to enforce that Ti (x) = T j (x). Thus, we measure the total misalignment for each

potential joint between bone i and j as:

Ejoint(T) = ∑
i , j

∑
C∈G

τCi j

∫
x∈C

wi (x)w j (x)‖Ti (x)−T j (x)‖2dx, (5.4)

where τCi j =
(∫

x∈C wi (x)w j (x)dx
)−1 is a normalization constant for each grid cell C ∈ G and

each pair of transformations Ti ,T j . This term is similar to the deformation energies and

regularization terms proposed elsewhere [Botsch et al., 2007; Sumner et al., 2007], which

simply differ in the choice of weight functions. While other techniques prescribe the weight

functions (e.g. [Li et al., 2008]), our formulation allows joint constraints for arbitrary weight

functions. This is especially useful since we allow the weight function to change each time the

weights are optimized in the W-step.

To compute the joint constraint term, we pull the unknown elements of the transfor-

mations out of the integral, since they are constants with respect to x. We then analytically

evaluate the integrals of the weight functions in each cell in closed form, and these form

coefficients of a quadratic function of the unknowns Ti .

Optimization. Our final goal in the T-step is to minimize the objective consisting of the

94

distance and the joint terms,

argmin
T

αEdist(T,W)+βEjoint(T,W), (5.5)

where α and β are coefficients to weight each term. Since we require the transformations T to

be rigid, this becomes a non-linear optimization problem. We solve this problem iteratively

using the Gauss-Newton method (see Chapter 3.1.4).

5.3.2 Solving the W-step

In the W-step, we keep the transformations T fixed and solve for the weight functions

W. Since the weight function is defined on a regular grid and interpolated in between the grid

points, we just need to solve for the weight values at each grid point. To provide regularization,

the W-step includes the smoothness term Esmooth and the normalization term Enorm. However,

we leave out the joint constraint term Ejoint for computational efficiency. In theory, this means

that the overall error could increase after each W-step iteration, but we have not experienced

any problems in practice.

The smoothness term penalizes variation between the weights of neighboring grid

points. It is defined as

Esmooth(W) = ∑
(c,d)∈EG

‖vc −vd‖2, (5.6)

where EG is the set of all edges between neighboring grid points c and d . The normalization

term encodes our preference that the weights sum to 1 at each grid point

Enorm(W) =∑
c

(
1−∑

j
vc j

)2

, (5.7)

95

where vc j is the j th component of vc . Thus, in the W-step our goal is to optimize

argmin
W

αEdist(T,W)+µEsmooth(W)+νEnorm(W)

subject to vc j ≥ 0 ∀ j , ∀ vc ∈G . (5.8)

We have observed that optimizing this objective directly often converges to a local minimum

that does not correspond to an intuitive solution. With continuous weights, the system is

underconstrained because even a single transformation can be expressed as a weighted combi-

nation of one, two, three, or more transformations. Thus, instead of obtaining weight functions

that are localized to each rigid part, the weights tend to be very smooth and influence large

parts of the shape. At the same time, the transformations T are overfitted in the successive

T-steps. Therefore, we use a two step procedure that starts out with a more aggressive regular-

ization. Since articulated models are composed of nearly rigid parts, we expect that the weight

function is mostly 0 or 1, except at joints where nearby transformations blend together. So

instead of solving for a vector of continuous influence weights at each point, we first solve a

discrete labeling problem, which assigns a single transformation at each point on the surface.

Later in a weight refinement step, we adjust the weights using a continuous optimization step.

To illustrate this further, we show an example in Figure 5.6 of the difference between

solving for continuous vs. discrete weights. Here, we are trying to align two arm shapes with

three transformations. The movement of each transformation is illustrated in (a),(b), and (c).

The first transformation aligns the torso region, the second transformation aligns the upper

arm, and the third aligns the lower arm. Note at this point the transformations are not exact

but approximate, because they are still being optimized in the algorithm.

The goal of the weight optimization is to find the weights that satisfy the corre-

spondence constraints (shown as black points and lines) as closely as possible. Since the

transformations are only approximate, the optimizing for continuous weights in (d) leads to a

smooth, overfitted result which blends all of the transformations (bones) so that the constraints

are satisfied exactly. Instead, we prefer to use a discrete labeling like (e) which assigns a single

96

(a) Transformed Using Bone 1 (b) Transformed Using Bone 2 (c) Transformed Using Bone 3

(d) Optimization with Smooth Weights (e) Optimization with Discrete Weights

Bone 1
Bone 2

Bone 3

Figure 5.6: Solving for smooth weights leads to overfitting in the optimization. The top row shows each
of the three transformations (bones) to align the shapes, and the bottom row compares a continuous
weight solution and a discrete weight solution. The labels in (d) show which transformations have been
blended in each region of the shape.

transformation to each point on the surface. This leads to weights that are not overfitted and

cleanly separate each rigid part.

Labeling. To perform the discrete labeling on the grid, we solve for a single label at each cell

that indicates which transformation is assigned to this cell (Figure 5.7). Note that we assign

labels to each cell as opposed to each grid point. This is because it is more straightforward

to evaluate the correspondence error for each grid cell, rather than each grid point. For

the grid cell case, we can just find all correspondences contained within the cell, transform

them according to the cell’s label, and compute the resulting error. However, for the grid

point case, the weight at the grid points are trilinearly interpolated in the interior of each

grid cell. Therefore, multiple grid points (therefore potentially multiple labels) can affect the

transformation applied to a correspondence, which makes the problem more complicated.

We replace the continuous smoothness term with a discrete version

∑
(C ,D)∈AG

V (fC , fD), (5.9)

97

Adjacent Cells

Cell Labels fC

CCell Label f

Grid Cell C
Constitutent points c
with values vc

cPoint Labels v

Figure 5.7: We solve for the influence weights by formulating it as a labeling problem on the grid cells.

where fC is the bone index (or label) assigned to cell C , and AG is the set of adjacent grid cell

pairs C ,D ∈G . The discrete smoothness term assigns a constant penalty when neighboring

cells have different labels:

V (fC , fD) =

0 if fC = fD

1 otherwise.

(5.10)

This term controls the degree to which the labels form contiguous regions over the grid. In

addition, it also satisfies Enorm and the non-negativity constraint automatically. Thus, the

overall optimization objective becomes

argmin
fC ∀C

α
∑

C∈G
W (C , fC) + µ

∑
(C ,D)∈AG

V (fC , fD). (5.11)

Here, W (C , fC) is the discrete version of Edist, and it is essentially the same as in the continuous

case, measuring the point-to-plane distance in each grid cell.

Compared to solving for continuous weights, this labeling approach dramatically

reduces the complexity of the problem. We solve it efficiently using the graph cuts algorithm.

First, we construct an instance of graph cuts where the grid cells C ∈G are the sites and adjacent

cells (C ,D) ∈ AG are neighbors. We then apply the α-expansion algorithm (Section 3.4) to

find the cell labeling that minimizes this objective. Once the optimal labeling is obtained, we

98

(a) Before weight refinement (b) After weight refinement

Figure 5.8: Refining the discrete weights with smooth weight values. (a) In many cases, discrete
labeling causes unnatural deformations between neighboring transformations. (b) With the final
weight refinement step, we solve for a smooth blend between neighboring transformations at the joint.

update the weights vc j at each grid point c in each cell C by assigning a binary value

v∗
c j =

1 if j = fC

0 otherwise,

(5.12)

where fC is the label assigned to cell C .

Reusing Labels. If the smoothness weight is set too high, or if some transformations are very

similar, the smoothness term will dominate the distance term. In these situations, two separate

parts may be labeled with the same bone index. This often results in unused labels that are

not assigned to any grid cell, with little chance that the label will be reintroduced. Therefore,

we give a second chance for these unused labels by introducing them into regions with the

highest registration error. The optimization then proceeds to the T-step, giving a chance to

adapt the transformations before the next W-step.

In our implementation, we first find the regions with the highest registration error

according to W (C , fC), and split each region randomly in half. The split is performed in the

same fashion as we initialize the weights (Section 5.3.3). We continue this process until the

registration error is below a threshold (typically 0.1 times the vertex sampling distance) or until

there are no remaining unused labels.

Weight Refinement. The binary weight assignment according to Equation 5.12 has the limi-

99

(a) Spin Image Matches (b) Filtered with RANSAC (c) Initialization of Weights

Figure 5.9: Initializing correspondences and weights. (a,b) Spin image matching alone produces many
outlier correspondences, but filtering these correspondences with RANSAC selects the most consistent
subset. (c) The weights are initialized by picking random bone centers and assigning the label of the
closest center at each grid point.

tation that the surface may deform unnaturally at joints, as illustrated in Figure 5.8. In order

to smooth these regions, we perform an optional weight refinement step by solving for the

continuous weights according to the original optimization objective in Equation 5.8. Since we

would like the weights to be as similar as possible to the discrete weights, we add an additional

term to Equation 5.8 that pulls the weights to their discrete counterparts:

Edisc =
∑

c

(
vc j − v∗

c j

)2
, (5.13)

where v∗
c j is the binary weights obtained from discrete labeling. We solve the resulting non-

negative least squares (NNLS) problem using the approach by Schaefer and Yuksel [2007]. This

solves the unconstrained least squares problem, removes variables with the smallest negative

values (i.e. forcing their value to zero), and repeats until a non-negative solution is reached.

5.3.3 Initialization

To start our algorithm, we automatically initialize the weight functions and find

initial correspondences using feature descriptors and RANSAC. Note that the user specifies the

total number of bones used to estimate the motion of the range scans. This parameter does

not need to be exact, since the graph cuts optimization tends to combine regions and throw

away extra labels.

100

Initial Correspondences Using RANSAC. When the input scans are initially close together, we

can use closest point correspondences. To provide better correspondences when the object has

moved significantly, we use spin images as a feature descriptor and use Johnson’s spin-image

matching engine to determine reliable correspondences [Johnson, 1997]. We use these initial

correspondences for only the first iteration of the T-step and use closest point correspondences

for the rest of the optimization.

Since spin images are local descriptors, matching with them alone gives rise to many

incorrect correspondences due to repeated shape features (Figure 5.9a). To deal robustly with

such outliers, we treat each labeled region independently and perform RANSAC [Fischler

and Bolles, 1981] to estimate a rigid transformation and remove spurious correspondences

(Figure 5.9b). This step proved to be useful in our experiments: on average anywhere from 20%

to 40% of correspondence candidates were removed as outliers. In some cases, even 60%∼70%

were outliers, most likely because the scan contained a large amount of symmetry or because

regions in the initial segmentation overlapped multiple rigid parts. Occasionally this method

confused symmetric parts, because it still relies on the comparison of local feature descriptors.

However, it provided reasonably accurate starting guesses in almost all of our experiments.

Initial Segmentation. To initialize the weight function, we generate a random segmentation

of the range scan, similar to the k-means clustering algorithm [Lloyd, 1982]. First, we randomly

pick initial bone locations for each bone j on the source shape. In this step, we ensure that

these locations are sufficiently spaced apart by using best-candidate sampling [Mitchell, 1991].

Then, we initialize binary weight values vc at each grid point. To do this, we find the bone j

whose location is closest to the grid point, and then we set the j th weight component to be 1

and the rest to 0. This strategy is illustrated in Figure 5.9c. Even though this segmentation is

often incorrect, the subsequent weight optimization is able to adjust the weights to express

the motion accurately.

101

5.4 Experimental Results

5.4.1 Registration

We tested our algorithm with five datasets: one synthetic dataset of a walking figure

generated by Pinocchio [Baran and Popović, 2007], two real datasets of a car and a robot

[Pekelny and Gotsman, 2008], a dataset of a moving hand [Weise et al., 2007], and a dataset of

human body scans [Allen et al., 2002]. Each dataset consists of a sequence of depth scans of a

moving object. All tests were performed on a single core of an Intel Core 2 Duo 2.66GHz with

2GB of RAM.

Figure 5.10 shows some registered example pairs and the resulting influence weight

function on the grid. In the color-coded visualization of the skinning weights, we can see that

our algorithm determines intuitive weights for each rigid part. In addition, we were able to

obtain an accurate registration with small registration error, visualized for some examples in

Figure 5.11.

Our algorithm also worked well with a severe amount of occlusion in the examples.

The car example shown in Figure 5.12 is completely missing the arm in one of the pairs. Also,

one of the robot pairs is completely missing the torso region, and only a small part of the

whole surface is observed in the example of the walking figure. Nevertheless, we are able to

successfully align all three examples. We also tested our algorithm using a few examples from

the human body scan dataset [Allen et al., 2002], shown in Figure 5.13. Our method produces

accurate registrations, and the quality is comparable to that of previous work [Huang et al.,

2008]. To test the robustness of our method, we degraded the data by manually cutting holes

into the geometry, shown in the bottom of Figure 5.13. We were able to obtain a successful

registration even in this case.

We tested our implementation with pairs of adjacent frames in the datasets. In order

to evaluate the registration results, we verified the registration of each pair visually. For the car

dataset, out of a total number of 89 registration pairs, 85 examples were registered correctly

with only 4 pairs exhibiting an objectionable misalignment. The algorithm worked well with

the more complex robot dataset as well, with 67 out of 89 pairs registered correctly. In addition,

102

Registration Influence WeightsSource and Target

C
ar

R
ob

ot
W

al
k

H
an

d

Figure 5.10: Some registration examples from the car, robot, walk, and hand datasets. The red shape is
the source, the blue shape is the target, and the green shape is the source deformed to match the target.

103

0%

2.5%

Figure 5.11: Registration Error. The color-coded visualization shows the distance to the closest point as
a percentage of the bounding box diagonal.

167 of the 189 pairs were registered correctly in the synthetic walking figure dataset, and 31

out of 46 for the hand dataset. Some results that were less successful are shown in Figure 5.14.

In these cases, the maximum correspondence distance was too low or high, causing local

minima or wrong part mappings (Figure 5.14a,c), the grid resolution was too low or high,

causing separate parts to be attached or separated (Figure 5.14b), or there was too much

missing geometry, causing bad part mappings or misalignments (Figure 5.14d). After retrying

with different parameter settings, we were able to reduce the misalignment rate to 0, 4, and 6

examples for the car, robot, and walking figure dataset, respectively. The remaining examples

remained problematic because of too much missing data or bad part mappings.

5.4.2 Comparison with Huang et al. [2008]

We compare our technique with the recent method by Huang et al. [2008] in Fig-

ure 5.15. To test how both methods handle the alignment with missing data, we used the

arm example from Figure 5.13 and a pair of frames from the robot dataset. We see that both

techniques can align examples with missing data. Comparing the registration error, the result

by Huang et al. [2008] aligns the arm examples better, while our method aligns the robot

104

Registration Influence WeightsSource and Target
C

ar
R

ob
ot

W
al

k

Figure 5.12: More difficult registration tests, each with a significant amount of motion and occlusion.

105

Registration Influence WeightsSource and Target
A

rm
S

ho
ul

de
r

T
or

so
A

rm
 w

/ H
ol

es

Figure 5.13: Registration examples from the human body dataset. The bottom example, a modified
version of the top example, shows that our method is robust to missing data.

106

(a) (b) (c) (d)

Figure 5.14: Less successful registration examples. (a) The registration converged to a suboptimal local
minimum. (b) Shows an undesired connection between the left wing and left arm. (c) Both legs in the
source map to the left leg in the target. (d) Insufficient data causes a misalignment.

(a) Result by Huang et al. [2008] (b) Our Result

(c) Result by Huang et al. [2008] (d) Our Result

Arm Huang et al. Our Result
Max 4.96 11.78
Average 0.296 0.378
Variance 0.118 0.314

(e) Registration Error for Arm

Robot Huang et al. Our Result
Max 4.54 2.29
Average 0.325 0.135
Variance 0.0896 0.0208

(f) Registration Error for Robot

Figure 5.15: Comparison with Huang et al. [2008], using an arm example with holes and a pair of robot
frames. The tables on the right show some statistics of the registration error. Here, the numbers indicate
the maximum, average, and variance of the distance to the closest point (measured from all target
vertices), as a multiple of the range scan grid spacing.

107

Novel Poses
Figure 5.16: Interactive posing using our system. The weights (bottom left) were optimized by registering
two scans (top left). The user can interactively select and drag constraints on the shape (shown as
boxes) to generate a novel pose.

example better. This shows that our method works well when the examples are more rigid,

while non-rigid deformations are aligned less precisely. An additional difference is that our

method solves for an articulated motion model, which includes joints between neighboring

parts. This allows us to target the range scan into novel poses, which is discussed below.

5.4.3 Creating Novel Poses

Since we solve for the skinning weights, our technique is especially useful for creating

novel poses. Unlike previous work, we use the output of our algorithm directly to perform both

forward and inverse kinematics, either by specifying or solving for the bone transformations.

In fact, by substituting the correspondences with user-given constraints, we can use our T-

step optimization directly to perform inverse kinematics. We created an interactive application

that allows the user to define and manipulate end effectors to create novel poses. Figure 5.16

shows that interesting poses can be generated using our application.

5.4.4 Parameters and Performance

The number of bones, the number of correspondences, the grid resolution, and

the maximum correspondence distance for each dataset is reported in Table 5.1. The grid

108

resolution is specified as the number of divisions along the longest axis of the bounding box,

and the maximum correspondence distance is specified as a multiple of the range scan sample

spacing. Using a coarse grid resolution covers larger holes between parts. However, if the

grid is too coarse, then it becomes harder to localize the weights to smaller parts. Also, a

coarse grid may cause undesired parts to be connected, causing difficulties in the registration.

For the maximum correspondence distance, a larger distance increases the running time

for searching initial correspondences, because a greater number of spin images must be

compared. This allows for larger movement, but also may cause similar parts (e.g. arms, legs)

to be mapped incorrectly. In addition to the maximum distance, we use a dynamic threshold

for the maximum normal angle (decreasing from 80 to 20 degrees) similar to [Pekelny and

Gotsman, 2008].

For the weights of each error term, the weight of Edist was α = 1.0 for both the T-

step and the W-step. For the joint constraint term Ejoint, we decreased the weight from 1.0 to

0.05 in 5 iterations of the main optimization loop according to the function ek ln(0.05)/5, where

k is the iteration number starting from 0. This allows the registration to be refined precisely

during the latter part of the optimization. For the weight smoothness term Esmooth, a constant

between 0.5 and 1.0 times the grid spacing size worked well. For Enorm we used ν= 1.0, and

for Edisc we chose a value between 0.1 and 0.5 depending on how close we wanted to be to

the discrete weights. Finally, for generating the spin images, we set bin size equal to the grid

spacing, the image size to 15, and the maximum support angle to 90 degrees.

We report averaged statistics and timings of our method in Table 5.1 using our

implementation. The setup time is spent creating and initializing the data structures, the

RANSAC step generates the initial correspondences using spin image matching, the align

time is the total time the algorithm processes the main loop, and the weight time is spent

performing the final NNLS weight refinement step.

109

Table 5.1: Average performance statistics for our tests. Timings (in seconds) represent the total time
spent in each stage.

Statistic Car Robot Walk Hand
Bones 7 7 10 12
Corresp. 1200 1200 1000 1500
Vertices 5389 9377 4502 34342
Max Dist 20 40 20 30
Grid Res. 60 65 50 40
Grid Cells 1107 1295 1014 814
Grid Points 2918 3366 2553 1884
Setup 0.185s 0.234s 0.136s 0.078s
RANSAC 8.089s 20.001s 5.517s N/A
Align 9.945s 19.644s 23.092s 49.918s
Weight 6.135s 10.713s 10.497s 3.689s
Total Time 24.355s 50.591s 39.242s 53.684s

5.5 Discussion and Future Work

Our algorithm is currently limited to registering pairs of shapes. In the next chapter,

we extend this method to handle the alignment of multiple scans. Since a sequential alignment

that accumulates the geometry in each frame causes registration error to accumulate, we

formulate a simultaneous optimization to give a precise result.

We are currently using the LBS deformation model for its simplicity. In case LBS

exhibits artifacts, such as the well known “candy wrapping” effect, our method could be

adapted to optimize other RDMs, for example dual-quaternion blending [Kavan et al., 2007].

However, this would likely make the optimization procedure more computationally expensive.

Our method requires sufficient separation between different parts of the shape in

the source scan. If two parts are joined together, this causes the grid cells to be connected

between these parts, and the joint constraint will constrain the parts to move together. In the

future, we plan to address these topological issues by using a spatially varying smoothness

weight that allows the deformation to disregard problematic joints. Also it would be interesting

to use a multiresolution hierarchical grid to represent the skinning weights.

We believe that improving the initial correspondences will make the algorithm more

robust to problematic cases. Using a more discriminative feature detection, or using spectral

110

clustering (as proposed by Huang et al. [2008]) could help our algorithm to avoid local minima

and wrong part mappings in the registration. Our discrete labeling step also resembles clus-

tering algorithms [Cohen-Steiner et al., 2004; Huang et al., 2008], which could be used as an

alternative to the graph cut optimization.

5.6 Conclusions

We have presented a method to register deforming range scans by modeling the

motion with a reduced deformable model (RDM). We have chosen linear blend skinning for its

simplicity, but more sophisticated approaches could be used if necessary. A key idea of our

approach is to represent the weight functions on a 3D grid surrounding the scanned geometry.

This allows us to apply linear blend skinning (LBS) to range scans with occlusions and missing

data. We solve for the parameters of the deformation model using an EM-type algorithm.

We have demonstrated that our approach is able to register articulated shapes ro-

bustly and with significant occlusions and missing data. The advantages of our technique

are that it does not require any manual segmentation, user specified markers, nor a surface

template. We believe that our work is a significant step forward in automatically reconstructing

fully rigged 3D articulated models from range scans.

5.7 Acknowledgments

We wish to thank Y. Pekelny and C. Gotsman for sharing the car and robot datasets, T.

Weise for the hand dataset, I. Baran for the walking figure dataset, and B. Allen for the body scan

data. Additional thanks to G. Debunne for providing the libQGLViewer library, D. M. Mount

and S. Arya for providing the ANN library, and Y. Boykov, O. Veksler, R. Zabih for providing an

implementation of their graph cuts algorithm. Also we thank Q.-X. Huang for kindly providing

us with comparisons.

The material in this chapter is, in part, a reproduction of published material: Will

Chang and Matthias Zwicker, “Range Scan Registration Using Reduced Deformable Models,”

111

Computer Graphics Forum (Proceedings of Eurographics), Vol. 28, No. 2, April 2009. The

dissertation author was the primary investigator and author of this paper.

6
Global Registration for

Articulated Model Reconstruction

IN the last two chapters, we focused on the problem of aligning pairs of shapes

in different poses. In this chapter, we build on these ideas to design a system

that can automatically reconstruct a complete surface from a sequence of dynamic range

scans. Consider Figure 6.1, which shows a simple example of an object that we would like to

reconstruct. The toy robot is moving in each frame, and the relative position and orientation

of each part is changing. At the same time, there is much missing data in each frame because

the data is taken from a single range camera. Although this is the case, the motion of the object

is relatively simple: it consists of the movement of a few underlying rigid parts.

The goal of this chapter is to demonstrate that it is possible to reconstruct the

complete surface from this type of data without a template, a user-specified segmentation,

or corresponding marker locations in each frame. Given the sequence of input data as range

scans, we assume that the motion of the underlying surface can be effectively approximated by

the movement of B rigid parts. As we saw in Chapter 5, prescribing this motion is equivalent

to finding a set of B rigid transformations (one for each part) and a vector of weights for each

scanned point (which serve as part assignments). A movement of the surface is produced

by applying the transformations to each point according to its weights. So the problem for

multiple scans is to find the best set of transformations (B transformations for each frame) and

112

113

Figure 6.1: Selected range scans from the 90 frame robot sequence. Our goal is to automatically align
all of these scans to a common location and a common pose. Data from Pekelny and Gotsman [2008].

114

influence weights at each scanned point (in all frames) that produces the closest alignment of

all frames to a common pose. Solving for this articulated model is useful because the weights

and transformations, along with joints between neighboring parts, can be used to easily and

intuitively edit the pose of the reconstructed model.

6.1 Contributions

We develop an algorithm to solve this problem effectively for multiple range scans of

an articulated object. The main contribution is to use the transformation assignment approach

of Chapter 4 to obtain a rough initialization of the alignment between pairs of frames, and

extend the algorithm of Chapter 5 to align multiple scans simultaneously.

For the initialization, we use the faster strategy discussed in Section 4.4 which solves

the assignment problem on a reduced, subsampled representation of the input scan. This

initialization is precomputed in advance and used as input to the simultaneous registration

step. While the algorithm in Chapter 5 could be extended for multiple scans by sequentially

aligning each input scan, it is well known in the rigid registration literature that a sequential

alignment approach often causes accumulation of alignment error [Bernardini and Rushmeier,

2002; Rusinkiewicz et al., 2002]. The simultaneous registration prevents this accumulation

of error. In addition, we also replace the regular grid used in Chapter 5 with a more flexible

graph-based structure to improve performance.

6.2 Algorithm Overview

We first outline the basic structure of our method in Algorithm 6.1. The input to

our algorithm is a sequence of range scans, denoted F0, . . . ,Fn , which are expected to be in

temporal order so that there is sufficient overlap between frames to align the scans. We assume

that each range scan just is a set of 3D points. Although it is not mentioned in the pseudocode

above, we estimate the normal at each point based on a triangle mesh constructed from these

points (Section 3.2.1). If a mesh is not already available, we construct a simple mesh based on

115

Algorithm 6.1: ARTICULATED GLOBAL REGISTRATION(F0, . . . ,Fn)

Data: A sequence of range scans, denoted F0, . . . ,Fn

Result: Sample set S of the completed surface, part labels W for each sample
x ∈ S, rigid transformations T for each part

begin1

Compute the initial registration between each pair of adjacent frames using2

transformation assignment (Section 4.4);
Subsample an initial set of points S from F0, and construct a Euclidean3

k-nearest neighbor graph on S;
Flast ← F0;4

while Flast 6= Fn do5

Let Fnew be the next frame after Flast;6

Load the initial registration result for Flast → Fnew (Section 6.3.3);7

Check if any parts are occluded in Fnew (Section 6.3.6);8

OPTIMIZE T,W (S,E ,T,W,F0, . . . ,Fnew) (Algorithm 6.6);9

(S,W,E) ← RESAMPLE ASG(S,W,T,F0, . . . ,Fnew) (Algorithm 6.2);10

Flast ← Fnew;11

return S,W,T;12

end13

the rectilinear structure of the scanned points.

The first step is to apply the algorithm from Chapter 4 independently to each pair of

adjacent frames in the sequence (line 2). This method is used because it can align a pair of

scans while being robust to missing data and large motions. We use the faster version of the

algorithm developed in Section 4.4 to speed up the matching process. The output of this step

is an initial registration between each adjacent frame.

The second step is to refine this initial registration using the technique of Chapter 5

and produce a global registration of all frames to a common pose. The basic idea is to optimize

the transformations and weights simultaneously across all frames to align them to a common

reference pose. The frames are introduced sequentially, one at a time, into the global registra-

tion (lines 5–11). For each frame, we load the initial registration (line 7), handle cases when

parts are occluded (line 8), optimize the transformations T and weights W to simultaneously

align the frames (line 9), and update the sample set used to optimize the registration (line 10).

An important component in the global registration is to optimize the alignment

using a subset of positions S gathered from all frames. This set S is called the “sample set.”

116

As long as there are enough samples to unambiguously match each rigid part, this can speed

up the algorithm while still producing a high-quality alignment of the frames. In addition,

unlike the original technique, we define weights directly on each sample in S. This simplifies

the algorithm by removing the overhead of translating between the locations of the surface

samples and the grid cells. The regular grid connectivity, which was needed for specifying

smoothness constraints between weights, is now replaced by a Euclidean k-nearest neighbor

graph on the sample positions. This provides a more flexible structure to avoid sampling issues

and topological problems.

As discussed previously in Section 5.3.2, solving for smooth weights during the regis-

tration leads to overfitting of both the transformations and the weights. Thus, like Chapter 5 we

solve for a discrete labeling of the samples S, which corresponds to assigning a binary weight

(where one component is exactly 1 and the rest are 0). In the following sections, we will use the

terms “weight” or “binary weight” and “label” interchangeably.

During the global registration, some parts may entirely disappear (and reappear)

in several frames. To handle these cases, we check if there are too few matching samples for

each part. If this is the case, then the part is marked as occluded and is subsequently excluded

from the optimization. Also, in case a part reappears (perhaps in a different location), we have

a strategy to track the part again during the global registration. We will discuss this more in

Section 6.3.6 and 6.3.7.

Now we describe each component of our algorithm in detail. After performing the

registration on the entire sequence, we can resample the surface densely, reconstruct a mesh

representing the completed surface, and fit smooth skinning weights to obtain a final polished

reconstruction.

117

Reference FrameFrame 1

. . .

Frame 2

Frame 3

Frame 4

Frame nT (1 Ref)
j

T (2 Ref)
j

T (3 Ref)
j

T (4 Ref)
j

T (n Ref)
j

Reference Frame

Frame f Frame g

T (f Ref)
j T (g Ref)

j()-1

T (f Ref)
j

T (Ref g)
j =

T (Ref g)
j

(a) (b)

Figure 6.2: Organizing the transformations for simultaneous registration. (a) We solve for the set of
transformations that align each input frame to the reference frame F0. (b) We can transform between
any pair of frames f and g by first transforming from f to the reference and applying the inverse
transformation to g .

6.3 Global Registration

6.3.1 Organization of the Transformations

We need a way to represent the movement for each part in each frame. To organize

this information concisely, we designate one of the frames as a reference frame or reference

pose and define rigid transformations (each composed of a rotation and translation) relative to

this reference1. This definition makes it easy to specify and solve for the alignment later in the

global registration step (Section 6.3.4).

To specify the pose of the subject in each frame, we need to use multiple transfor-

mations, one for each rigid part. The user specifies a maximum number of transformations

B to use in each frame. We use the notation T (f �Ref)
j to denote the j th transformation for

frame F f . Each transformation T (f �Ref)
j is composed of a rotation R ∈ SO(3) and translation

~t ∈R3. To apply the transformation to a point x ∈R3, we use the notation T (f �Ref)
j (x) = Rx+~t.

Note that the direction of transformation T (f �Ref)
j is from frame f to the reference frame. This

is illustrated in Figure 6.2. We can also transform between any frames by transforming first

to the reference frame and then applying the inverse transformation to the desired frame

(Figure 6.2b). This is expressed using an inverse operator (·)−1 and a composition operator ◦,

1This is similar to the approach used by Neugebauer [1997] for registering scans of rigid objects.

118

Reference Frame 1 Frame 2 Frame 3 All Samples

....

Figure 6.3: We use sample points on all input frames to measure the global alignment. For each frame,
we only keep the samples that are from new geometry that has not been observed in any previous
frames.

which translates to the formula

(
T (g�Ref)

j

−1 ◦T (f �Ref)
j

)
(x) = T (g�Ref)

j

−1 (
R(f �Ref)

j x+~t(f �Ref)
j

)
= R(g�Ref)

j

> [(
R(f �Ref)

j x+~t(f �Ref)
j

)
−~t(g�Ref)

j

]
. (6.1)

Thus, once we know the transformations relating each frame to the reference, we can transform

from any source frame (where the weights are known) to the pose of any target frame.

6.3.2 Sample Set and All-Samples Graph (ASG)

The set of samples S plays a key role in optimizing for the precise alignment of

the scans in the global registration step. Each member of S, which we call a sample point,

is a scanned point x ∈ R3 selected from an input frame F f
2. This set will serve as a coarse

representation of the reconstructed 3D model. It is used to optimize the alignment between the

frames (Figure 6.3). Associated with each sample is a vector of weights wx = [wx1, wx2, . . . , wxB],

which each component wx j indicates the strength or influence of transformation T j on x.

During our optimization we will solve for binary weights (labels), thus all components of wx

are 0, and only one component wx j = 1.

Creating the Sample Set. Our purpose in using the sample set is to sparsely represent the

2In the subsequent text, we will implicitly assume that the sample point x is associated with the frame F f .

119

entire observed surface, while minimizing the redundancy of geometric information. This will

maximize the performance of the optimization, while still giving an accurate registration of

the surfaces. Our approach is to select a well-distributed set of points in each registered frame

and merge all of the sets together. During the merging step, we minimize redundancy in S by

removing overlapping points. This sampling and merging process is performed every time a

new frame is added to the global registration, so that any changes in the registration or newly

observed parts of the surface are incorporated into S.

First, a well-distributed set of points are picked in each frame using the best-candidate

technique [Mitchell, 1991]. We pick a fixed fraction of the points, where this fraction is a user-

specified parameter. The use may adjust it lower to compute the registration faster, or higher

to obtain a more precise alignment. We denote the resulting list of sampled points as U f , and

we store the points in this list as candidates for selection into the sample set S. Note that this

step has to be performed only once per frame when we store the list of sampled points.

For the very first frame, the sample set S is just U0. Every time a new frame is added

to the global registration, S is resampled to produce a new set S′, which incorporates changes

in the registration and adds points from newly observed parts of the surface. The resampling

simply merges all of the U f by detecting and removing overlapping samples, and assigns a

weight for each point in the newly resampled set.

The resampling (Algorithm 6.2) is performed using a sequential strategy. Starting

from U0, we iterate through each successive U f and determine (1) which points are not

overlapping with the currently selected set S′ and (2) the weights of each x ∈U f extrapolated

using the previous weights S and W. Then, we add all the non-overlapping samples that have

a valid weight in the new set S′,W′.

We adopt the strategies outlined by Pekelny and Gotsman [2008] to determine the

non-overlapping samples and extrapolate the weights for the new samples in U f . To determine

the non-overlapping samples (Algorithm 6.3), for each sample we compute the distance dpt

to the closest existing point. We also the distance dOnPl between the points projected on the

plane passing through the surface normal at the closest point. If the surface normals differ

120

Algorithm 6.2: RESAMPLE ASG(S,W,T,F0, . . . ,Fnew)

Data: Sample set S with associated labels W, transformation for all frames T

Result: New sample set S′, assigned weights W′, ASG graph E ′

begin1

foreach Label i ∈ [1..B] do2

Find all samples x ∈ S whose label is i ;3

Transform these samples to the reference frame and store in Vi ;4

S′ = { },W′ = { };5

foreach Frame F f ∈ [F0..Fnew] do6

Let U f be the set of uniformly subsampled points in F f ;7

Transform S′ to frame F f and store in V ′;8

Transform each Vi to frame F f using T (f �Ref)
i

−1
and store in V ′

i ;9

U ′
f ← NONOVERLAP(V ′,U f ,τsample) (Algorithm 6.3);10

W ′ ← EXTRAPLABELS(V ′
i ,U f ,τsample) (Algorithm 6.4);11

foreach x ∈U ′
f do12

if w′
x ∈W ′ is valid then13

Add x to S′ and its corresponding weight w′
x to W′;14

E ′ = CONSTRUCT ASG(S′,W′,T,τlen,τstretch) (Algorithm 6.5);15

return
(
S′,W′,E ′)16

end17

Algorithm 6.3: NONOVERLAP(V ,U f ,τsample)

Data: Existing points and corresponding surface normals V , new points and
normals U f

Result: A subset U ′
f of U f that does not overlap with V

begin1

U ′
f = { };2

foreach x ∈U f do3

Find the point y ∈V that is closest to x;4

Let~nx,~ny be the corresponding surface normals of x,y;5

dpt ←‖x−y‖;6

dOnPl ←
√

‖x−y‖2 − ((
x−y

) ·~ny
)2;7

if
(
~nx ·~ny < 0 and dpt > τsample

)
or

(
~nx ·~ny > 0 and dOnPl > τsample

)
then8

Add x to U ′
f ;9

return U ′
f ;10

end11

by more than 90 degrees, then we apply a threshold on dpt, otherwise we apply a threshold

on dOnPl. This is a modification of the original strategy, which only applied a threshold on

121

Existing Samples

New Samples

(a) Before Filtering (b) After Filtering

(c) Before Filtering (d) Filtering with
only Plane Distance

(e) Filtering with a Combination
of Plane and Point Distance

Figure 6.4: Illustrating how we filter out overlapping points. (a,b) Each time there are new points to
be added to the sample set S, we filter out samples that are too close to the existing points in S. (c,d,e)
In this case, the existing samples lie on one plane and the new samples lie on another plane that is
perpendicular to the first. When only dOnPl is used, all of the new samples are discarded, because they
are close to the existing samples when projected onto the first plane. We use a combination so we can
keep samples that are further away from the existing set.

dOnPl. We illustrate this with an example in Figure 6.4. The original strategy can potentially

discard points that are far away from the existing set, because the projected on-plane distance

happens to be small. Our modified strategy seeks to keep the points whose projected distance

may be small but the point-to-point distance is large.

To extrapolate the labels from the original set S to the new samples U f (Algo-

rithm 6.4), we first gather all the samples for each label i into separate sets Vi , and transform

these sets into frame F f . To determine the label for a new sample point x ∈U f , we first com-

pute the distance from x to the closest point in each set Vi , using a weighted combination of

point-to-point and point-to-plane distances 3. These distances are then inverted and normal-

ized to give a score for that label, and the label with the maximum score is taken as the label for

the new point x. However, if this label is marked as occluded for this frame, or the maximum

3The weights used here are discussed later, in Section 6.3.4.

122

Algorithm 6.4: EXTRAPLABELS(Vi for each part i ,U f ,τsample)

Data: Existing points and corresponding surface normals Vi for each part, new
sample points U f

Result: A set of labels W for each point in U f

begin1

foreach x ∈U f do2

foreach Label i ∈ [1..B] do3

Find the point y ∈Vi that is closest to x;4

Let~ny be the corresponding surface normal of y;5

di ← ηpt‖x−y‖+ηpl
∣∣(x−y

) ·~ny
∣∣;6

Ci ← 1/di∑
i 1/di

;7

Sort the list of Ci , and find the median m of the larger half of this list;8

τC ← 3m;9

if (maxi Ci > τC) and
(
argmaxi Ci is not occluded

)
then10

Set argmaxi Ci as the label for x;11

else12

Mark x as having no valid label;13

return The labels W corresponding to each point x ∈U f ;14

end15

score is not significantly higher than the other scores, then we consider the label as invalid for

this point. To determine if the maximum score is significantly higher, we use three times the

upper quartile (median of the largest half of the scores) as a threshold.

Constructing the ASG. In addition to the sample set S, we construct a graph structure over S,

which we call the All-Samples Graph (ASG). The connectivity of this graph serve as smoothness

constraints that help the optimization form large, contiguous parts. The graph is constructed

by forming the k-nearest neighbor graph on the sample set S, where all samples are trans-

formed to the reference frame. To prevent undesired smoothness constraints between separate

(but spatially near) parts, we measure the length of each edge in all frames and discard edges

that stretch too much. The procedure for constructing the graph is outlined in detail in Algo-

rithm 6.5. We observed that pruning edges between connected parts may bias the discrete

labeling optimization and create an unmovable boundary between parts. Therefore, we keep

edges between parts that are connected by a joint (which are discussed in Section 6.3.4).

123

Algorithm 6.5: CONSTRUCT ASG(S,W,T,τlen,τstretch)

Data: Sample set S with associated weights W, transformations for all frames T

Result: A list of edges E of the constructed ASG
begin1

Transform all samples x ∈ S to the reference pose;2

Store the resulting samples in the set V ;3

Construct the k-nearest neighbor graph of V ;4

Store the resulting edges in E ;5

foreach Edge e = (x,y) ∈ E do6

if wx 6= wy, and their corresponding parts do not have a joint7

(Section 6.3.4) then
Transform the two endpoints x and y to each frame;8

Find the maximum lmax and minimum length lmin of the edge;9

if lmax < τlen and lmax
lmin

> τstretch then10

Mark the edge e;11

Remove all marked edges from E ;12

return E ;13

end14

6.3.3 Propagating the initial registration

The result of the initial registration between adjacent frames Fi and Fi+1 (Section 4.4)

is a set of transformations and their assignment to each point of Fi and Fi+1. Since the global

registration works only with the weights defined on points of the sample set S, we need to find

the transformations and labels of the initialization that pertain to S. There are two cases: (1) at

the beginning of the registration, where we have a sample set S entirely from the first frame F0

with no weights (labels) associated with the samples, and (2) during the registration, where we

have both the sample set S and associated labels.

For the first case, we will translate both the labeling and the transformations from

the initial registration to the sample set. Here, we would like to assign labels to each point in

S and provide an initial transformation for each label. For each sample in S, we assign the

same label that is assigned to that point in the initial registration. If the number of labels is

greater than the user-suggested maximum B , then we find and keep only the largest B labels.

For the samples that do not have a label in this top B , then we find the closest point that does

have a top B label and assign this label to the sample. Finally, we just use the transformations

124

corresponding to the labels assigned to the samples.

For the second case, since we already have a labeling on each point of S, our goal

is just to find an initial transformation for each label. At a high level, for each label k that

is assigned to S, we compute a weighted average of transformations assigned to Fi whose

corresponding regions overlap with the region for label k.

First, we first transform all sample points to frame Fi . Since we do not expect each

sample x ∈ S to have a matching point y ∈ Fi at exactly the same location as x, we associate x

with the closest point y ∈ Fi . Then, the label assigned to sample point x ∈ S is considered to

be overlapping with the label assigned to point y ∈ Fi (from the initial registration). Note that

we take care to reject associations when (1) y is on the boundary of Fi , (2) the distance ‖x−y‖
exceeds a threshold, and (3) the angle between the normals of x and y exceeds a threshold.

The thresholds used here are the same values used for computing closest points in the global

registration in Section 6.3.4.

Finally, to determine the initial transformation for each label k that is assigned to

sample points S, we first gather a list of points R ⊆ S, where each x ∈ R has label k. Then,

for each x ∈ R we look up the corresponding points y ∈ Fi and make a list of all labels L

assigned to each y, along with the number of points y with each label. The labels in this list are

considered to be overlapping with region R, and the ratio of (# points for l ∈ L / # total points)

serves as a weight for label l . Finally, we just take a weighted average of the transformations

corresponding to each l according to this weight. To compute the weighted average of the

rigid transformations, we use the dual-quaternion linear blending (DLB) technique by Kavan

et al. [2008].

6.3.4 Global Registration

Once a frame is initialized, it is introduced into the global registration step. This

step optimizes for the best weights (denoted W) and transformations (denoted T) that si-

multaneously align all initialized frames. The optimization objective has three terms: (1)

Efit(T,W), which measures the alignment distance of all frames to the reference, (2) Ejoint(T),

125

which constrains neighboring transformations to agree on a common joint location, and (3)

Eweight(W), which constrains the weights to be smooth and to form contiguous regions. With

weights α,β,γ for each term, we write the entire objective as

argmin
T,W

αEfit(T,W) + βEjoint(T) + γEweight(W). (6.2)

Next, we describe each term and our optimization procedure in more detail. During the

optimization, solving the weights in a continuous range leads to overfitting, as we mentioned

before. To resolve this problem, we constrain the weights to be binary, where only one compo-

nent can be 1 and the rest are 0. Thus the weights essentially become labels; we will use the

two terms interchangeably (See Section 5.3.2).

Fitting Objective Efit

The key idea for this term is to measure the alignment distance between all frames

using the sample points. For each sample point x on frame f , the weight wx assigned to x and

the transformations T =
{

T (f �Ref)
j | ∀F f and j ∈ [1..B]

}
tell us the transformed location of x on

all other frames. Therefore, in this term, we transform the sample location to all other frames

and measure how close it is to the scanned data of these frames.

To measure the proximity of a transformed point x′ = T (g�Ref)
j

−1◦T (f �Ref)
j (x) to frame

Fg , we take the distance to the closest point y(g)
j ∈ Fg . There are three important details to add

to this basic strategy. (1) Notice that the closest point will change depending on which of the B

transformations we use to transform x to frame g . This is the reason why we keep a separate

closest point y(g)
j for each j . (2) It may be the case that x′ may not have a corresponding point

in Fg due to missing data. To handle this case, for each sample point x′ (i.e. transformed to

frame g), we mark the corresponding target point y(g)
j as invalid if (a) the distance between

these points exceeds a threshold τd , (b) the angle between the normals exceeds a threshold

τn , or (c) the target point lies on the boundary and the distance exceeds a smaller threshold

τb [Pekelny and Gotsman, 2008]. (3) If the corresponding point for x′ is indeed missing in

frame Fg , then we do not expect y(g)
j for any j to be valid. Therefore, if j∗ is the current label

126

Reference Frame Frame 1 Frame 2 Frame 3

y 2 y 3x

T (x)(1 Ref)
j

Minimize
Distances

T (y)(2 Ref)
j j

(2)

(2)

T (y)(3 Ref)
j 3

(3)

(3)

Figure 6.5: To measure alignment, we compute distances between sample points x and target points

y(g)
j on the reference frame Fref. We add up these distances to measure the alignment of all frames in

the sequence. We optimize for the transformations and weights to minimize the total distance.

assigned to x, we check to see if y(g)
j∗ is invalid. If this is the case, then we invalidate all target

positions y(g)
j for all j .

Given these corresponding points, we can precisely quantify the alignment distance

between the sample points all all frames. Figure 6.5 illustrates this situation for a sample point

x in frame 1 and corresponding points y(2)
j ,y(3)

j in frames 2 and 3, respectively. Mathematically,

we measure the alignment distance using the following expression:

Efit(T,W) = ∑
x∈S

∑
All Fg

g 6= f

B∑
j=1

∑
Valid y(g)

j

wx j d
(
T (f �Ref)

j (x),T (g�Ref)
j

(
y(g)

j

))
. (6.3)

Here, we have computed the distance between T (f �Ref)
j (x) and T (g�Ref)

j

(
y(g)

j

)
instead of com-

paring the distance between T (g�Ref)
j

−1 ◦T (f �Ref)
j (x) and y(g)

j . These two alternatives are basi-

cally the same, except that the first computes the distance in the reference frame Fref, whereas

the second computes the distance in frame Fg . We chose the first option for Efit, because it

does not involve a composition of the transformations seen in the second option. We want to

avoid this composition of transformations because it is more difficult to approximate with a

linear function in the optimization. Since we linearize each transformation separately, a com-

127

position of transformations would result in a multiplication of two linearized transformations,

which is less accurate than having two separate linearized transformations.

In addition, notice that we have simplified the objective for the case of binary weights

and pulled the weight term wx j outside of the distance d(·, ·). Thus, we can think of the weight

as “selecting” one of the distances according to which label is assigned to x. Next, d(·, ·)
measures the distance between the points, and the resulting distance is then summed up over

all sample positions x to compute the total alignment distance. For d(·, ·) we use a weighted

sum of the point-to-point and point-to-plane distance measures:

d(x,y) = ηpt ‖x−y‖2 +ηpl
(
(x−y) ·~ny

)2 . (6.4)

For the point-to-plane distance, we also need the normal vector~ny of y. This vector is trans-

formed to the reference frame Fref as well. We typically use the weights ηpt = 0.2 and ηpl = 0.8

for our experiments.

Joint Objective Ejoint

The joint term constrains neighboring transformations to agree on a common joint

location. This preserves a natural connection between different parts of the surface. Our

method supports automatically detecting and constraining two types of joints: 3 DOF ball

joints and 1 DOF hinge joints. Before we discuss how to detect these joints, we first describe

the joint types and how we constrain them in the optimization.

A hinge joint specifies that two transformations always agree on a line in R3, which

means that both transformations transform this line to exactly the same location. We call this

line the hinge axis, which can be described using the parametric form u+ t~v, where t ∈R. In

contrast to the hinge joint, a ball joint says that the transformations agree only on a single

point u ∈R3. We can also express a ball joint in the same form as the hinge joint, except that

~v =~0. An example of hinge joints detected for the robot model is illustrated in Figure 6.6.

Once we know these joint locations and types, we can constrain the transformations

to agree on the joint locations. Let us represent a joint between transformations for label i and

128

T (u)i
-1

-1

Minimize
Distance

T (u)j

T = (R ,t)i i i

T = (R ,t)j j j

Reference Frame Input Frame

u

Hinge Joints

Figure 6.6: Estimating and constraining joints in our optimization. On the left, we show hinge joints
that are automatically estimated. These joints are constrained in Ejoint as shown on the right. This
term constrains the transformed locations of u to agree on the same point by minimizing the distance
between the transformed locations.

j using the tuple (ui j ,~vi j). We additionally mark this tuple as valid or invalid depending on

whether there actually is a joint between transformations i and j . Note that this also expresses

ball joints by simply setting~v =~0. Now, we can constraint the joints using the term Ejoint:

Ejoint(T) = ∑
All F f

∑
Valid Joints

(ui j ,~vi j)

∑
t∈R3

∥∥∥T (f �Ref)
i

−1
(ui j + t~vi j)−T (f �Ref)

j

−1
(ui j + t~vi j)

∥∥∥2
. (6.5)

The inverse of the transformations are used here because the joint locations are defined on

the reference frame. This situation is illustrated in Figure 6.6. Also, in practice we use a small

number of values for t : typically 20 values of t in the range [−10s..10s] where s is the mesh

resolution (or grid sample spacing) 4. This is the same approach that is used by Knoop et al.

[2005]. In the case of a ball joint, we are constraining only one point u where transformations

i and j agree, and for a hinge joint we are individually constraining a set of points along the

hinge axis between transformations i and j .

4This parameter s is discussed later in the results, Section 6.5.2.

129

Detecting Joint Locations

To estimate the joints between the transformations, we first need to know which

pairs of transformations are likely to share a joint in between. To determine this, we examine

the ASG to see which pairs of labels are neighboring on this graph.

Consider the set of the edges E ′ in the ASG that have different labels assigned to the

end points. If we have a large number of edges with labels i and j , this would indicate that

transformations i and j are likely to share a joint. On the contrary, a small number of edges

(or none) would indicate that the transformations are not related. To determine which label

pairs are significant, for each pair i , j we count the number of edges e ∈ E ′ whose labels are

i , j . Also, for each label i , we count how many edges e ∈ E ′ are incident to i (i.e. at least one

endpoint is labeled i). The following ratios

edges for i , j

edges incident to i
and

edges for i , j

edges incident to j
(6.6)

give a measure of how dominant i , j are for labels i and j , respectively. If either of these ratios

exceeds a threshold (set to 15%), then we take the pair i , j as a candidate for sharing a joint.

The edges also give a rough estimate of where we would expect the joint location.

For each i , j candidate, we compute the average of all the endpoint locations (on the reference

frame) of edges with label i , j . This position, which we denote as uest, gives us a guess of where

the joint location is likely to be.

Once we have a set of candidate label pairs i , j and estimated joint locations uest, we

solve for the true joint locations u on the reference frame using the transformations estimated

so far at all frames. This is done by performing a least-squares minimization

argmin
u∈R3

∑
All Frames F f

∥∥∥T (f �Ref)
i

−1
(u)−T (f �Ref)

j

−1
(u)

∥∥∥2
. (6.7)

For hinge joints, the solution will be a set of points (on the reference frame) lying on the hinge

axis. When we solve the above least-squares minimization using the SVD, we can detect hinges

by examining if the ratio of the smallest singular value to the sum of the singular values is

130

less than a threshold (set to 0.1 in our implementation). If this is the case, then we truncate

the smallest singular value to zero and solve for the equation of the line u′+ t~v′ satisfying the

system. Finally, for the hinge joint parameters (u,~v), we take the point u on this line that is

closest to uest and normalize~v =~v′/‖~v′‖.

If the joint is not a hinge, it will be a ball joint where we determine a single joint

location u. In this case, we add an additional regularization term in the optimization:

argmin
u∈R3

∑
All Frames F f

∥∥∥T (f �Ref)
i

−1
(u)−T (f �Ref)

j

−1
(u)

∥∥∥2 + λ‖u−uest‖2. (6.8)

where λ is typically 0.1 [Pekelny and Gotsman, 2008]. This additional term helps to pull the

location closer to uest in case the joint is close to being a hinge (i.e. the first term admits

multiple solutions).

Weight Objective Eweight

The binary weights transform the problem into a discrete labeling problem, where

we try to find an optimal assignment of transformations (interpreted as “labels”) to the sample

points x ∈ S. The goal of the weight objective term is to ensure that neighboring samples have

a similar label, ensuring that labels form large, contiguous regions on the ASG. Therefore, for

Eweight we use a simple constant penalty when two neighboring samples in S are assigned

different labels. We express this using the formula

Eweight(W) = ∑
(x,y)∈E
wx 6=wy

1, (6.9)

where E is the set of all edges in the ASG. This is the same as in Section 5.3.2, and it is a simple

form of the Potts model, which is a discontinuity-preserving interaction penalty [Boykov et al.,

2001].

131

6.3.5 Optimization

To solve the optimization, like we did in Chapter 5 we divide the solver into two

phases and alternate between each phase until the solution converges (see Algorithm 6.6). In

the first phase, we keep the weights fixed and solve for the transformations (lines 4-11), and in

the second phase, we keep the transformations fixed and solve for the weights (lines 15-23).

This strategy works well in practice and produces a good alignment within a few iterations (See

Chapter 5).

In our experiments, we observed that the transformations for a frame does not

change much after the first global registration pass when the frame is first introduced. There-

fore, we provide an option in the global registration to solve for the transformations only on

the newest k frames that have been introduced to the global registration. We can think of

this as solving for the transformations on a sliding window of k frames. Lowering the value

of k improves the speed of the registration, while raising this value may produce a more ac-

curate registration at the cost of speed. Note that this only affects the step for optimizing the

transformations. The weights are still optimized globally over all frames.

During the global optimization we try to detect if previously occluded parts have

reappeared in the new frame (line 12). We discuss how we handle these cases in Section 6.3.6

and 6.3.7.

We observed that the registration was more precise if it terminates after solving for

the transformations, rather than terminating after solving for the weights. This is because

the optimization is usually able to refine the transformations further after the weights have

changed. This is why we have placed the convergence check after we solve the transformations

(line 13-14).

Optimizing the Transformations. For optimizing the first phase, we solve for the transfor-

mations minimizing the terms α Efit(T,W)+β Ejoint(T) from Equation 6.2. Since the target

positions y(g)
j corresponding to each sample x ∈ S changes depending on the transformations,

we use an iterative approach in the spirit of ICP [Besl and McKay, 1992] and alternate between

updating the transformations and the corresponding target positions until convergence. Since

132

Algorithm 6.6: OPTIMIZE T,W (S,E ,T,W,F0, . . . ,Fnew)

Data: Sample set S with associated labels W, transformations for all frames T, A
list of edges E of the constructed ASG, all initialized input frames
F0, . . . ,Fnew

Result: Optimized transformations and labels T,W
begin1

Select a subset of frames to optimize (e.g. a sliding window of 1–10 frames);2

while Not converged do3

begin (Phase 1: Solve for the transformations T)4

Re-estimate joint locations and types;5

while Not converged do6

Update the closest points y(g)
j∗ for all x ∈ S and frames Fg ;7

Construct the sparse matrices for Efit and Ejoint;8

Solve linear system and update transformations;9

Check convergence criteria;10

end11

Handle reappearing parts in Fnew by aligning occluded label regions12

with unmatched surface points (Section 6.3.7);
Check convergence criteria;13

if converged then break;14

begin (Phase 2: Solve for the labels W)15

Update the closest points y(g)
j for all x ∈ S, frames Fg , and j ∈ [1..B];16

Precompute Efit for each x ∈ S and j ∈ [1..B];17

Create a graph for Eweight using the edges E of the ASG;18

Solve discrete labeling on this graph using α-expansion;19

Discard labeled regions that are too small;20

Reuse unassigned labels by splitting regions with highest Efit error;21

Update the labels for each x ∈ S;22

end23

end24

we keep the weights fixed at this step, only the non-zero components will contribute to the

Efit in this step. Therefore, we only need to update the target positions y(g)
j∗ for the currently

assigned label j∗ at each sample x.

We perform the optimization using the Gauss-Newton algorithm (see Section 3.1.4

for a detailed explanation). We first describe the matrix equations resulting from the lineariza-

133

tion of the objective function. Suppose that

x′ = R(f �Ref)
j x+~t(f �Ref)

j

y(g)
j

′ = R(g�Ref)
j y(g)

j +~t(g�Ref)
j

~n′
y = R(g�Ref)

j ~ny

that is, they are x, y(g)
j , and the surface normal ~ny corresponding to y(g)

j , transformed to

the reference frame using the current j th transformation for frame f and g , respectively.

Linearizing and rearranging the equation for Efit, we obtain the equation

 −(̂x′) I
�(
y(g)

j

′) −I

−
(
~n′

y ×x′
)>

~n′>
y

(
~n′

y ×y(g)
j

′)> −~n′>
y

ω
(f)
j

v (f)
j

ω
(g)
j

v (g)
j

=

 x′−y(g)
j

′

~n′>
y

(
x′−y(g)

j

′)
 . (6.10)

for both the point-to-point term and the point-to-plane term, respectively (see Equation (6.4)).

In the point-to-plane term, we have simplified the objective by just using the pre-rotated

normal~n′
y, instead of applying an additional local rotation ω

(g)
j to the normal. Also, notice

that the top row in the above is actually three rows in the matrix (because each term is a 3×3

matrix) and the bottom row is a single row in the matrix. We also weight the top row (on both

sides) with
p
ηpt and the bottom row with

p
ηpl to weigh the two terms appropriately. For the

joint constraint term Ejoint, we obtain the equation

[
R(f �Ref)

i û −R(f �Ref)
i −R(f �Ref)

j û R(f �Ref)
j

]

ω
(f)
i

v (f)
i

ω
(f)
j

v (f)
j

=

[
u′

i −u′
j

]
. (6.11)

where u′
i = R(f �Ref)

i u+~t(f �Ref)
i and u′

j = R(f �Ref)
j u+~t(f �Ref)

j . Here, any variables ω, v appearing

134

in the leftmost matrix were removed, because the linearization was evaluated at [v,ω] = 0

(which corresponds to a linearization at the current estimated transformations). Gathering

these equations in a big sparse matrix and solving the resulting linear least-squares problem,

we obtain a step for the rigid transformations. To complete the iteration in the Gauss-Newton

algorithm, we apply this step to the current rigid transformations using the exponential map

(see Section 3.1.4). To solve for the transformations on a limited number of frames, we can

simply remove the variables and constraints involving transformations from frames outside of

the set of interest. This can significantly reduce the time needed to perform this step.

Optimizing the Weights. For the second phase, we solve the discrete labeling problem of

αEfit+γEweight using theα-expansion algorithm [Boykov et al., 2001; Boykov and Kolmogorov,

2004; Kolmogorov and Zabih, 2004]. We use the ASG directly to specify smoothness constraints

between points. Unlike solving for the transformations, we always solve for the weights as a

global optimization over all frames. This means that we need to compute the Efit term over all

frames and all labels.

Since the transformations are kept fixed in this stage, we can precompute Efit to

save computation time during the optimization. Here we simply compute the distance (6.4)

between x and y(g)
j) over all samples x and all labels j . We then store the resulting in a hash

table for a quick look-up during the optimization.

After the optimization, it may be the case that some labels are only assigned to a

few sample points, or other labels may not be assigned at all. In the first case, we can discard

these labels to obtain a solution that is simpler and not substantially different from the original

solution. In our implementation, we discard a label if the percentage of samples assigned to

that label is less than some small threshold (set to 1% in our implementation). In the second

case, we reuse labels like we did for the pairwise case in Section 5.3.2.

Checking for Convergence. To detect if the optimization for the transformations has con-

verged, we monitor the change of the objective function by examining the value of the mini-

mized residual. We apply the criterion |Fk −Fk+1| < ε(1+Fk) (where ε= 1.0×10−6) and stop the

iteration if this condition is met. We also have a maximum number of iterations, typically set to

135

about 20–30 iterations, and stop if we exceed this maximum number. In our experiments, we

observed that in most cases the optimization converges in about 10–15 iterations. However, the

optimization may enter an oscillating mode, where the closest points in each iteration of the

T-step switch back and forth indefinitely between a few points. Because of this, convergence is

not guaranteed; but in practice we have not encountered any major problems.

6.3.6 Treating Occlusion

When a part of the surface is completely missing in a frame, the transformation

for this part may have few or no valid correspondences constraining it in the optimization.

In these cases, it may not be possible to solve for the rigid transformation of that part in

that particular frame. In our algorithm, we automatically detect if this happens and exclude

these transformations from the optimization. We perform this occlusion check right after

we initialize a new frame (see Algorithm 6.1). If the initialization was unable to handle the

case of a reappearing part (that was previously occluded), then we try to detect and align this

part automatically during the global optimization that follows. We discuss how we handle the

reappearing case in the next section, but first we discuss more details on how the occlusion is

detected and handled.

To decide if a part is occluded, we update the closest points for this frame after the

initialization. Then, we count the number of target positions y(g)
j for each label. If this number

falls below a small threshold (either below 5 points, or below 5% of the total number of samples

for that label), then we consider the label as occluded for this frame.

We then exclude all occluded labels from the optimization. For optimizing the

transformations, we simply remove the variables and constraints involving these occluded

labels from the objective term. In this case, there will be no transformation that is estimated

for the occluded label in the frame. However, it is still possible to estimate a reasonable

transformation based on the joint constraints with neighboring transformations. We adopt

the strategy of Pekelny and Gotsman [2008] and find an approximate transformation:

• If there is one neighbor, we copy this transformation for the occluded one,

136

• If there are two neighbors connected via ball joints, then we find the rigid transformation

that fits both joints and minimizes the relative rotation between the joints,

• If there are two neighbors and at least one is a hinge, or there are more than two neigh-

bors, we find the rigid transformation that best fits all of the joint constraints.

If there are no neighbors, then we just use the transformation of the last frame where it was

not occluded. We estimate the transformation for occluded labels according to this strategy

every time the transformations are optimized in the global registration.

For optimizing the weights, the situation is more complicated: since the weights are

optimized globally over all frames, we cannot remove a label entirely from the optimization

just because it was occluded some frames. Therefore, we must decide on an appropriate Efit

value when it involves a frame with an occluded label.

We cannot always rely on the approximate estimated transformation to give a rea-

sonable value of Efit. A zero error or very low error does not work either, because then the

occluded label may be assigned to strange locations where it produces a lower error than

the actual “correct” label. On the other hand, assigning a high value may discourage from

assigning this label to the “correct” locations, where the surface of the part is partially visible

in the frame. In the end, we settle on a heuristic: we use the error value of the current label

assigned to the sample, minus a small epsilon. If the current label is occluded as well, then we

use the minimum error among all unoccluded labels at that sample. This heuristic worked

well in our experiments, but there was still a handful of cases where the occluded label was

assigned to a completely unrelated location.

6.3.7 Reappearing Parts

There is also the case where the occluded part may suddenly reappear in a new frame.

This is not handled by our initialization step, because it can only align parts that appear in

both the source and target. Basically there are two possibilities for reappearing parts. First, if

the part reappears nearby its last approximated location, then the algorithm will be able to

find a sufficient number of closest points to start tracking again. However, the other possibility

137

is that the part reappears in a completely different location, and there are not enough closest

point correspondences to start tracking again.

In this case, a large number of scanned points in the frame will not “overlap” with

the sample set S. If the number of such “unmatched” points exceeds a threshold (10% of the

total points in the frame), we attempt to align the occluded parts with these unmatched points.

This is performed after each optimization of the transformations (line 12 of Algorithm 6.6).

Here, we use the same procedure to optimize for the transformations (Section 6.3.5), but with

some changes where

• we optimize only for the occluded transformations,

• we set the closest point threshold τd and normal angle threshold τn much higher (Sec-

tion 6.3.4),

• and we increase the weight of the Ejoint (β in Equation 6.2) to be very high.

After the match, we run the occlusion detection routine once more to check if we have obtained

a sufficient number of target points to start tracking the part again.

6.4 Post-Processing

After the global registration, we have aligned all frames and we can reconstruct the

surface of the entire model. To do this, we just resample the set S with a small sample distance

τsamples, where we use all of the points in each frame to resample S (instead of taking the

uniform subsamples U f as candidates). This results in a dense sample set S, which we can

use to reconstruct a surface mesh using any favorite surface reconstruction algorithm. In

our results, we use the streaming wavelet surface reconstruction algorithm by Manson et al.

[2008]. Since our algorithm gives only binary weights at each point there may be artifacts at

boundaries between parts. To reduce these artifacts, we can solve for smooth skinning weights

at each point as a post-processing step. We do not apply this smoothing step in our results in

Section 6.5, so that we can give a clearer picture of the quality using our binary weight pipeline.

138

6.5 Experimental Results

6.5.1 Reconstruction

We implemented our algorithm in C++ and tested it with several real-world and

synthetic datasets exhibiting articulated motion. The car and robot datasets were acquired

by Pekelny and Gotsman [2008] using a Vialux Z-Snapper depth camera. These sequences

were created by animating the physical model, while capturing each frame from a different

viewpoint. Each sequence has 90 frames, and consists of 5 and 7 parts, respectively. The

reconstruction results using our algorithm are shown in Figures Figure 6.7 and Figure 6.8. The

top row shows some of the input frames in the sequence. Notice that there is a significant

amount of occlusion in some of the frames. The second row shows the labeled sparse sample

set S used by our algorithm, and the third row shows the dense sample set obtained using a

smaller τsample in the post-processing step. There are still some holes on the surface, which

are locations that were occluded in all input frames, or locations where the algorithm could

not extrapolate the label (Section 6.3.2). The fourth row shows the reconstructed mesh using

the algorithm by Manson et al. [2008] (kindly provided by the authors), with labels on each

vertex obtained by taking the label of the nearest point in the dense sample set. Since we

meshed a single, closed surface in the pose of the reference frame, there are some stretching

artifacts on the boundary between neighboring parts. This could be corrected by meshing

each part separately, or by meshing the surface in a pose where the parts are further apart.

Finally, the fifth row shows the estimated joint locations. Hinge joints are represented by a

short stick, where ball joints are representing using a sphere. The reconstruction results are

good, demonstrating that we can obtain an accurate registration without a segmentation given

as input by the user. For the car dataset, our algorithm preferred a simpler configuration of 4

parts, instead of creating a separate part for the small rotating base in the middle. We think

that this is a reasonable reconstruction of the car, because the surface for the rotating base is

quite small.

To test our algorithm on a more deformable subject, we acquired sequences of a

bendable, poseable pink panther toy. These sequences were acquired using a Konica Minolta

139

In
pu

t F
ra

m
es

D
en

se
 S

am
pl

e
S

et
R

ec
on

st
ru

ct
ed

 M
es

h
E

st
im

at
ed

 J
oi

nt
s

S
pa

rs
e

S
am

pl
e

S
et

Figure 6.7: Reconstruction results for the robot dataset.

140

In
pu

t F
ra

m
es

S
pa

rs
e

S
am

pl
e

S
et

D
en

se
 S

am
pl

e
S

et
R

ec
on

st
ru

ct
ed

 M
es

h
E

st
im

at
ed

 J
oi

nt
s

Figure 6.8: Reconstruction results for the car dataset.

141

In
pu

t F
ra

m
es

S
pa

rs
e

S
am

pl
e

S
et

D
en

se
 S

am
pl

e
S

et
R

ec
on

st
ru

ct
ed

 M
es

h
E

st
im

at
ed

 J
oi

nt
s

Figure 6.9: Reconstruction results for the first Pink Panther dataset.

142

In
pu

t F
ra

m
es

S
pa

rs
e

S
am

pl
e

S
et

D
en

se
 S

am
pl

e
S

et
R

ec
on

st
ru

ct
ed

 M
es

h
E

st
im

at
ed

 J
oi

nt
s

Figure 6.10: Reconstruction results for the second Pink Panther dataset.

143

VI-910 laser scanner. Each sequence has 40 frames consisting of 10 parts each. In the first

sequence, we animated the toy with small motions while capturing each frame at a different

viewpoint. In the second sequence we created larger motions of the toy while changing the

viewpoint. In addition, the furry texture on the toy created a significant amount of noise on the

scanned surface. The reconstruction results, shown in Figures 6.9 and 6.10, are very good for

both the small motion and the large-motion case, except for some minor stretching artifacts

on the reconstructed mesh, at the boundary between parts.

Finally, we generated synthetic depth sequences of a walking man, where the camera

is rotating around the subject. These sequences were created by capturing the Z-buffer of

an OpenGL rendering, and the modelview and projection matrices were inverted to convert

the depth values into 3D coordinates. To test the effect of occlusion in our algorithm, we

captured the first sequence using a single camera, and the second sequence using two cameras

which were 90◦ apart. Since the frames were very close to each other, we did not use the

transformation assignment initialization for these sequences, and we reduced the sliding

window size from 5 frames (for the first ∼10 frames) down to 1 frame (for the rest of the

sequence). The reconstruction results are shown in Figures 6.11 and 6.12. The first sequence

was less successful due to the large amount of occlusion of the arms. In particular, both the left

arm and right arm disappear from the front and reappear in the back, causing some alignment

errors in the middle of the sequence. This resulted in a “larger” left hand, where the algorithm

did not align the hand well and added extra points for this part. Also, in some of these frames,

the arm and hand partially appeared but was not tracked, and this resulted in some “floating

parts.” Nevertheless, the reconstructed mesh nicely approximates the entire shape. In the

second sequence, the arm and hand do not disappear completely, and the algorithm is able to

track all parts accurately for the entire sequence. This results in a very accurate reconstruction

(especially for the hands). The stretching artifacts are more noticeable for these datasets,

where the torso and arm connect together and also the hip region where the surface stretches

significantly.

144

In
pu

t F
ra

m
es

S
pa

rs
e

S
am

pl
e

S
et

D
en

se
 S

am
pl

e
S

et
R

ec
on

st
ru

ct
ed

 M
es

h
E

st
im

at
ed

 J
oi

nt
s

Figure 6.11: Reconstruction results for the synthetic Walking Man dataset taken using a single virtual
camera.

145

In
pu

t F
ra

m
es

S
pa

rs
e

S
am

pl
e

S
et

D
en

se
 S

am
pl

e
S

et
R

ec
on

st
ru

ct
ed

 M
es

h
E

st
im

at
ed

 J
oi

nt
s

Figure 6.12: Reconstruction results for the synthetic Walking Man dataset taken using two virtual
cameras.

146

6.5.2 Parameters

The main parameters of our algorithm are the the number of transformations B ,

weights for each term in the optimization and thresholds that control sampling and closest

point computation. Although the user needs to specify the number of transformations to

approximate the motion, the algorithm may settle on a smaller number of transformations if

the registration error is small enough. An alternative strategy would be to have the user specify

a maximum alignment error ε and make the algorithm add part labels until the alignment

error is accurate within this ε. We did not explore this alternative, but this ε parameter would

be similar to directly specifying the number of transformations.

We expressed many parameters relative to the grid sample spacing s, which is the

average distance between samples in each frame. For the weights of each term in the objective

function (6.2), we used α= 1, β between 0.1 and 1.5, and γ either 0.5s or s. For the uniform

subsampling U f (Section 6.3.2), we specified a fraction of points to sample for the entire

sequence, typically between 6% and 20% depending on the density of the scans. For the

sample spacing parameter τsample, we used a value between 2s and 5s depending on how

dense we wanted the sparse sample set to be. Finally, for determining if the closest point is

valid (Section 6.3.4), we used τd = 10s,τn = 45◦, and τb = s. This changes when we match

reappearing parts, for which we used τd between 50s and 100s, τn between 45◦ and 80◦, and

β= 100. In our experiments, we experimented with a few different parameter settings but did

not seriously optimize the parameters to give a better result.

6.5.3 Performance

The performance of our implementation using a single core of an Intel Xeon 2.5 GHz

processor is reported in Table 6.1. In the robot and car datasets, the most time-consuming

part was the initialization, but in the other cases it was the global registration. The global

registration step can execute faster if a smaller sliding window is used, with the trade-off of

having a less accurate registration. Like most ICP-based algorithms, the most time-consuming

part is the closest point computation, which can typically take 30% of the total time. Note that

147

Table 6.1: Performance statistics for our experiments. The timings are expressed in seconds, and the
bottom row reports the average execution time per frame in each sequence.

Statistic Robot Car PP1 PP2 Walking1 Walking2
Max Bones 7 7 10 10 16 16
Used Bones 7 4 10 10 14 16
Frames 90 90 40 40 121 121
Sliding Window 5 5 5 5 5 → 1 5 → 1
Points/Frame 9,391.2 5,387.86 36,683.9 30,003.1 19,843.7 39,699.7
Total Points 845,208 484,907 1,227,356 1,200,125 2,401,082 4,803,662
Samples 4,970 2,672 4,077 4,203 8,305 8,539
Edges in ASG 37,678 20,707 30,758 31,841 61,711 63,043
Initialization 7,357.68 2,652.57 1,826.27 1,828.98 69.38 134.74
Global Reg 2,287.61 1,200.04 2,184.68 2,624.4 5,574.86 19,789.0
Resampling ASG 264.44 117.93 67.90 68.06 876.32 1,617.07
Total Time 9,909.73 3,970.54 4,079.85 4,521.44 6,520.56 21,540.81
Average Time 110.11 44.12 102.00 113.04 53.89 178.02

the times in the initialization step reported in Table 6.1 do not include the preprocessing time

to compute spin images and estimate the principal curvature frame at each vertex.

6.5.4 Inverse-Kinematics Application

Solving for the weights and joints in the model is useful for re-posing and animating

the reconstructed model. To demonstrate this, we implemented a tool to perform inverse

kinematics on the reconstructed model. In this system, the user specifies point constraints, and

we use our optimization of the transformations (Section 6.3.5) to satisfy these constraints. The

result was an interactive tool for the user to intuitively re-pose and animate the reconstructed

subject. Figure 6.13 shows examples of different poses of the robot created by our system.

6.5.5 Sequential Registration vs. Simultaneous Registration

To illustrate the benefit of performing simultaneous registration, we compare our

algorithm with a sequential registration pipeline. In a sequential registration method, we

optimize each frame of the sequence one-by-one, accumulate new samples directly on the

reference frame, and discard the frame before moving on to the next. This strategy uses only

148

User Specified
Constraints

Novel
Poses

Reconstructed
Model

Figure 6.13: Reposing the reconstructed robot. By using the solved weights and the hinge joints, our
optimization can satisfy point constraints given by the user.

correspondences between the accumulated samples and the current frame being optimized

(for estimating both transformations and weights). Therefore, this strategy is essentially a

pairwise registration that is applied repeatedly for each frame.

The main problem with the sequential registration approach is that it cannot reliably

estimate the articulated structure (i.e. weights) based on the movement observed in just one

frame. This complicates the situation further for occlusion detection and recovery, which rely

on a reliable estimate of the articulated structure. A comparison between the sequential and

simultaneous strategies is shown in Figure 6.14. Here, we have used the two strategies to align

40 robot frames, and we display the sparse ASG which roughly shows the estimated geometry.

On the left, we can see that the sequential strategy did not produce a correct labeling. As a

result, the registration was imprecise, and “extra” surfaces appear where the parts were not

aligned properly (for example, on the left arm). On the right, we show a result obtained by

simultaneous registration, where we kept the same parameters, used a 1-frame window for

optimizing the transformations, and used the correspondences from all frames to optimize

the weights. The result has a correct labeling that reflects the movement in all frames, and the

registration and estimated geometry are precise.

149

(a) Sequential Registration (b) Simultaneous Registration

Figure 6.14: Comparing sequential and simultaneous registration. (a) As indicated by the large red circle
on the upper body area, the sequential strategy gives an unreliable estimate of the articulated structure,
because it only uses the movement observed in one frame. This leads to an imprecise registration, for
example, in the left arm indicated by the smaller circle. (b) The simultaneous strategy can correctly
estimate the structure that fits the movement observed in all frames. The registration is more precise,
as well as the estimated surface geometry.

6.5.6 Grid-Based Weights vs. Graph-Based Weights

To compare the benefit of using a graph for defining the weight function vs. using a

grid like we did in the last chapter, we implemented the simultaneous registration using a grid

and compared the results. First, we found that the performance of the graph-based registration

is much faster, because the grid-based method has an additional overhead of translating the

weights from the grid to the samples. For registering the 90 frame robot sequence, the global

registration took a total of 144.00 seconds per frame using the grid strategy, but it only took

28.36 seconds per frame for the graph based strategy (excluding the time for initialization).

Second, the graph-based representation dealt robustly with topology issues. An ex-

ample of this is shown in Figure 6.15, where we display the grid and graph deformed according

to the optimized weights and transformations. Unlike the graph based solution on the right,

the grid based solution on the left shows many artifacts. This is because when the resolution of

the grid is too coarse, a single grid cell overlaps multiple separate parts. In this example, there

are several grid cells that overlap a little with both the right leg and the left leg of the robot. As

a result, different weights are assigned to either side of the cell, so the cell “stretches” apart,

150

(a) Result Using a Grid-Based
Representation (144.00 sec/frame)

(b) Result Using a Graph-Based
Representation (28.36 sec/frame)

Figure 6.15: Comparing grid-based and graph-based weight representations. These images show the
represented weight function, deformed into different poses according to the optimized transformations
and weights. Notice the deformation artifacts with the grid-based representation, which is absent in
the graph-based representation.

Popcorn Tin Reconstruction (5 parts)

Hand-2 Reconstruction (7 parts)

Figure 6.16: Articulated registration on the hand-2 and popcorn tin datasets used by Wand et al. [2009].
Our algorithm is able to produce coarse approximations of the non-rigid motion exhibited in these
datasets.

causing the artifact that we see. This stretching behavior makes it difficult to look up weights

for the scanned points inside this cell, and so we “lose” points in these situations. In contrast,

for the graph-based strategy, since we define weights directly on each sample, it does not suffer

from this issue. Furthermore, we can prune edges of the graph based on the optimized motion,

so it handles these topology issues robustly.

6.5.7 Comparison with Wand et al. [2009]

We compare our articulated reconstruction with the deformable reconstruction

method by Wand et al. [2009]. For the car, robot, and pink panther datasets, their method was

151

not able to fully reconstruct these sequences because there was too much motion between the

frames. However, they were able to reconstruct some subsequences of these datasets. This is

because they rely only on a local optimization using closest points, whereas our method uses a

robust initialization that is able to automatically handle frames with large motion.

We also tested our algorithm on several examples from Wand et al. [2009]. Figure 6.16

shows reconstructions of the hand-2 and popcorn tin datasets, and Figure 6.17 shows a result

for the grasping hand (hand-1) dataset. These sequences exhibit non-rigid motion, especially

the popcorn tin dataset. Our algorithm can successfully capture the overall shape and produce

a coarse articulated motion of the subject. However, we see that it does not reproduce fine

details in the surface deformation.

6.6 Summary and Conclusion

We have presented a method to reconstruct an articulated shape from a set of range

scans. From a sequence of range scans, we solve for the division of the surface into parts

and the motion for each part to align all input scans. For this purpose, we first improved a

transformation sampling and assignment strategy to obtain a robust initialization of the regis-

tration between pairs of adjacent frames in the sequence. Then, we formulated a simultaneous

registration for all input frames to minimize registration error. This optimization included

joint constraints that preserves the connectivity of each part, and automatically handles cases

where parts are occluded or they reappear. We demonstrated that we can reconstruct a full 3D

articulated model without relying on markers, an user-provided segmentation, or a template.

Finally, we have demonstrated that the reconstructed model can be targeted in new poses for

the purpose of creating an animation.

A limitation of our method is that there needs to be enough overlap between adjacent

frames in the range scan sequence to obtain a good alignment. For example, if one frame

captures the surface on the front of the object, and the next frame has the surface from the

back of the object, then there will be not enough overlap to match these frames together in the

registration. This means that the order of the range scans in the sequence should maintain

152

(a) Frame 1 (b) Frame 9 (c) Frame 15 (d) Frame 21

Figure 6.17: Registration for a hand sequence, where the hand starts from an open pose and gradually
closes to a grasping pose. These pictures show the input data (displayed as a red color mesh) and the
sparse ASG. Our algorithm tracks the hand well in the first part of the animation, where most of the
surface is visible. In (c), the surface of the fingers start to gradually disappear, and the middle segment
of the index finger starts to lose track and rotate backwards. In (d), the algorithm loses track of the
middle and ring fingers, because most of these fingers are occluded (except for the fingertips).

a reasonable amount of overlap between every adjacent pair of frames. A temporal ordering

of the scans, for example, would produce a sequence with a reasonable amount of overlap.

Sometimes even this is not enough when there is severe occlusion. For example, our algorithm

loses track of the fingers in the hand sequence because of too much missing data, as shown in

Figure 6.17.

Another shortcoming of our ICP-based registration is the handling of “slippable”

parts such as cylinders. For example, the fingers of a hand example shown in Figure 6.17 have

cylindrical symmetry, and the ICP registration could converge into a state where the segments

of the fingers are “twisted” or rotated about the axis of symmetry (Figure 6.17c). Although hinge

joints could disambiguate cylindrical symmetries, we found that it was difficult to estimate

accurate hinge joints in this case.

Our algorithm does not estimate scale, so it cannot handle the range scans where the

scale of the object changes. While this was not a problem for any of our examples, automatically

estimating scale changes could help capture regions that are stretching. Furthermore, it would

be interesting to adapt our algorithm for aligning completely non-rigid examples. For this case,

estimating “flexible” transformations would be appropriate (perhaps affine transformations),

and it would be useful to find a way to optimize for smooth weights without causing overfitting.

We believe that there should be a middle ground between specifying a separate transformation

on every sample point [Sumner et al., 2007] and our method (solving for the weight at each

sample point).

153

We would also like to reduce the parameters in our algorithm. An alternative to

specifying various thresholds is to use robust error metric similar to the work of Nishino

and Ikeuchi [2002]. In this case, the outliers would automatically be identified during the

optimization, without a need to specify hard thresholds.

Finally, we would like to investigate ways of improving the performance of the

algorithm. In particular, since our method estimates the weights and transformations for all

frames simultaneously, we need to keep all of the input scans in memory. We would like to

develop a streaming version of our algorithm that reduces the memory requirements. This

would allow us to process longer sequences of range scans. In addition, once a reasonable

segmentation is obtained, only the transformations need to be solved for each frame. We

believe that this could be implemented in real-time to be used for various markerless motion

capture applications.

6.7 Acknowledgments

We wish to thank Y. Pekelny and C. Gotsman for sharing the car and robot datasets,

and we thank T. Weise for the hand dataset. Additional thanks to G. Debunne for providing the

libQGLViewer library, D. M. Mount and S. Arya for providing the ANN library, and Y. Boykov, O.

Veksler, R. Zabih for providing an implementation of their graph cuts algorithm, and J. Manson

for providing surface reconstruction software.

The material in this chapter is, in part, a reproduction of material being prepared for

submission for publication: Will Chang and Matthias Zwicker, “Global Registration of Dynamic

Range Scans for Articulated Model Reconstruction.” The dissertation author was the primary

investigator and author of this paper.

7
Conclusions and Future Work

THE vision of our work is to enable efficient acquisition and synthesis of highly

detailed 3D surface models that are also easy to animate in a plausible and

realistic way. This technology to capture and manipulate dynamic 3D models has many

potential applications in human-computer interaction, manufacturing, medicine, virtual &

augmented reality, and computer animation. While range scanners can acquire high-speed,

high-resolution geometric data, each scan only offers a partial view of the surface, with no

tracking of the motion. To reconstruct a complete model of the geometry and motion of the

subject, we must align multiple range scans taken from different times and viewpoints to fill in

the missing data and track the motion of the surface.

7.1 Contributions

In this dissertation, we focused on algorithms to process and align range scans of a

moving articulated subject. We demonstrated that these methods can align range scans in a

completely unsupervised way: without markers, a template, or a user-defined segmentation

of the surface. A distinguishing feature of our research was the key observation that discrete

optimization is useful for automatically estimating the division of the surface into parts, based

on the observed motion of the surface.

Our first contribution was a method to robustly align a pair of shapes by optimizing

154

155

an assignment of transformations on the surface. In this method, we first matched feature

descriptors and clustered the resulting transformations to find a set of candidate surface move-

ments. We then formulated a discrete labeling problem to solve for the best transformation

assignment that minimizes the alignment error between the two shapes, while preserving the

original structure of each shape. We found that this problem is efficiently solved by graph cuts,

leading to an algorithm to align surfaces that is robust to large motions, partial surface data,

and multiple similar parts.

Next, we presented a technique to solve for the parameters of a reduced deformable

model (RDM) that produces the best alignment of a pair of surfaces. We showed that it is

possible to align these surfaces by repeatedly estimating the transformations and weights

in alternating fashion, similar to the EM algorithm. This resulted in an efficient alignment

of articulated range scans, due to the few number of transformations and the automatic

estimation of influence weights in the optimization.

Finally, we combined these techniques to automatically construct an articulated 3D

model. We improved the performance of the algorithms by subsampling the surface points and

solving for influence weights defined directly on the samples themselves. Then, we formulated

an articulated global registration that solves for the transformations and the weights of an

RDM simultaneously over all frames, while handling joint constraints and dealing with the

occlusion and reappearing of parts. We demonstrated that this method can reconstruct a

variety of moving 3D models based on a sequence of partial surface data acquired by a range

scanner.

7.2 Future Research Directions

In the last few chapters, we focused on fitting a simple piecewise rigid model to

express the surface motion. However, many articulated subjects have additional non-rigid

surface motion, including bulging, stretching, bending, and flapping. An open research

direction is to investigate how to represent and capture these additional effects. There are

techniques that fit this type of motion using a template [Allen et al., 2003; Anguelov et al., 2005;

156

Weise et al., 2009; Li et al., 2009], or without an articulated model [Wand et al., 2009], and

incorporating the ideas from these techniques could yield an effective algorithm capable of

fitting non-rigid deformations on an articulated model.

Another idea is to apply our registration techniques to recover motion and correspon-

dence in other types of data. For example, solving the non-rigid registration for images has

important applications for object/pose recognition and medical imaging. This problem has

been formulated as a graph matching problem by other researchers, similar to our framework

in Chapter 4 [Berg et al., 2005; Torresani et al., 2008b]. While these methods solve explicitly for

the correspondences between the two images, our approach would try to assign an optimal

labeling of the motion between the two images. It would be interesting to apply this idea to

see if it works well when features or correspondences are missing in the images.

A final avenue of work is to improve the performance of the range scan matching

techniques to enable real-time surface tracking. This could be realized by having an initial

scanning stage where the algorithm determines the articulated structure of the object, and

a second stage where real-time tracking is performed. We believe that the development of a

method to quickly and robustly track the motion of a surface would be a significant step in

improving human-computer interaction, computer animation, medicine, and manufacturing

applications. We hope that the algorithms developed in this dissertation will inspire new

developments to improve quality of life through effective interaction between computers and

the physical world.

Bibliography

Dror Aiger, Niloy J. Mitra, and Daniel Cohen-Or. 4-points congruent sets for robust pairwise
surface registration. In ACM SIGGRAPH, pages 1–10, 2008. 9

B. Allen, B. Curless, Z. Popović, and A Hertzmann. Learning a correlated model of identity and
pose-dependent body shape variation for real-time synthesis. In SCA, 2006. 18

Brett Allen, Brian Curless, and Zoran Popović. Articulated body deformation from range scan
data. ACM SIGGRAPH, 21(3):612–619, 2002. ISSN 0730-0301. 3, 11, 101

Brett Allen, Brian Curless, and Zoran Popović. The space of human body shapes: reconstruction
and parameterization from range scans. In ACM SIGGRAPH, pages 587–594, 2003. ISBN
1-58113-709-5. 3, 11, 13, 18, 67, 72, 155

Brian Amberg, Sami Romdhani, and Thomas Vetter. Optimal step nonrigid icp algorithms for
surface registration. In CVPR, 2007. 13

Dragomir Anguelov, Daphne Koller, Hoi-Cheung Pang, Praveen Srinivasan, and Sebastian
Thrun. Recovering articulated object models from 3d range data. In UAI, pages 18–26, 2004a.
18

Dragomir Anguelov, Praveen Srinivasan, Hoi-Cheung Pang, Daphne Koller, Sebastian Thrun,
and James Davis. The correlated correspondence algorithm for unsupervised registration of
nonrigid surfaces. In NIPS, 2004b. 10, 12

Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and
James Davis. Scape: shape completion and animation of people. In ACM SIGGRAPH, pages
408–416, 2005. 3, 11, 18, 155

K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-d point sets. IEEE
TPAMI, 9:698–700, 1987. 24, 25

Ilya Baran and Jovan Popović. Automatic rigging and animation of 3d characters. In ACM
SIGGRAPH, page 72, 2007. 101

Raouf Benjemaa and Francis Schmitt. A solution for the registration of multiple 3d point sets
using unit quaternions. In ECCV, pages 34–50, 1998. 8

157

158

Jon Louis Bentley. Multidimensional binary search trees used for associative searching. CACM,
18(9):509–517, 1975. 24

Alexander C. Berg, Tamara L. Berg, and Jitendra Malik. Shape matching and object recognition
using low distortion correspondences. In CVPR, pages 26–33, 2005. 156

Robert Bergevin, Marc Soucy, Hervé Gagnon, and Denis Laurendeau. Towards a general
multi-view registration technique. IEEE TPAMI, 18(5):540–547, 1996. 8

Fausto Bernardini and Holly E. Rushmeier. The 3d model acquisition pipeline. Computer
Graphics Forum (Proceedings of Eurographics STAR), 21(2):149–172, 2002. 29, 114

P. J. Besl and H.D. McKay. A method for registration of 3-d shapes. IEEE TPAMI, 14(2):239–256,
1992. 7, 21, 131

Gérard Blais and Martin D. Levine. Registering multiview range data to create 3d computer
objects. IEEE TPAMI, 17:820–824, 1995. 8, 24

Sergio Blanes and Fernando Casas. On the convergence and optimization of the baker–
campbell–hausdorff formula. Linear Algebra and its Applications, 378:135–158, 2004. 64

Mario Botsch, Mark Pauly, Martin Wicke, and Markus Gross. Adaptive space deformations
based on rigid cells. Computer Graphics Forum (Proceedings of Eurographics), 26(3):339–347,
2007. 93

Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE TPAMI, 26(9):1124–1137, September
2004. 55, 134

Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph
cuts. IEEE TPAMI, 23(11):1222–1239, 2001. 51, 52, 53, 54, 83, 130, 134

Derek Bradley, Tiberiu Popa, Alla Sheffer, Wolfgang Heidrich, and Tamy Boubekeur. Markerless
garment capture. ACM SIGGRAPH, 27, 2008. 13

Benedict J. Brown and Szymon Rusinkiewicz. Global non-rigid alignment of 3-d scans. In ACM
SIGGRAPH, page 21, 2007. 9, 13, 29

Samuel R. Buss and Jay P. Fillmore. Spherical averages and applications to spherical splines
and interpolation. ACM Trans. Graph., 20(2):95–126, 2001. ISSN 0730-0301. 57

Joel Carranza, Christian Theobalt, Marcus A. Magnor, and Hans-Peter Seidel. Free-viewpoint
video of human actors. ACM SIGGRAPH, 22(3):569–577, 2003. 16

U. Castellani, M. Cristani, S. Fantoni, and V. Murino. Sparse points matching by combining
3d mesh saliency with statistical descriptors. In Computer Graphics Forum (Proceedings of
Eurographics), 2008. 9

Y. Chen and G. Medioni. Object modeling by registration of multiple range images. Proceedings
of the IEEE International Conference on Robotics and Automation, 3:2724–2729, 1991. 7, 8,
27, 29

159

Yizong Cheng. Mean shift, mode seeking, and clustering. IEEE TPAMI, 17:790–799, 1995. 47

German K. M. Cheung, Simon Baker, and Takeo Kanade. Shape-from-silhouette of articulated
objects and its use for human body kinematics estimation and motion capture. In CVPR,
pages 77–84, 2003. 16

Haili Chui and Anand Rangarajan. A new point matching algorithm for non-rigid registra-
tion. Computer Vision and Image Understanding, 89(2-3):114–141, 2003. doi: 10.1016/
S1077-3142(03)00009-2. 13

David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational shape approximation.
In ACM SIGGRAPH, pages 905–914, 2004. 110

Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space analysis.
IEEE TPAMI, 24(5):603–619, 2002. 47, 49

Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. The variable bandwidth mean shift
and data-driven scale selection. In ICCV, 2001. 49

Edilson de Aguiar, Christian Theobalt, Marcus A. Magnor, Holger Theisel, and Hans-Peter
Seidel. M^3: Marker-free model reconstruction and motion tracking from 3d voxel data. In
Pacific Conference on Computer Graphics and Applications, pages 101–110, 2004. 16

Edilson de Aguiar, Christian Theobalt, Carsten Stoll, and Hans-Peter Seidel. Marker-less
deformable mesh tracking for human shape and motion capture. In CVPR, 2007. 17

Edilson de Aguiar, Carsten Stoll, Christian Theobalt, Naveed Ahmed, Hans-Peter Seidel, and
Sebastian Thrun. Performance capture from sparse multi-view video. ACM SIGGRAPH,
2008a. 17

Edilson de Aguiar, Christian Theobalt, Sebastian Thrun, and Hans-Peter Seidel. Automatic
conversion of mesh animations into skeleton-based animations. Computer Graphics Forum
(Proceedings of Eurographics), 27(2):389–397, 2008b. 18

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):
1–38, 1977. ISSN 00359246. URL http://www.jstor.org/stable/2984875. 89

Piotr Dollar, Serge Belongie, and Vincent Rabaud. Learning to traverse image manifolds. In
B. Schölkopf, J. Platt, and T. Hoffman, editors, NIPS, pages 361–368, Cambridge, MA, 2007.
MIT Press. 82

Chitra Dorai, Gang Wang, Anil K. Jain, and Carolyn R. Mercer. Registration and integration of
multiple object views for 3d model construction. IEEE TPAMI, 20(1):83–89, 1998. 8

D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-d rigid body transformations: a
comparison of four major algorithms. Mach. Vision Appl., 9(5-6):272–290, 1997. 24

Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. CACM, 24(6):381–395,
1981. 100

http://www.jstor.org/stable/2984875

160

Andrea Frome, Daniel Huber, Ravi Kolluri, Thomas Bulow, and Jitendra Malik. Recognizing
objects in range data using regional point descriptors. In ECCV, 2004. 9

Juergen Gall, Carsten Stoll, Edilson de Aguiar, Christian Theobalt, Bodo Rosenhahn, and Hans-
Peter Seidel. Motion capture using joint skeleton tracking and surface estimation. In CVPR,
2009. 17

Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. In
ACM SIGGRAPH, pages 209–216, 1997. ISBN 0-89791-896-7. 80

P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London, U.K.,
1989. 32

Guy Godin, Marc Rioux, and Rejean Baribeau. Three-dimensional registration using range and
intensity information. SPIE, 1994. 8

Arthur D. Gregory, Andrei State, Ming C. Lin, Dinesh Manocha, and Mark A. Livingston. Feature-
based surface decomposition for correspondence and morphing between polyhedra. In CA
’98: Proceedings of the Computer Animation, page 64, 1998. ISBN 0-8186-8541-7. 13

Dirk Hähnel, Sebastian Thrun, and Wolfram Burgard. An extension of the icp algorithm for
modeling nonrigid objects with mobile robots. In IJCAI, pages 915–920, 2003. 13

N. Hasler, C. Stoll, M. Sunkel, B. Rosenhahn, and H.-P. Seidel. A statistical model of human
pose and body shape. Computer Graphics Forum (Proceedings of Eurographics), 28, 2009. 18

Michael T. Heath. Scientific Computing: An Introductory Survey. McGraw-Hill, 2nd edition,
2002. 31, 38

B.K.P. Horn. Closed-form solution of absolute orientation using unit quaternions. Journal of
the Optical Society of America, 4(4), 1987. 24, 25

Qi-Xing Huang, Bart Adams, Martin Wicke, and Leonidas J. Guibas. Non-rigid registration
under isometric deformations. Computer Graphics Forum (Proceedings of SGP), 27(5):1449–
1457, 2008. ix, 14, 28, 101, 103, 106, 110

Doug L. James and Christopher D. Twigg. Skinning mesh animations. In ACM SIGGRAPH,
pages 399–407, 2005. 18, 47

Andrew Johnson. Spin-Images: A Representation for 3-D Surface Matching. PhD thesis, Robotics
Institute, Carnegie Mellon University, August 1997. 8, 9, 43, 44, 46, 92, 100

Evangelos Kalogerakis, Patricio Simari, Derek Nowrouzezahrai, and Karan Singh. Robust
statistical estimation of curvature on discretized surfaces. In SGP, pages 13–22, 2007. ISBN
978-3-905673-46-3. 42, 43

Takashi Kanai, Hiromasa Suzuki, and Fumihiko Kimura. 3d geometric metamorphosis based
on harmonic map. In PG ’97: Pacific Conference on Computer Graphics and Applications,
page 97, 1997. ISBN 0-8186-8028-8. 13

Takashi Kanai, Hiromasa Suzuki, and Fumihiko Kimura. Metamorphosis of arbitrary triangular
meshes. IEEE Comput. Graph. Appl., 20(2):62–75, 2000. ISSN 0272-1716. 13

161

A. Kaul and J. Rossignac. Solid-interpolating deformations: Construction and animation of
pips. In EUROGRAPHICS, pages 493–505, 1991. 13

Ladislav Kavan, Steven Collins, Jiří Zára, and Carol O’Sullivan. Skinning with dual quaternions.
In I3D, pages 39–46, 2007. 109

Ladislav Kavan, Steven Collins, Jirí Zára, and Carol O’Sullivan. Geometric skinning with
approximate dual quaternion blending. ACM Transactions on Graphics, 27(4), 2008. 57, 124

James R. Kent, Wayne E. Carlson, and Richard E. Parent. Shape transformation for polyhedral
objects. ACM SIGGRAPH, 26(2), 1992. 13

S. Knoop, S. Vacek, and R. Dillmann. Modeling joint constraints for an articulated 3d human
body model with artificial correspondences in icp. In IEEE-RAS International Conference on
Humanoid Robots, 2005. doi: 10.1109/ICHR.2005.1573548. 128

Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy minimization.
IEEE TPAMI, 28(10):1568–1583, 2006. ISSN 0162-8828. 83

Vladimir Kolmogorov and Carsten Rother. Minimizing nonsubmodular functions with graph
cuts-a review. IEEE TPAMI, 29(7):1274–1279, 2007. 55

Vladimir Kolmogorov and Ramin Zabih. What energy functions can be minimizedvia graph
cuts? IEEE TPAMI, 26(2):147–159, 2004. ISSN 0162-8828. 55, 134

Vladislav Kraevoy and Alla Sheffer. Cross-parameterization and compatible remeshing of 3d
models. ACM SIGGRAPH, 23(3):861–869, 2004. 13

Vladislav Kraevoy and Alla Sheffer. Template-based mesh completion. In Symposium on
Geometry Processing, pages 13–22, 2005. 13

Shankar Krishnan, Pei Yean Lee, John B. Moore, and Suresh Venkatasubramanian. Global
registration of multiple 3d point sets via optimization-on-a-manifold. In SGP, 2005. 33

Paul G. Kry, Doug L. James, and Dinesh K. Pai. Eigenskin: real time large deformation character
skinning in hardware. In SCA, pages 153–159, 2002. 57

Y. Lamdan and H. Wolfson. Geometric hashing: A general and efficient model-based recogni-
tion scheme. In ICCV, 1988. 9

Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and David Dobkin. Maps:
multiresolution adaptive parameterization of surfaces. In ACM SIGGRAPH, pages 95–104,
1998. ISBN 0-89791-999-8. 13

Aaron W. F. Lee, David Dobkin, Wim Sweldens, and Peter Schröder. Multiresolution mesh
morphing. In ACM SIGGRAPH, pages 343–350, 1999. ISBN 0-201-48560-5. 13

V. Lempitsky, C. Rother, S. Roth, , and A. Blake. Fusion moves for markov random field
optimization. IEEE TPAMI, to appear, 2009. 55

Victor Lempitsky, Carsten Rother, and Andrew Blake. Logcut – efficient graph cut optimization
for markov random fields. In ICCV, 2007. 83

162

Marius Leordeanu and Martial Hebert. A spectral technique for correspondence problems
using pairwise constraints. In ICCV, pages 1482–1489, 2005. doi: 10.1109/ICCV.2005.20. 14

J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: a unified approach to
shape interpolation and skeleton-driven deformation. In ACM SIGGRAPH, pages 165–172,
2000. 57

Hao Li, Robert W. Sumner, and Mark Pauly. Global correspondence optimization for non-rigid
registration of depth scans. Computer Graphics Forum (Proceedings of SGP), 27(5):1421–1430,
2008. 14, 93

Hao Li, Bart Adams, Leonidas J. Guibas, and Mark Pauly. Robust single view geometry and
motion reconstruction. In ACM SIGGRAPH ASIA, to appear, 2009. 156

Hongdong Li and Richard Hartley. The 3d-3d registration problem revisited. ICCV, 2007. 10

Yaron Lipman and Thomas A. Funkhouser. Möbius voting for surface correspondence. ACM
SIGGRAPH, 28(3), 2009. doi: 10.1145/1531326.1531378. 13

S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):
129–137, 1982. 100

Yi Ma, Stefano Soatto, Jana Kosecka, and S. Shankar Sastry. An Invitation to 3-D Vision: From
Images to Geometric Models. Springer Verlag, 2003. ISBN 0387008934. 34, 37

K. Madsen, H. Nielsen, and O. Tingleff. Methods for non-linear least squares problems. Tech-
nical report, Technical University of Denmark, 2004. 33

S. Maneewongvatana and D. M. Mount. It’s okay to be skinny, if your friends are fat. In 4th
Annual CGC Workshop on Comptutational Geometry, 1999. 24

J. Manson, G. Petrova, and S. Schaefer. Streaming surface reconstruction using wavelets. In
SGP, 2008. 137, 138

Nelson Max. Weights for computing vertex normals from facet normals. Journal of Graphics
Tools, 4(2):1–6, 1999. 40, 42

Ajmal Mian, M. Bennamoun, and R. Owens. A novel representation and feature matching
algorithm for automatic pairwise registration of range images. IJCV, 66:19–40, 2006. 9

Don P. Mitchell. Spectrally optimal sampling for distribution ray tracing. ACM SIGGRAPH,
pages 157–164, 1991. 80, 100, 119

Niloy J. Mitra, Natasha Gelfand, Helmut Pottmann, and Leonidas Guibas. Registration of point
cloud data from a geometric optimization perspective. In SGP, 2004. 28

Niloy J. Mitra, Leonidas J. Guibas, and Mark Pauly. Partial and approximate symmetry detection
for 3d geometry. ACM SIGGRAPH, 25(3):560–568, 2006. ISSN 0730-0301. 11, 12, 47, 61, 62, 82

Niloy J. Mitra, S. Flory, M. Ovsjanikov, N. Gelfand, Leonidas J. Guibas, and H. Pottmann.
Dynamic geometry registration. In SGP, pages 173–182, 2007a. 14

163

Niloy J. Mitra, Leonidas J. Guibas, and Mark Pauly. Symmetrization. In ACM SIGGRAPH,
page 63, 2007b. 12

Alex Mohr and Michael Gleicher. Building efficient, accurate character skins from examples.
ACM SIGGRAPH, pages 562–568, 2003. 58

David M. Mount and Sunil Arya. Ann: A library for approximate nearest neighbor searching,
version 1.1.1. http://www.cs.umd.edu/~mount/ANN, 2006. URL http://www.cs.umd.

edu/~mount/ANN. 24

P. J. Neugebauer. Reconstruction of real-world objects via simultaneous registration and robust
combination of multiple range images. International Journal of Shape Modeling, 3(1/2):
71–90, 1997. 8, 24, 29, 30, 117

K. Nishino and K. Ikeuchi. Robust simultaneous registration of multiple range images. In
ACCV, 2002. 8, 153

John Novatnack and Ko Nishino. Scale-dependent/invariant local 3d shape descriptors for
fully automatic registration of multiple sets of range images. In ECCV, 2008. 9

Ryutarou Ohbuchi, Yoshiyuki Kokojima, and Shigeo Takahashi. Blending shapes by using
subdivision surfaces. Computers & Graphics, 25(1):41–58, 2001. doi: 10.1016/S0097-8493(00)
00106-0. 13

Mark Pauly, Niloy J. Mitra, Joachim Giesen, Markus Gross, and Leonidas J. Guibas. Example-
based 3d scan completion. In SGP, page 23, 2005. ISBN 3-905673-24-X. 3, 11, 13

Yuri Pekelny and Craig Gotsman. Articulated object reconstruction and markerless motion
capture from depth video. Computer Graphics Forum (Proceedings of Eurographics), 27(2),
2008. 4, 15, 92, 101, 108, 113, 119, 125, 130, 135, 138

Tiberiu Popa, Quan Zhou, Derek Bradley, Vladislav Kraevoy, Hongbo Fu, Alla Sheffer, and
Wolfgang Heidrich. Wrinkling captured garments using space-time data-driven deformation.
Computer Graphic Forum (Proceedings of Eurographics), 28(2):427–435, 2009. 17

H. Pottmann, S. Leopoldseder, and M. Hofer. Registration without icp. CVIU, 95:54–71, 2004.
10

Emil Praun, Wim Sweldens, and Peter Schröder. Consistent mesh parameterizations. In ACM
SIGGRAPH, pages 179–184, 2001. ISBN 1-58113-374-X. 13

Kari Pulli. Surface Reconstruction and Display from Range and Color Data. PhD thesis, Univer-
sity of Washington, 1997. 9

Kari Pulli. Multiview registration for large data sets. In 3DIM, pages 160–168, 1999. 8, 9

Vincent Rabaud and Serge Belongie. Re-thinking non-rigid structure from motion. In CVPR,
2008. 19

Szymon Rusinkiewicz. Real-Time Acquisition and Rendering of Large 3D Models. PhD thesis,
Princeton University, 2001. 8

http://www.cs.umd.edu/~mount/ANN
http://www.cs.umd.edu/~mount/ANN

164

Szymon Rusinkiewicz. Estimating curvatures and their derivatives on triangle meshes. In
3DPVT, pages 486–493, 2004. ISBN 0-7695-2223-8. 42

Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the ICP algorithm. In 3DIM, pages
145–152, 2001. 8, 24, 26, 27

Szymon Rusinkiewicz, Olaf Hall-Holt, and Marc Levoy. Real-time 3d model acquisition. ACM
SIGGRAPH, 21(3):438–446, 2002. 29, 114

Ryusuke Sagawa, Nanaho Osawa, and Yasushi Yagi. Deformable registration of textured range
images by using texture and shape features. In 3DIM, pages 65–72, 2007. ISBN 0-7695-2939-4.
11

Peter Sand, Leonard McMillan, and Jovan Popović. Continuous capture of skin deformation.
ACM SIGGRAPH, 22(3):578–586, 2003. 3, 16

S. Schaefer and C. Yuksel. Example-based skeleton extraction. In SGP, pages 153–162, 2007.
18, 99

Andrei Sharf, Dan A. Alcantara, Thomas Lewiner, Chen Greif, Alla Sheffer, Nina Amenta, and
Daniel Cohen-Or. Space-time surface reconstruction using incompressible flow. ACM
SIGGRAPH ASIA, 2008. 15

Christian R. Shelton. Morphable surface models. Int. J. Comput. Vision, 38(1):75–91, 2000.
ISSN 0920-5691. 13

Jonathan Starck and Adrian Hilton. Correspondence labelling for wide-timeframe free-form
surface matching. In ICCV, 2007. 12

A. J. Stoddart and A. Hilton. Registration of multiple point sets. International Conference on
Pattern Recognition, 2:40, 1996. ISSN 1051-4651. doi: http://doi.ieeecomputersociety.org/
10.1109/ICPR.1996.546720. 8

Robert W. Sumner and Jovan Popović. Deformation transfer for triangle meshes. In ACM
SIGGRAPH, pages 399–405, 2004. 58, 72

Robert W. Sumner, Johannes Schmid, and Mark Pauly. Embedded deformation for shape
manipulation. In ACM SIGGRAPH, page 80, 2007. 93, 152

Jochen Süßmuth, Marco Winter, and Günther Greiner. Reconstructing animated meshes from
time-varying point clouds. Computer Graphics Forum (Proceedings of SGP), 27(5):1469–1476,
2008. 15

Richard Szeliski, Ramin Zabih, Daniel Scharstein, Olga Veksler, Vladimir Kolmogorov, Aseem
Agarwala, Marshall F. Tappen, and Carsten Rother. A comparative study of energy minimiza-
tion methods for markov random fields. In ECCV, 2006. 55

Shigeo Takahashi, Yoshiyuki Kokojima, and Ryutarou Ohbuchi. Explicit control of topological
transitions in morphing shapes of 3d meshes. In PG ’01: Pacific Conference on Computer
Graphics and Applications, page 70, 2001. ISBN 0-7695-1227-5. 13

165

Camillo J. Taylor and David J. Kriegman. Minimization on the lie group so(3) and related
manifolds. Technical report, Yale University, 1994. 33

A. Tevs, M. Bokeloh, M.Wand, A. Schilling, and H.-P. Seidel. Isometric registration of ambiguous
and partial data. In CVPR, 2009. 12

Lorenzo Torresani, Aaron Hertzmann, and Christoph Bregler. Nonrigid structure-from-motion:
Estimating shape and motion with hierarchical priors. IEEE TPAMI, 30:878–892, 2008a. 19

Lorenzo Torresani, Vladimir Kolmogorov, and Carsten Rother. Feature correspondence via
graph matching: Models and global optimization. In ECCV, 2008b. 55, 156

Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In ACM SIGGRAPH,
pages 311–318, 1994. 8

Oncel Tuzel, Raghav Subbarao, and Peter Meer. Simultaneous multiple 3d motion estimation
via mode finding on lie groups. In ICCV, pages 18–25, 2005. 47, 63, 64

Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan Popović. Articulated mesh animation
from multi-view silhouettes. ACM SIGGRAPH, 2008. 17

Michael Wand, Philipp Jenke, Qixing Huang, Martin Bokeloh, Leonidas J. Guibas, and Andreas
Schilling. Reconstruction of deforming geometry from time-varying point clouds. In SGP,
pages 49–58, 2007. 15

Michael Wand, Bart Adams, Maksim Ovsjanikov, Alexander Berner, Martin Bokeloh, Philipp
Jenke, Leonidas Guibas, Hans-Peter Seidel, and Andreas Schilling. Efficient reconstruction of
non-rigid shape and motion from real-time 3d scanner data. ACM Transactions on Graphics,
28, 2009. ix, 15, 150, 151, 156

Robert Y. Wang, Kari Pulli, and Jovan Popović. Real-time enveloping with rotational regression.
In ACM SIGGRAPH, page 73, 2007. 58

Xiaohuan Corina Wang and Cary Phillips. Multi-weight enveloping: least-squares approxima-
tion techniques for skin animation. In SCA, pages 129–138, 2002. 58

Sebastian Weik. Registration of 3-d partial surface models using luminance and depth infor-
mation. In 3DIM, pages 93–100, 1997. 8

Thibaut Weise, Bastian Leibe, and Luc J. Van Gool. Fast 3d scanning with automatic motion
compensation. In CVPR, 2007. 2, 72, 101

Thibaut Weise, Hao Li, Luc Van Gool, and Mark Pauly. Face/off: Live facial puppetry. In Eighth
ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 2009. 156

J. Williams and M. Bennamoun. A multiple view 3d registration algorithm with statistical error
modeling. IEICE Transactions on Information and Systems, 83-D:1662–1670, 2000. 8

Hao Zhang, Alla Sheffer, Daniel Cohen-Or, Quan Zhou, Oliver van Kaick, and Andrea Tagliasac-
chi. Deformation-driven shape correspondence. Computer Graphics Forum (Proceedings of
SGP), 27(5):1431–1439, 2008. doi: 10.1111/j.1467-8659.2008.01283.x. 12

166

Li Zhang, Noah Snavely, Brian Curless, and Steven M. Seitz. Spacetime faces: high resolution
capture for modeling and animation. In ACM SIGGRAPH, pages 548–558, 2004. 2

Song Zhang and Peisen Huang. High-resolution, real-time three-dimensional shape measure-
ment. Optical Engineering, 45, 2006. 2

	Title Page
	Copyright Page
	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgments
	Vita and Publications
	Abstract of the Dissertation
	Introduction
	Summary of Original Contributions
	Organization of the Dissertation

	Related Work
	Rigid Registration
	Non-Rigid Registration
	Silhouette Based Shape Capture
	Modeling Motion from Mesh Animations
	Non-Rigid Structure From Motion

	Technical Background
	Registration Using the ICP Algorithm
	Basic Algorithm
	Improving the ICP algorithm
	Gauss-Newton Algorithm
	Optimizing for Rigid Transformations using Gauss-Newton

	Shape Descriptors for Local Surface Matching
	Estimating Normals and Curvatures
	Spin Images

	Clustering Using the Mean-Shift Algorithm
	Discrete Optimization With Graph Cuts
	Alpha-Beta-Swap and Alpha-Expansion Algorithms
	Further Reading

	Deformation Models
	Linear Blend Skinning (LBS) and Dual Quaternion Linear Blending (DLB)
	Other Improved Models

	Automatic Registration for Articulated Shapes
	Contributions
	Registration Algorithm
	Motion Sampling
	Graph Cuts Optimization

	Results
	Registration
	Registration Error Analysis
	Limitations
	Parameters & Performance

	Improving Performance by Subsampling
	Discussion and Future Work
	Conclusion
	Acknowledgments

	Range Scan Registration Using Reduced Deformable Models
	Contributions
	Problem Formulation
	Optimization Algorithm
	Solving the T-step
	Solving the W-step
	Initialization

	Experimental Results
	Registration
	Comparison with Huang et al. [2008]
	Creating Novel Poses
	Parameters and Performance

	Discussion and Future Work
	Conclusions
	Acknowledgments

	Global Registration for Articulated Model Reconstruction
	Contributions
	Algorithm Overview
	Global Registration
	Organization of the Transformations
	Sample Set and All-Samples Graph (ASG)
	Propagating the initial registration
	Global Registration
	Optimization
	Treating Occlusion
	Reappearing Parts

	Post-Processing
	Experimental Results
	Reconstruction
	Parameters
	Performance
	Inverse-Kinematics Application
	Sequential Registration vs. Simultaneous Registration
	Grid-Based Weights vs. Graph-Based Weights
	Comparison with Wand et al. [2009]

	Summary and Conclusion
	Acknowledgments

	Conclusions and Future Work
	Contributions
	Future Research Directions

	Bibliography

