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Abstract
We present an unsupervised algorithm for aligning a pair of shapes in the presence of significant articulated
motion and missing data, while assuming no knowledge of a template, user-placed markers, segmentation, or the
skeletal structure of the shape. We explicitly sample the motion, which gives a priori the set of possible rigid
transformations between parts of the shapes. This transforms the problem into a discrete labeling problem, where
the goal is to find an optimal assignment of transformations for aligning the shapes. We then apply graph cuts to
optimize a novel cost function, which encodes a preference for a consistent motion assignment from both source
to target and target to source. We demonstrate the robustness of our method by aligning several synthetic and
real-world datasets.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction
A key task in computer graphics is the acquisition and con-
struction of 3D geometric models. As cheaper and faster
range scanning devices are becoming available, it is getting
easier to scan the shape of real world objects. An important
post-processing task is to align the acquired scans from mul-
tiple viewpoints to a common pose. If the object stays rigid
during the scanning process, it suffices to estimate a single
rigid transformation for the alignment. However, if the ob-
ject deforms, we must estimate a movement that now varies
spatially across the object. Furthermore, there is usually a
significant amount of missing surface data due to occlusion
in the range scanning process.

In this paper, we present an algorithm that aligns a pair
of shapes with significant motion and missing data. We fo-
cus on articulated objects, where the motion is composed of
a few rigidly moving parts. We exploit this property to de-
velop an algorithm that is able to register shapes with differ-
ent connectivity and topology, while assuming no temporal
coherence, no prior knowledge of a template shape, man-
ually specified feature markers, nor any knowledge of the
segmentation and skeletal structure of the model.

Our approach optimizes a novel cost function to evaluate
the alignment between two surfaces. The optimization is di-
vided into two steps: sampling the motion between the two

surfaces, and applying graph cuts to assign the best spatially
varying motion that aligns the shapes while preserving its
structure. Our method is able to disambiguate between mul-
tiple possible assignments of similarly shaped parts given
sufficient connectivity within the shape. We apply our ap-
proach to a number of real-world and synthetic datasets,
and we demonstrate that we can align the shapes accurately.
In addition, our algorithm is robust to missing data in both
shapes, and the resulting alignment can fill in the missing
parts of one shape with the other. Once this basic registration
is completed, one can perform higher level tasks, such as
constructing templates, interpolating shapes, automatically
rigging skeletons, and building general shape models.

Our main contributions are the following:

• We formulate the registration problem as a label assign-
ment problem, where the labels are rigid transformations
that can be assigned to the surface.

• We develop a novel cost function for simultaneously solv-
ing a consistent assignment of forward transformations
(from the source to the target) and backwards transfor-
mations (from the target to the source).

• We optimize this cost function using graph cuts, resulting
in an assignment of transformations that aligns the shapes.
In addition, contiguous regions with the same transforma-
tion give a segmentation of the shape into rigid parts.
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2. Related Work
The surface registration problem is a classic, well-studied
problem in computer graphics. The Iterative Closest Point
(ICP) algorithm is a well-known solution for registering
rigid surfaces [CM91, BM92]. Based on this algorithm, a
variety of techniques have been developed to handle non-
rigid surfaces [She00, CR03, HTB03, ARV07, BR07]. These
resemble the ICP algorithm because they use the closest
point mapping between the surfaces as a preliminary cor-
respondence to optimize for a non-rigid alignment transfor-
mation. The limitation of these techniques is that they com-
pensate for a local non-rigid warp and are not designed to
handle significant changes in pose. Notably Chui and Ran-
garajan [CR03] use soft correspondence assignments and de-
terministic annealing to robustly handle outliers and a wider
range of deformation, but the deformation is constrained to
be smooth, unlike the piecewise discontinuous motion ob-
served in articulated models. Compared to these techniques,
our method is robust to changes in pose, because it can au-
tomatically align shapes where the parts have moved signif-
icantly.

A number of algorithms rely on user-placed feature mark-
ers to guide the registration. Allen and colleagues [ACP03]
describe a template-based non-rigid registration algorithm
to register a set of body scans. The example-based 3D scan
completion work by Pauly et al. [PMG∗05] also uses mark-
ers to optimize a per-vertex displacement aligning com-
plete examples to partial range scans. A large body of
work on mesh morphing solves the correspondence problem
by finding a common base parameterization across multi-
ple meshes of a common topological type [KR91, KCP92,
KSK97,GSL∗98,LSS∗98,LDSS99,KSK00,OKT01,PSS01,
TKO01,KS04]. Although these methods require a set of cor-
respondence markers, our algorithm does not require any.

Several recent techniques exploit temporal coherence to
align a sequence of range scans. Mitra and colleagues en-
tirely avoid computing correspondences by modeling the
shape as a continuously time-varying surface [MFO∗07].
The continuous statistical optimization approach of Wand
and colleagues [WJH∗07] iteratively aligns a sequence of
point clouds to assemble a deforming geometric model.
Sagawa and colleagues [SOY07] rely on matching both tex-
ture and shape features to register a sequence of deform-
ing textured range scans. Pekelny and Gotsman [PG08] ad-
ditionally require a manual segmentation of the articulated
object and its skeletal connectivity. They perform ICP for
each segment to gradually accumulate the complete geome-
try from each additional frame of the scanned sequence. Our
algorithm does not require the motion to be small between
the shapes, and furthermore it does not depend on any prior
knowledge of texture or segmentation.

A closely related work is the symmetrization algorithm by
Mitra et al. [MGP07], where shape registration is performed
as an application of symmetry detection. Although both our
method and symmetrization use partial symmetry detection,

the symmetrization algorithm does not address how to dis-
ambiguate similar parts in the same object.

The correlated correspondence algorithm by Anguelov
and colleagues [ASP∗04] is also closely related to our work.
They also do not use user-placed markers, assume no tempo-
ral coherence or rough initial alignment, and have no prior
knowledge of the object shape. With the modest requirement
of a template shape, they find a good correspondence as-
signment in spite of significant changes in object pose. Our
work differs from the correlated correspondence algorithm,
because we find an optimal assignment of transformations
rather than an explicit assignment of corresponding points.
Therefore, our algorithm is able to assign transformations
when no corresponding point is available, effectively remov-
ing the requirement of a template shape for the registration.

3. Registration Algorithm
In this section, we describe our approach for automatically
registering pairs of articulated shapes with significant miss-
ing data. We interpret the registration problem as finding, for
each point in one shape, a rotation and translation that moves
it to the corresponding point in the other. A solution would
be to formulate this as a continuous optimization problem
and solve for a smoothly varying transformation field. How-
ever, this results in a difficult continuous non-linear opti-
mization problem.

In our approach, we take advantage of the observation that
articulated objects consist of a few rigidly moving parts. Our
main idea is to first determine a finite set of significant mo-
tions between the mostly rigid parts of the pair of shapes. We
show that it is possible to extract the significant motions even
if large parts of the shapes are missing. We then find the reg-
istration by solving a label assignment problem, where each
transformation corresponds to a label.

A main challenge of this approach is that many shapes
contain several similar parts, as for example the four legs of a
horse. Therefore, many significant transformations that lead
to good alignments of parts will not lead to consistent global
registration. We formulate a cost function for the labeling
problem that prefers an assignment of transformations that
keeps the shape intact and ensures that each part is mapped
in a globally consistent manner. Adding this regularization
enables us to apply graph cuts for solving the resulting opti-
mization problem.

We describe how to determine the finite set of transforma-
tions describing the movement of the object in Section 3.1.
We show how to formulate and optimize the cost function
for assigning the transformations in Section 3.2. For conve-
nience, we refer to the pair of shapes asP and U . We assume
that each shape S is represented as a triangle mesh, and we
make use of the set of vertices VS = {v0,v1, . . . ,vn} ∈ S and
the set of edges ES = {(vi,v j) | vi,v j ∈VS} between adjacent
vertices.
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Figure 1: Motion sampling overview. After precomputing coordinate frames and feature descriptors, we sample the shapes and
compare spin image features to find candidate correspondences between the shapes. Using the precomputed coordinate frames,
we generate a rigid transformation for each correspondence. Then, we cluster the resulting set of candidate transformations to
obtain the final set of transformations. Optionally, we prune unnecessary transformations based on matching regions.

3.1. Motion Sampling
In this section, we describe an algorithm to find a finite set
of rigid transformations T = {T | T ∈ SE(3)} that describes
the movement of each part of the shape. We follow the work
of Mitra et al. for estimating this set [MGP06]. The algo-
rithm has the following steps, illustrated in Figure 1:

1. Precompute per-vertex coordinate frames and feature de-
scriptors

2. Sample the shapes and match similar features
3. Generate the motion for each match
4. Cluster the transformations
5. Prune transformations based on matching regions

The purpose of the feature matching, clustering, and selec-
tion steps is to narrow down on a concise set of transforma-
tions that describes the movement of all rigid parts of the
shape. Here we discuss the specific design choices made in
the implementation of this method, and we refer the reader
to Mitra et al. for additional details.
Coordinate Frames. As a preprocessing step, we estimate
a coordinate frame on each vertex of the shape. The frame
(R, t) contains the 3D location (the position of the vertex, t)
and three orthonormal vectors (collected in matrix R) con-
sisting of the normal vector and the two principal curva-
ture directions. The principal curvature directions are es-
timated by least-squares fitting of the second fundamental
form [Rus04]. These frames are used in Step 3 to find a rigid
transformation between a pair of corresponding points.
Feature Descriptor. Also in the preprocessing step, we
compute at each vertex a “spin image” which describes the
local geometry [Joh97]. A spin image is a histogram of the
vertices where the bins are concentric rings stacked along
the normal direction. This is visualized as a sweeping plane
rotating about the normal direction, collecting vertices in a
grid defined on the plane. Spin images have been success-
fully used for computing correspondences in range data and
are robust to clutter and occlusion in static scenes. Since
we assume that our object has articulated motion composed
of several rigidly moving parts, the spin images work well
as long as they are localized to small neighborhoods. We
have also tried using multi-scale principal curvatures, but we
found that spin images were more discriminative.

Sampling and Feature Matching. In these steps, we use
the precomputed feature descriptors to find possible corre-
sponding points between the source and target shapes. First,
we randomly subsample the set of vertices in each shape,
in order to reduce the number of comparisons during the
matching step. Next, for a single point p in the source, we
find corresponding points in the target by computing the
similarity score (higher is better) from p’s spin image to all
of the spin images in the target (Figure 1). Collecting these
scores into a histogram, we find the features that are signifi-
cantly more similar than the rest—to such a degree that they
are outliers in the histogram. We use a moderate threshold
of 1.5 fs + mu to determine outliers, where mu is the median
of the upper half of the measurements, ml is the median of
the lower half of the measurements, and fs = mu−ml . We
repeat this matching process for all vertices in P to obtain a
large set of correspondence “candidates.”
Generating Motions. Now, for each correspondence candi-
date (p,u) where p ∈ P and u ∈ U , we use the precomputed
coordinate frames Tp = (Rp, tp), Tu = (Ru, tu) to generate a
rigid transformation T = (R, t) from p to u, given by

R = RuR>p , t = tu−Rtp.

Here, R is the rotation and t is the translation from Tp to
the Tu, and SE(3) is the space of all rigid transformations.
As a result, we have a set of rigid transformations, where
each transformation is associated with a single correspon-
dence candidate.
Clustering Motions. In this step, we use a variant of the
non-linear mean-shift framework to cluster the set of trans-
formations [TSM05]. Mean-shift is a non-parametric clus-
tering algorithm that finds peaks of the local density of a
point set using gradient ascent. When mean-shift clustering
is applied for rigid motions, the challenge is to define an ap-
propriate distance measure for comparing transformations.
The non-linear mean-shift approach defines the distance be-
tween any two transformations X ,Y ∈ SE(3) as

d(X ,Y ) = ‖ log(X−1Y )‖

where log(X) maps a transformation X ∈ SE(3) to the cor-
responding element x in the Lie algebra se(3), a 6D vector
containing axis-angle rotation and linear velocity [TSM05].
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Figure 2: Visualizing the set of estimated transformations T
from the source (a,d) to the target (b,e). We manually select
a region in the source and plot a transformed copy of the
region for each associated transformation (c,f). We see that
there are many transformations between different but simi-
larly shaped parts. The graph cuts optimization assigns the
transformations to map each part correctly.

Considering the Lie group SE(3) as a differentiable mani-
fold, this distance d(X ,Y ) corresponds to the length of the
geodesic curve between X−1Y and the identity e ∈ SE(3).

This distance measure is a natural definition that is based
on the structure of a Lie group, but it is a non-linear func-
tion that is expensive to evaluate and cannot support a data
structure for fast range queries. Therefore, we opt for an ap-
proximation

d′(X ,Y ) = ‖− x + y‖

where x,y ∈ se(3) are the axis-angle and linear velocity rep-
resentations of X ,Y ∈ SE(3), respectively. We discuss in Ap-
pendix A that this is a reasonable approximation. Further-
more, since d′(X ,Y ) is just Euclidean distance in the Lie
algebra se(3), it is faster to evaluate and supports fast ap-
proximate range queries using a k-d tree. This is particularly
useful when we have a large number of rigid transformations
to cluster.

To utilize the distance d′(X ,Y ), we first map each trans-
formation T = (R, t) ∈ SE(3) to its corresponding element
in se(3). The scale of the rotations R usually differs from
the scale of the translations t, so we perform zero mean, unit
standard deviation normalization on the translations. As a
result, the range of norms for the rotational and transational
components are in ≈ [0,π]. Finally, we construct a k-d tree
and apply mean-shift clustering using the Epanechnikov ker-
nel. As a result, we obtain a set of clusters, where each clus-
ter is a group of similar transformations. Finally, we compute
the cluster modes and collect all of them to obtain the final
set of estimated transformations T . A visualization of these
transformations is shown in Figure 2.
Pruning. This is an optional step to further refine the set
of transformations T . Even after clustering, there are many

spurious transformations resulting from incorrect correspon-
dences. Therefore, we want to retain the best transformations
and get rid of unnecessary ones.

Most reliable transformations will have the largest match-
ing regions (Figure 1). Therefore, we find the matching
region for each transformation, and retain only the top k
transformations with the largest matching regions. However,
since good transformations corresponding to very small re-
gions may be potentially discarded, we found it acceptable
to optionally skip this step if the feature matching is suffi-
ciently accurate and discriminative.

In our implementation, to find the matching region, we
start at a random cluster member (a pair of vertices on the
source and target) and incrementally grow the region, only
to the point where applying the transformation keeps the re-
gion within a small distance of the target. In addition, we
refine the accuracy of the transformation during this time by
performing ICP at regularly scheduled intervals. When there
is missing data in the mesh, there will typically be boundary
vertices, which are the vertices of edges that are adjacent to
a single triangle. To help ICP to be more robust to missing
data, we slightly modify the point selection step: in the case
where the closest point u is on a boundary, we instead use the
closest point on the tangent plane at u. This strategy helps to
provide accurate transformations when there are large miss-
ing regions in the data.
Conclusion. The final output of the motion sampling is a
finite set of rigid transformations T = {T | T ∈ SE(3)} of
the best transformations determined by the clustering or se-
lection step.

3.2. Graph Cuts Optimization
The next step in our method is to assign the transformations
to the shapes. This is essentially a labeling problem, where
the vertices of the shape are the nodes and the transforma-
tions are the labels assigned to each node. We first develop
a cost function that measures the quality of assigning the
transformations, and describe how we apply graph cuts to
optimize this cost.
Cost Function. We expect that a good transformation as-
signment aligns the shapes well and results in a consistent
deformation that preserves the connectivity of the shape. We
express this preference as minimizing a cost function

argmin
{Tp∈SE(3) ∀p∈P}

∑
p∈P

D(p,Tp) + ∑
(p,q)∈EP

V (p,q,Tp,Tq) (1)

where D(p,Tp) represents a data cost measuring how well
the application of rigid transformation Tp matches p to U ,
EP specifies the connectivity of P , and V (p,q,Tp,Tq) is a
smoothness cost measuring the consistency of the deforma-
tion between a pair of points (p,q) ∈ EP. This cost function
is reminiscent of one developed by Allen et al. [ACP03], ex-
cept that they consider Tp to be affine transformations. Stated
purely in this form, minimizing this function results in a con-
tinuous, non-linear optimization problem that is generally
difficult to minimize.
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Figure 3: Illustration of the cost function from the source (a)
to the target (b,c,d). The data term (b) measures the distance
of the transformed point T (p) to the closest point on the tar-
get. The smoothness term (c) measures the change of length
between neighboring points p,q after applying the transfor-
mations. The consistent label term (d) ensures that the trans-
formation Ti assigned to p is consistent with Tj assigned to
the closest point u, i.e. Ti = Tj .

Our observation is that motion sampling gives a priori the
set of possible transformations to assign to each vertex p ∈
P . Instead of finding each Tp in the continuous space of rigid
transformations, for each p we make a selection fp of some
transformation in a prescribed set T . Thus, we transform the
above continuous optimization problem to a discrete one:

argmin
{ fp∈T ∀p∈P}

∑
p∈P

D(p, fp) + ∑
(p,q)∈EP

V (p,q, fp, fq). (2)

If we consider the transformations as labels to assign to each
vertex, we see indeed that minimizing the above cost func-
tion corresponds to solving for an optimal labeling of the
vertices. Therefore, we can use graph cuts for the optimiza-
tion.

What remains is a definition of the data and smoothness
terms in the objective function. For the data term, we provide
a catalog of useful functions in Table 1. The point-to-point
metric is the most basic matching function, illustrated in Fig-
ure 3b. Compared to the point-to-point metric, the point-to-
plane error metric is more robust to missing data and the
sampling of the surface. We prefer to use this metric when
the sampling of the shape is very sparse. The hybrid metric
is designed for missing data and measures a combination of
the point-to-point and point-to-plane metrics, extrapolating
the distance at the boundary of the shape. We choose this
term when there is a substantial amount of missing data. Fi-
nally, the point-and-normal metric measures both the point-
to-point distance and the difference of the normal vectors.

Point-to-point Dp(p, fp) = ‖ fp(p)−u‖
Point-to-plane Dl(p, fp) = |( fp(p)−u) ·nu|

Hybrid Dh(p, fp) =

{
Dl if u ∈ boundary
Dp otherwise

Point-and-normal Dn(p, fp) =
√

Dh +ν‖ fp(np)−nu‖

Table 1: A catalog of data cost functions. For a vertex p with
normal np and a selected transformation fp, fp(p) applies
fp to p (only rotation for normals), and u ∈ U is the closest
point to fp(p) with associated surface normal nu.

Here, ν is an additional parameter controlling the influence
of the normals. We use the point-and-normal term when pre-
cise normals are available.

For the smoothness term, the goal is to preserve the con-
sistency of the shape. A possibility is to directly compare
the labels or to compare the transformations between neigh-
boring vertices. However, we do not want to penalize differ-
ing transformations due to potential joints in the articulated
shape. Therefore, we preserve the edge lengths of neighbor-
ing points

V (p,q, fp, fq) =
∣∣∣‖p−q‖−‖ fp(p)− fq(q)‖

∣∣∣. (3)

If fp = fq then we see that V (p,q, fp, fq) = 0, as is desirable
for a smoothness function. In addition, this expression does
not penalize the assignment fp and fq as long as it preserves
the edge length ‖p−q‖. This means that we can assign com-
pletely different transformations at neighbors p and q as long
as it doesn’t break the shape apart. As an example, in Figure
3c, we see that assigning T2 to p preserves the edge length,
while T3 is penalized because it stretches the edge.
Graph Cuts. To apply graph cuts to minimize the objec-
tive in Equation 2, we construct an instance where the points
p ∈ P are the sites, the edges (p,q) ∈ EP are neighbors,
and the transformations f ∈ T are labels. We then solve
the resulting multiple-label assignment problem using the α-
expansion algorithm [BVZ01].
Symmetric Cost Function. In many cases swapping the in-
puts P and U gives different results, because in Equation
2 we are only optimizing for an assignment of the forward
transformations fromP to U . To make maximum use of both
shapes, we formulate a symmetric cost function, where we
simultaneously solve for a consistent assignment of the for-
ward transformations T to P and backward transformations
T ′ = {T−1 | T ∈ T } to U . For convenience, we can assign
forward transformation labels fu ∈ T to points u∈U , except
that we apply the inverse transformation when evaluating the
cost functions.

To construct a symmetric graph cuts instance, first we in-
clude the vertices and connectivity of both shapes P and
U to simultaneously solve for the assignment in both direc-
tions. Next, we enforce corresponding points under a trans-
formation assignment to have the same label. For example,
in Figure 3d, we penalize the case where Ti 6= Tj. Formally,
for each transformation T ∈ T , we introduce a new edge
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(a)

(b)

Figure 4: Examples used for testing our algorithm. Shown are the twelve poses in the horse dataset (a) and the arm dataset (b).

Smooth/Data (7.58/422.85)
Total Cost: 430.43

Smooth/Data (15.52/320.52)
Total Cost: 336.04

(a) Source vertices (closeup) (b) Target vertices (closeup)

(c) Non-symmetric solution (d) Symmetric solution

Figure 5: Comparing non-symmetric and symmetric graph
cuts. In this example, the skin joining the thigh and the torso
is significantly stretched (a,b). The non-symmetric solution
prefers to preserve the edge lengths in this region (c), re-
sulting in a sub-optimal local minimum where the front right
leg is aligned incorrectly. However, assigning consistent for-
wards and backwards transformations gives enough incen-
tive to afford the stretch in the front right leg (d).

eT = (p,u) for all p ∈ P and u ∈ U such that u ∈ U is the
closest point to T (p), or p∈P is the closest point to T−1(u).
Let ET be the set of all such edges. Then the consistent label
term W is given by

argmin
{ fp, fu∈T ∀p∈P ,u∈U}

∑
(p,u)∈ET

W (p,u, fp, fu). (4)

This term serves to penalize assignments where the transfor-
mations disagree between corresponding points. Thus

W (p,u, fp, fu) =

cW
fp 6= fu and u is closest to fp(p) or,
fp 6= fu and p is closest to fu(u),

0 otherwise,

where cW is a constant penalty of an inconsistent label as-
signment. An example of the benefit of this term is shown in
Figure 5.

One caveat in using graph cuts is that the smoothness term
in Equation 3 is not a semi-metric as required to obtain a
strong local minimum. However, in practice we obtain good
results with the α-expansion algorithm. In addition, lower
cost solutions have consistently yielded qualitatively better
results, which suggests that registration quality can be im-
proved by using a stronger optimization technique.

4. Results
In this section we present results of aligning one synthetic
dataset of a galloping horse mesh animation, one real-world
dataset of human arm scans, and another real-world dataset
of human hand scans [SP04, ACP03, WLG07]. Some exam-
ples used in our experiments are shown in Figure 4. To our
knowledge, ours is the only algorithm which does not use
any prior information about the shape or alignment, and is
robust to both significant motion and missing data.

We were successfully able to automatically align most
pairs of the 12 galloping horse examples (Figure 4a). To
measure the quality of the alignment, we use the maximum
symmetric Hausdorff distance, which is the maximum dis-
tance to the closest point for each vertex in both shapes. Out
of a total 66 pairs, we obtained a good registration in 64 tri-
als, where the distance was at most 5.6% of the bounding
box. In only 2 examples, some legs were swapped, resulting
in a maximum distance of 20% of the bounding box diago-
nal. This demonstrates that our algorithm can handle a wide
range of motion and is particularly robust in this dataset.

Figure 7 shows an example of aligning two frames of this
animation. Although our method has no input other than just
the shapes, we obtain an accurate alignment with a registra-
tion error within 2% of the entire scene size (length of the
shape’s bounding box diagonal). All four legs in the source
mesh have aligned to the correct leg in the target mesh,
demonstrating that our optimization can map similar parts
correctly. We see that the assigned transformations naturally
give a high quality segmention of the mesh into rigid compo-
nents (Figure 7e), which can be used to automatically create

(a) Source (b) Target (c) Alignment result

Figure 6: Even after manually removing parts in both source
and target, our method is able to align the meshes well.
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0%

(a) Source (b) Target (c) Aligned result (d) Registration Error (e) Assigned labels (source, target) (f) With simplification

Figure 7: Registration results for the synthetic horse dataset. Given a pair of meshes (a) and (b), our algorithm results in a
close alignment (c). Notice that all four legs are matched to the correct part. We also obtain a low registration error in (d),
which shows the per-vertex distance to the target shape as a percentage of the bounding box diagonal. In addition, our method
gives a meaningful segmentation of the model into rigid parts that is consistent in both shapes (e). The last image (g) shows the
result of aligning a 50% simplified version of the same pair. This demonstrates that our method performs well independent of
the sampling and parameterization of the shapes.

(a) Source (b) Target (c) Aligned result (d) Assigned labels

Figure 8: Registration for an arm dataset pair. The source mesh (a) is aligned to the target mesh (b). The hand region is missing
a significant amount of data in both meshes, but after alignment the surface of the hand is completed nicely (c). The assigned
labels are shown in (d) for the source (bottom) and the target (top), and corresponding parts have the same label assignment.
Also, the segmentation naturally corresponds to the different parts of the arm.

a skeleton. In addition, the segmentation is consistent be-
tween both source and target shapes, as we can see in the
figure where corresponding parts are colored with the same
label. Finally, we obtain a good registration even when sim-
plifing the meshes to 50%, demonstrating that our method is
independent of the specific parameterization of the shape.

To test our algorithm on examples with significant miss-
ing data, we have manually removed parts of both the source
and target meshes (Figure 6-abc). The holes were placed in
different locations so that the alignment result would com-
plete the entire shape. Even though the holes completely dis-
connect the meshes into several fragments, we obtain a good
alignment result. This shows that our algorithm is robust to
missing data and that it can be used for automatic shape com-
pletion using a set of incomplete examples.

For the arm scan dataset, our algorithm successfully
aligned all pairs of the 12 examples (Figure 4b). The regis-
tration performed well even when there was significant miss-
ing data in both the forearm and the hand. In the example
shown in Figure 8, notice that the aligned result has nicely
completed the thumb and index finger region of the hand
area (c). Just like the horse example, the assigned transfor-
mations segment the shape into meaningful rigid parts (d),
which can be used to automatically create a skeleton.

Finally our algorithm was able to align many examples
for the hand grasping dataset. This dataset is particularly
challenging because of the occlusion in the fingers. Figure

9 shows two examples of aligning a pair of these scans. De-
spite significant missing data and movement in the fingers,
our method successfully aligns all four fingers to the correct
position. As a result, the holes in the fingers are filled in us-
ing data from the source shape.
Parameters. For the feature matching, the spin images were
quite discriminative, so we limited the number of matching
features for each vertex to 5-7 vertices. For the mean-shift
clustering, since we take the cluster modes to be the esti-
mated transformations, we set the mean-shift bandwidth to
a small h = 0.1 in order to prevent over-smoothing of the
transformations.

We use a fraction of the bounding box diagonal as pa-
rameter values because it naturally relates to the data and
smoothness costs which measure distances between points.
We set the error of an inconsistent label assignment cW to
100 times the bounding box diagonal. Also, we set the clos-
est point distance threshold to 0.5% of the bounding box di-
agonal for finding matching regions in the pruning step and
for determining corresponding points in Equation 4.

The data cost that we use for each dataset is summarized
in the rightmost column of Table 2. We set ν to be 2% of
the bounding box diagonal for the point-and-normal met-
ric. To control the relative influence of the data and smooth-
ness terms, we multiply each with a constant weight cD and
cV , respectively. In our experiments, we used cD = 1 for all
datasets, cV = 5 for the arm and hand datasets, and cV = 10
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(a) Source

(e) Assigned labels

(b) Target

(f) Aligned result

(c) Source

(g) Assigned labels

(d) Target

(h) Aligned result

Figure 9: Registration results for hand dataset examples. Although the hand is missing a significant amount of data in the
fingers (b,d), our method is able to successfully align all four fingers (f,h). Notice that the segmentation produced in (e,g)
roughly corresponds to the actual segments in the fingers of a hand.

Dataset # Vertices # Samples # Labels Matching Clustering Verification Graph Cuts Data Cost
Horse 8431 4339 1500 2.1 min 3.0 sec (skip) 1.6 sec 1.1 hr Dn
Arm 11865 6094 1000 55.0 sec 0.9 sec 12.4 min 1.2 hr Dp
Hand (Front) 8339 2945 1500 14.5 sec 0.7 sec 7.4 min 1.2 hr Dl
Hand (Back) 6773 2669 1500 17.3 sec 0.9 sec 9.4 min 1.6 hr Dl

Table 2: Averaged performance and timing statistics for a typical subset of our experiments. The running time statistics were
gathered from testing our implementation on a single core of a dual core 2.4 GHz Intel processor.

for the horse dataset.
Performance. The statistics and running time of the experi-
ments are summarized in Table 2. The most time-consuming
portion of our algorithm is the graph cuts optimization,
which depends on the number of sites as well as the num-
ber of labels. Since our graph cuts instance optimizes the
assignment of all vertices in both source and target meshes,
we simplify the meshes using the quadric error metric tech-
nique [GH97] to reduce the running time.

5. Discussion and Future Work
In this section we discuss the limitations of our method and
point out several avenues for future work.
Motion Sampling. The quality of our registration result de-
pends on how accurately we sample the transformations. A
good sampling should have all the necessary transforma-
tions to align each part, while accurately narrowing down
on a concise subset of transformations. In some horse ex-
amples, small parts such as hooves or legs were misaligned,
because the correct transformation was not in the set of es-
timated transformations T . In these cases, there were too
few samples to extract these transformations accurately. In
our experiments, we found that when the feature matching
is noisy, the clusters found by our algorithm are spread out
more uniformly in the transformation space. In this case, the
clustering acts somewhat like a sampling strategy rather than
finding densely clustered rigid components. It would be in-
teresting to investigate other sampling strategies for the mo-

tion sampling step, such as adaptive sampling. Furthermore,
it may be beneficial to adaptively sample the motion during
the optimization to automatically refine the registration re-
sult.
A good extension, as also pointed out by Mitra et al.
[MGP06], is to incorporate a method for extracting a con-
tinuous set of motions for non-rigid examples.

Another issue is that the assignment of transformations
can disconnect or imperfectly match the boundaries between
rigid components. In these cases, our method can be used as
an initialization for an additional refinement step (such as
non-rigid ICP) to obtain a smoother and more precise regis-
tration.

Finally, an open problem is to characterize exactly how
much data is required for an accurate alignment. For ex-
ample, the alignment in Figure 10-abc is less accurate. The
main difficulty with missing data in our method is that there
is not enough data to estimate the correct motion or to guide
the optimization. It would be interesting to investigate what
are the fundamental limitations for resolving missing data.
Optimization. In general, the optimal labeling problem is
known to be NP-hard [BVZ01]. However, utilizing recent
methods such as sequential tree-reweighted message pass-
ing (TRW-S) [Kol06] or Log-cut [LRB07] may improve both
the quality and efficiency of the registration. Also, applying
a coarse-to-fine optimization technique may help as well.

In our experiments, we found that often there is a trade-
off between minimizing the smoothness and the data costs.
If the smoothness weight is too high, then the optimization
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(a) Source (b) Target (c) Aligned result (d) Source (e) Target (f) Aligned result

Figure 10: Typical errors in the registration. In the hand example (a,b,c), the missing data causes the fingers to become
stretched, slightly disconnected, or misaligned. In the horse example (d,e,f), the rear legs are swapped.

can prefer a badly aligned solution in favor of preserving the
edge lengths of the mesh (e.g. Figure 5c). On the other hand,
if the data weight is too high, the optimization may choose
to break the mesh and map parts incorrectly. For example, in
Figure 10-def, the rear right leg of the source is most similar
to the rear left leg of the target. In this case, the low data cost
managed to compensate for the penalty of the smoothness
term when the rear legs were swapped. As an area of future
work, it would be useful to determine the weights automati-
cally. Another interesting idea is to include a “dummy label”
to explicitly label vertices with no correspondence due to
missing data.

Finally, since our method is currently limited to a pair of
shapes, extending it to simultaneously align more than two
shapes may help to resolve more missing data.

6. Conclusion
We have presented an automatic method for aligning a pair
of articulated shapes in the presence of significant motion
and missing data. We formulate the registration problem as
assigning rigid transformations to each vertex of the shape.
Our algorithm first determines a finite set of possible mo-
tions of the shape by sampling the motion. Then, it uses
graph cuts to optimize a cost function, which measures the
quality of an assignment for aligning the shapes and preserv-
ing the consistency of the transformed mesh. Furthermore,
we develop a symmetric cost function for simultaneously ob-
taining a consistent assignment for both source to target and
target to source. Our experimental results show that despite
no prior knowledge of a template, user-placed markers, seg-
mentation, or the skeletal structure, the algorithm is able to
find good alignments between different poses of the shape.
We also obtain a natural segmentation of the shape into rigid
parts, given by contiguous regions with the same assigned
label.
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A. Approximated Distance Metric in SE(3)

The difference between d(X ,Y ) and d′(X ,Y ) can be ex-
pressed in terms of the Baker–Campbell–Hausdorff (BCH)
formula:

log(X−1Y ) = log(exp(−x)exp(y))

= log(exp(BCH(−x,y)))

= BCH(−x,y)

=−x + y+O([−x,y])

where [x,y] = xy− yx is the Lie bracket operator or com-
mutator of the Lie algebra, and BCH(x,y) is a series ex-
pansion based on nested iterated commutators. Blanes and
Casas show that x + y is a good approximation to log(exey)
when the norm of the commutator [x,y] is sufficiently small
[BC04].
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