Automatic Registration for Articulated Shapes

Related Work

 Correlated correspondence algorithm, requires a template (Anguelov et al. 2004)

Registered result

(from Anguelov et al. 2004) 26

Problem Statement

- Solve pairwise registration problem
 - Develop robust method independent of initial pose
 - Do not require markers or a template
- □ Contributions:
 - Useful for initialization: used as preprocessing step
 - Focus on registration: does not solve for a reduced motion model

Algorithm Overview

- \square Articulated motion \rightarrow small set of transformations
- Predetermine a set of transformations describing the motion
- Optimize assignment of transformations to the points

Motion Sampling Illustration

 Find transformations that move parts of the source to parts of the target

Motion Sampling Illustration

Find transformations that move parts of the source to parts of the target

Source Shape

Target Shape

Motion Sampling Illustration

 Find transformations that move parts of the source to parts of the target

Motion Sampling Illustration

Limitations of Motion Sampling

- Final Output: finite set of rigid transformations
- If there are multiple similar parts
 - Does not figure out the correct part
 - Disambiguate in the optimization step

<section-header>

Global Motion Optimization

Smoothness Term

Preserve edge length between neighboring points

$$V(p,q,f_p,f_q) = \left| \underbrace{\|p-q\|}_{\text{Original Length}} - \underbrace{\|f_p(p) - f_q(q)\|}_{\text{Transformed Length}} \right|$$

Disambiguates multiple possible mappings

Data Term

- Move all points as close as possible to the target
- □ How to measure distance to target?
 - Apply selected transformation f_p for all $p = f_p(p)$
 - $\hfill\square$ Measure distance to closest point ${\cal U}$ in target

37

Symmetric Cost Function

- Swapping source / target can give different results
 - Optimize assignment in both meshes (forward & backward)
 - **\square** Enforce consistent assignment: penalty when $f_p \neq f_u$

Optimization Using Graph Cuts

argmin Assignment from a set of transformation Data_{Source} + Smoothness_{Source} +

40

a set of transformations Data_{Target} + Smoothness_{Target} +

Symmetric Consistency Source & Target

- Data and smoothness terms apply to both shapes
- Additional symmetric consistency term
- Weights to control relative influence of each term
- Use "graph cuts" to optimize assignment
 - [Boykov, Veksler & Zabih PAMI '01]

Results

Horse Dataset Arm Dataset Hand Dataset

Horse Dataset Results

Synthetic Dataset Example

Synthetic Dataset w/ Holes

Arm Dataset Results

12 poses of arm scans: total of 66 pairs, arm & hand orientation matched in all pairs

Arm Dataset Example

Arm Dataset Example

Hand Dataset Example

<image><image><image><image><image><image><image><image>

Hand Dataset Example

Performance

Dataset	#Points	# Labels	Matching	Clustering	Pruning	Graph Cuts
Horse	8431	1500	2.1 min	3.0 sec	(skip) 1.6 sec	1.1 hr
Arm	11865	1000	55.0 sec	0.9 sec	12.4 min	1.2 hr
Hand (Front)	8339	1500	14.5 sec	0.7 sec	7.4 min	1.2 hr
Hand (Back)	6773	1500	17.3 sec	0.9 sec	9.4 min	1.6 hr

- Graph cuts optimization is most time-consuming step
 - Symmetric optimization doubles variable count
 - Symmetric consistency term introduces many edges

Limitations

- Errors in registration
 - Trade-off between data and smoothness costs
 - \blacksquare Data weight too high ightarrow May break smoothness
 - Smoothness weight too high \rightarrow Prefer bad alignment

Limitations

- Errors in registration
 - Motion sampling: may fail to sample properly when too much missing data, non-rigid motion
 - Hard assignment of transformations

Conclusions

- Automatic method for registering articulated shapes
 - No template, markers, or manual segmentation needed
 - Explicitly sample a discrete set of motion
 - Optimize the assignment of transformations
 - Graph cut result gives intuitive segmentation
- Useful for obtaining a robust initialization of the registration
 - Does not provide an articulated motion model

53

Range Scan Registration Using Reduced Deformable Models

Problem Statement

Fit a model of the surface motion to a pair of scans
Articulated model (e.g. joints, smooth weights)
Serves as the basis for fitting on multiple frames

Related Work

- User provided segmentation: Pekelnyo8
- Unsupervised pairwise registration: Lio8, Huango8

Problem Formulation

Model: Linear Blend Skinning

Transformations (bones) and weights

Model: Linear Blend Skinning

- Each point assigned weights in reference pose
- Transformations move each point according to its weights

Weighted Blending Result

Weight Grid

- Define weights on grid enclosing surface
 - Covers small holes, reduces variables
 - Provides regular structure for optimization

LBS for scan registration

 Fit the transformations and weights to align a pair of range scans

(Converged)

Optimization overview

Optimization overview

T-Step: Optimize Alignment

- Distance Term
- Joint Constraint Term

T-Step: Distance Term

□ Fix weights & solve for transformations

T-Step: Distance Term

Fix weights & solve for transformations
Use closest point correspondences

T-Step: Distance Term

Fix weights & solve for transformations
Use closest point correspondences

T-Step: Distance Term

Fix weights & solve for transformations
Use closest point correspondences
Iterate further until convergence

T-Step: Joint Constraint Term

Prevent neighboring bones from separating

T-Step: Joint Constraint Term

Prevent neighboring bones from separating
Constrain overlapping weight regions

T-Step: Joint Constraint Term

Prevent neighboring bones from separating
Constrain overlapping weight regions

T-Step: Joint Constraint Term

Prevent neighboring bones from separating
Constrain overlapping weight regions

T-Step: Optimization summary

- Like rigid registration
 - Except multiple parts & joint constraints
- Non-linear least squares optimization
 - Solving for a rotation matrix
 - Gauss-Newton algorithm
 - Solve by iteratively linearizing solution
- \square Few variables \rightarrow Fast performance
 - **#** variables = 6 x #bones
 - Typically 5~10 bones in our examples

78

82

Correspondences from last T-Step

83

Bone 1

(Applied to entire shape)

W-Step: Optimizing weights

W-Step: Optimizing weights

Use discrete labeling

- Our solution: one transformation per location
 - Bones = labels
 - Becomes discrete labeling problem

W-Step: Optimization Summary

- Use "graph cuts" to optimally label grid cells
 - [Boykov, Veksler & Zabih PAMI '01]
- Distance term + Smoothness term
 - Distance: measures alignment for a given label
 - Smoothness: penalizes different labels for adjacent cells
- Good Performance
 - Only ~ 1000 grid cells (graph nodes) in our examples
 - Fast performance for graph cuts

Robot video (real-time recording)

Results

Robot, torso video Interactive posing video Additional results & statistics

Alignment Result

Solved Weights

Torso video (2x speed recording)

Interactive posing (real-time recording)

Average performance statistics

	Car	Robot	Walk	Hand
Bones	7	7	10	12
Corresp.	1200	1200	1000	1500
Vertices	5389	9377	4502	34342
Max Dist	20	40	20	30
Grid Res	60	65	50	40
Grid Cells	1107	1295	1014	814
Grid Points	2918	3366	2553	1884
Setup	0.185 sec	0.234 sec	0.136s ec	0.078 sec
RANSAC	8.089 sec	20.001 sec	5.517 sec	N/A
Align	9.945 sec	19.644 sec	23.092 sec	49.918 sec
Weight	6.135 sec	10.713 sec	10.497 sec	3.689 sec
Total Time	24.355 sec	50.591 sec	39.242 sec	53.684 sec

Limitations

Discussion

- Topology issues with grid
 - Improve in next section using graph-based approach
- Limited to a pair of scans
 - Simultaneously register multiple frames in next section
- Limitations with LBS
 - Optimize better model (e.g. DLB)

Conclusion

- A new algorithm to align range scans by modeling the motion with a reduced deformable model
 - Use LBS to represent the motion
 - Represent weight function using a 3D grid
 - Solve for the parameters using alternating optimization
 - No marker, template, segmentation information
 - Robust to occlusion & missing data
- Next: extend this method to handle multiple frames