Automatic Registration for Articulated Shapes

Problem Statement

\square Solve pairwise registration problem
\square Develop robust method independent of initial pose
\square Do not require markers or a template
\square Contributions:
\square Useful for initialization: used as preprocessing step
\square Focus on registration: does not solve for a reduced motion model

$\stackrel{20}{\rightarrow}$

Related Work

\square Correlated correspondence algorithm, requires a template (Anguelov et al. 2004)

Template Model

Partial Example

Registered result

Ground Truth

Algorithm Overview

\square Articulated motion \rightarrow small set of transformations
\square Predetermine a set of transformations describing the motion
\square Optimize assignment of transformations to the points

Motion Sampling Illustration

\square Find transformations that move parts of the source to parts of the target

Source Shape
Target Shape

Motion Sampling Illustration

Find transformations that move parts of the source to parts of the target

Source Shape
Target Shape

Motion Sampling Illustration

\square Find transformations that move parts of the source to parts of the target

Source Shape

Target Shape

Motion Sampling Illustration

\square Find transformations that move parts of the source to parts of the target

Motion Sampling Illustration

\square Find transformations that move parts of the source to parts of the target

Source Shape

Limitations of Motion Sampling

\square Final Output: finite set of rigid transformations
\square If there are multiple similar parts
\square Does not figure out the correct part
\square Disambiguate in the optimization step

Source with Selected Region

Global Motion Optimization

\square Optimize an assignment from a finite set of transformations
argmin Data Cost + Smoothness Cost
Assignment from
a set of transformations
\square A discrete labelling problem \rightarrow Graph Cuts for optimization

Data Term

\square Move all points as close as possible to the target
\square How to measure distance to target?

- Apply selected transformation f_{p} for all $p=f_{p}(p)$
\square Measure distance to closest point U in target

Smoothness Term

\square Preserve edge length between neighboring points

$$
V\left(p, q, f_{p}, f_{q}\right)=|\underbrace{\|p-q\|}_{\text {Original Length }}-\underbrace{\left\|f_{p}(p)-f_{q}(q)\right\|}_{\text {Transformed Length }}|
$$

\square Disambiguates multiple possible mappings

σ

Symmetric Cost Function

\square Swapping source / target can give different results

- Optimize assignment in both meshes (forward \& backward)
- Enforce consistent assignment: penalty when $f_{p} \neq f_{u}$

Optimization Using Graph Cuts

argmin
Assignment from a set of transformations

Data $_{\text {Source }}+$ Smoothness $_{\text {Source }}+$
Data $_{\text {Target }}+$ Smoothness $_{\text {Target }}+$

Symmetric Consistency Source \& Target
\square Data and smoothness terms apply to both shapes
\square Additional symmetric consistency term
\square Weights to control relative influence of each term
\square Use "graph cuts" to optimize assignment

- [Boykov, Veksler \& Zabih PAMI '01]

Horse Dataset Results

Synthetic Dataset Example

12 poses of galloping horse: total of 66 pairs, correct leg matched in 64 pairs

Histogram of Error in Galloping Horse Dataset (minimum over 3 trials)

Motion Segmentation (from Graph Cuts)

Aligned Result

Registration Error

Synthetic Dataset w/ Holes

Arm Dataset Example

Source

Noisy Target

Arm Dataset Results

12 poses of arm scans: total of 66 pairs, arm \& hand orientation matched in all pairs

Histogram of Error in the Arm dataset (1 trial)

Arm Dataset Example

Aligned Result

Distance (from Target) to the closest point (\% bounding box diagonal)

Motion Segmentation

Hand Dataset Example

Source

Target

Performance

Dataset	\#Points	\# Labels	Matching	Clustering	Pruning	Graph Cuts
Horse	8431	1500	2.1 min	3.0 sec	(skip) 1.6 sec	1.1 hr
Arm	11865	1000	55.0 sec	0.9 sec	12.4 min	1.2 hr
Hand (Front)	8339	1500	14.5 sec	0.7 sec	7.4 min	1.2 hr
Hand (Back)	6773	1500	17.3 sec	0.9 sec	9.4 min	1.6 hr

\square Graph cuts optimization is most time-consuming step
\square Symmetric optimization doubles variable count \square Symmetric consistency term introduces many edges

Hand Dataset Example

Distance (from Target) to the closest point (\% bounding box diagonal)

Motion Segmentation

Limitations

\square Errors in registration

\square Trade-off between data and smoothness costs

- Data weight too high \rightarrow May break smoothness
- Smoothness weight too high \rightarrow Prefer bad alignment

Target

Registration

Limitations

\square Errors in registration

- Motion sampling: may fail to sample properly when too much missing data, non-rigid motion
\square Hard assignment of transformations

Source

Target

Registration

Conclusions

\square Automatic method for registering articulated shapes
\square No template, markers, or manual segmentation needed
\square Explicitly sample a discrete set of motion

- Optimize the assignment of transformations
\square Graph cut result gives intuitive segmentation
\square Useful for obtaining a robust initialization of the registration
- Does not provide an articulated motion model

Range Scan Registration Using Reduced Deformable Models

Problem Statement

\square Fit a model of the surface motion to a pair of scans \square Articulated model (e.g. joints, smooth weights)
\square Serves as the basis for fitting on multiple frames

Related Work

\square User provided segmentation: Pekelnyo8
\square Unsupervised pairwise registration: Lio8, Huango8

Model: Linear Blend Skinning

\square Transformations (bones) and weights

Shape with Weights

Problem Formulation

Model: Linear Blend Skinning

\square Each point assigned weights in reference pose
\square Transformations move each point according to its weights

Weighted Blending Result

Weight Grid

\square Define weights on grid enclosing surface
\square Covers small holes, reduces variables
\square Provides regular structure for optimization

LBS for scan registration

\square Fit the transformations and weights to align a pair of range scans

(Converged)

W-Step

Optimization overview

Optimization overview

\square T-Step: Optimize Alignment

- Distance Term
\square Joint Constraint Term

T-Step: Distance Term

\square Fix weights \& solve for transformations

T-Step: Distance Term

\square Fix weights \& solve for transformations \square Use closest point correspondencesBone 1
\square Bone 2

T-Step: Distance Term

\square Fix weights \& solve for transformations
\square Use closest point correspondences

- Iterate further until convergenceBone 1Bone 3

T-Step: Distance Term

\square Fix weights \& solve for transformations \square Use closest point correspondencesBone 1
\square Bone 2

T-Step: Joint Constraint Term

\square Prevent neighboring bones from separating

T-Step: Joint Constraint Term

\square Prevent neighboring bones from separating \square Constrain overlapping weight regionsBone 1Bone 3

T-Step: Joint Constraint Term

\square Prevent neighboring bones from separating
\square Constrain overlapping weight regionsBone 1Bone 2Bone 3

T-Step: Joint Constraint Term

\square Prevent neighboring bones from separating
\square Constrain overlapping weight regionsBone 1
\square Bone 2
\square Bone 3

T-Step: Optimization summary

\square Like rigid registration
\square Except multiple parts \& joint constraints
\square Non-linear least squares optimization
\square Solving for a rotation matrix
\square Gauss-Newton algorithm
\square Solve by iteratively linearizing solution
\square Few variables \rightarrow Fast performance

- \# variables = $6 \times$ \#bones
- Typically 5~10 bones in our examples

Optimization overview

W-Step: Optimizing weights

\square Fix transformations, solve for continuous weights

Correspondences from last T-Step

Optimization overview

\square W-Step: Optimize Weights
\square Use Discrete Labelling
\square Continuous Weight Refinement

W-Step: Optimizing weights

\square Fix transformations, solve for continuous weights

Bone 1
(Applied to entire shape)

W-Step: Optimizing weights

\square Fix transformations, solve for continuous weights

Bone 2
(Applied to entire shape)

W-Step: Optimizing weights

\square Fix transformations, solve for continuous weights

W-Step: Optimizing weights

\square Fix transformations, solve for continuous weights

W-Step: Optimizing weights

\square Without additional constraints, problem is underconstrained

Typical solved result

Use discrete labeling

\square Our solution: one transformation per location
\square Bones = labels
\square Becomes discrete labeling problemBone 1Bone 2
\square Bone 3

Robot video (real-time recording)

W-Step: Optimization Summary

\square Use "graph cuts" to optimally label grid cells

- [Boykov, Veksler \& Zabih PAMI '01]
\square Distance term + Smoothness term
- Distance: measures alignment for a given label
\square Smoothness: penalizes different labels for adjacent cells
\square Good Performance
- Only ~ 1000 grid cells (graph nodes) in our examples
\square Fast performance for graph cuts

Solved Weights

Torso video (2x speed recording)
Interactive posing (real-time recording)

Solved Weights (7 bones, 1598 cells)

Interactive Posing Result

Average performance statistics

	Car	Robot	Walk	Hand
Bones	7	7	10	12
Corresp.	1200	1200	1000	1500
Vertices	5389	9377	4502	34342
Max Dist	20	40	20	30
Grid Res	60	65	50	40
Grid Cells	1107	1295	1014	814
Grid Points	2918	3366	2553	1884
Setup	0.185 sec	0.234 sec	0.136 sec	0.078 sec
RANSAC	8.089 sec	20.001 sec	5.517 sec	N / A
Align	9.945 sec	19.644 sec	23.092 sec	49.918 sec
Weight	6.135 sec	10.713 sec	10.497 sec	3.689 sec
Total Time	24.355 sec	50.591 sec	39.242 sec	53.684 sec

Limitations

\square Discussion
\square Topology issues with grid

- Improve in next section using graph-based approach
\square Limited to a pair of scans
- Simultaneously register multiple frames in next section
- Limitations with LBS
- Optimize better model (e.g. DLB)

Conclusion

\square A new algorithm to align range scans by modeling the motion with a reduced deformable model
\square Use LBS to represent the motion
\square Represent weight function using a 3D grid
\square Solve for the parameters using alternating optimization
\square No marker, template, segmentation information
\square Robust to occlusion \& missing data

Next: extend this method to handle multiple frames

