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Abstract

This paper investigates the problem of finding optimal multicast virtual topologies,
with respect to minimizing the maximum hop distance, in WDM multicast trees. Al-
though the problem of finding optimal multicast trees is itself known to be NP-complete
under many optimization metrics, high-quality approximation algorithms are known
for this problem. We investigate the case that a multicast tree has been selected and
seek to embed an optimal virtual topology in this multicast tree. We show that the
problem can be solved in polynomial time when tap-and-continue switches are em-
ployed which allow a light-path to be tapped by some number of intermediate nodes.
However, the problem becomes NP-complete when fully multicast-capable switches are
employed. Our results suggest that tap-and-continue switches can be used to obtain
high quality multicast virtual topologies while heuristics will be required to find good
solutions in fully multicast-capable networks.

1 Introduction

Wavelength-division multiplexing (WDM) is a key optical networking technology for realizing
low cost, high bandwidth, and scalable data services. Each fiber optical physical link in
a WDM network is partitioned into multiple data channels each of which operates on a
separate wavelength. Thus, WDM permits use of enormous fiber bandwidth by providing
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data channels whose individual bandwidths more closely match those of the electronic devices
at their endpoints [20]. As WDM technology matures, it is likely to be widely used in systems
ranging from local and metropolitan area networks to the backbone of the Next Generation
Internet.

Many applications require efficient support for multicast communication in which a single
source node in a network must send the same data to a number of destination nodes. Typi-
cally, the message is transmitted along a set of physical channels which constitute a multicast
tree. The root of the tree is the source node and the remaining nodes in the tree are either
destination nodes or intermediate nodes used to reach the destination nodes. Multicast in
WDM networks has been studied actively and has been proposed for applications such as
streaming audio and video [12], HDTV programming [14, 15, 21], and optical storage area
networks [14].

Ideally, each message is transmitted from the source to a destination without any optical-
to-electronic conversion within the network. Such all-optical communication can be realized
by using a single wavelength in the multicast tree to establish a connection to each destina-
tion, but in general it may not be possible to find a single wavelength which is available on
every physical link in the tree. Alternatively, all-optical wavelength converters may be used
to convert from one wavelength to another within the network but such converters are likely
to be prohibitively expensive for most applications in the foreseeable future [20].

A second approach is to use multi-hop routing in which a path from the source to a
destination may comprise multiple subpaths which may use different wavelengths. In this
approach a set of light-paths or light-trees are embedded in the multicast tree. A light-path
is a path comprising channels on a single wavelength. The message is transmitted at the
origin of the light-path on a particular wavelength. Within a light-path, transmission is
entirely optical. At the terminus of a light-path the data is converted into electronic form
and is delivered to the local node if it is a destination node. In addition, the data may
be retransmitted at this node on one or more light-paths to reach other destination nodes.
Intermediate nodes on a light-path allow the data to pass through optically, but do not
necessarily access the data themselves. Thus, a single light-path from node x to z passing
through intermediate node y is different from two light-paths, one from x to y and one from
y to z, even if these two light-paths use the same wavelength. Similarly, light-trees [16] are
a generalization of light-paths in which the source of the light-tree transmits the data on a
particular wavelength and this may be split in a tree-like fashion to reach multiple nodes.
The collection of light-paths or light-trees is called the virtual topology.

While light-trees appear to be more desirable than light-paths, light-trees require fully
multicast-capable switches which can “split” an incoming wavelength to multiple output
ports. Such switches are inherently complex and also incur a reduction in signal strength
known as splitting loss. Although splitting loss can be partially mitigated by the introduction
of amplifiers, this further increases the complexity and cost of the switches. Ali and Deogun
[1] therefore proposed an alternative to fully multicast-capable switches, called tap-and-
continue switches, in which data proceeds strictly along a path but intermediate nodes on
the path may access the data themselves by tapping a small fraction of the signal. Ali and
Deogun show that such switches can be implemented with only a very modest addition in
hardware complexity. This mechanism substantially reduces the splitting loss in comparison
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to a fully multicast-capable switch but still has an inherent limit on the number of times
that a signal can be tapped before it loses integrity. Tap-and-continue mechanisms have also
been discussed in [21].

Multicasting in WDM networks has received considerable attention [1, 3, 4, 7, 9, 10, 11,
13, 16, 17, 19]. Many of the existing results employ heuristics or integer linear programming
(which is itself NP-complete). Since the problem of constructing a multicast tree is known to
be computationally intractable under many objective functions, tree construction and virtual
topology construction are often decoupled; first a multicast tree is found and then a virtual
topology is constructed in this tree [4, 10, 18, 21]. For example, in much of the literature a
cost is associated with each physical link and the primary consideration in tree construction
is to minimize the cost of the selected physical links for the multicast tree. This is the NP-
complete Steiner tree problem. Other multicast tree construction problems consider factors
such as splitting loss and attenuation and these problems are known to be NP-complete
as well [19]. Nonetheless, heuristics, approximation algorithms, and other approaches have
been proposed for these and related tree construction problems [4, 8, 16, 19, 21].

In this paper we assume that an existing technique has been employed to construct a
multicast tree. We show that for a particular optimization objective, optimal multicast
virtual topologies can be found in a tree in polynomial time when tap-and-continue switches
are employed but that the analogous problem is NP-complete when fully multicast-capable
switches are used. This result demonstrates that there are algorithmic advantages to using
the simpler tap-and-continue switches over the more complex multicast-capable switches. It
should be noted that our results do not suggest that fully multicast-capable switches are not
useful, but rather that we should not expect to make optimal use of such resources.

In particular, in this paper we examine the objective of minimizing the maximum hop
distance in a multicast virtual topology. In a virtual topology, the hop distance from node
s to node d is defined to be the minimum number of light-paths over all paths from s to
d. Each hop in a path incurs latency due to conversion of the data from the optical to
the electronic domain, application of the routing function, queueing, and retransmission on
the next light-path. Thus, minimizing the maximum hop distance is a performance metric
of interest in geographically small networks in which hop latency can dominate channel
propagation latency [2]. We note that there are many other possible objective functions that
one might wish to optimize in a virtual topology. The techniques proposed here are likely
to be of use for a variety of optimization criteria. A network designer contemplating the
use of fully multicast-capable switches and some heuristic to use these switches could use
our algorithmic approach to determine how much benefit this would provide over using the
simpler tap-and-continue switches with an optimal virtual topology algorithm.

The remainder of this paper is organized as follows: In Section 2 we formally define the
problems studied in this paper. In Section 3 we describe several fundamental results leading
to a polynomial-time algorithm for constructing optimal virtual topologies under the tap-
and-continue model. We also give experimental results based on an implementation of this
algorithm. In Section 4 we show that the corresponding problem in networks employing fully
multicast-capable switches is NP-complete. We conclude in Section 5.
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2 Problem Statement

Let a multicast tree T = (V, E) be a directed tree with root r ∈ V such that every edge is
directed from a parent vertex to a child vertex. For simplicity we assume that every vertex in
V other than r is a destination vertex.1 Let W denote the number of wavelengths available
on each edge.

Definition 1 A basic virtual topology for a tree T = (V, E) is a pair Γ = (P, f) where P
is a set of directed paths in T called light-paths and f : P → {1, . . . ,W} is an assignment
of light-paths to wavelengths such that:

• Any two light-paths in P which share a directed edge are assigned distinct wavelengths.
That is, if p, p′ ∈ P and ∃e ∈ E such that e ∈ p ∩ p′ then f(p) 6= f(p′).

• For each v ∈ V − r there exists a set of light-paths {p1, . . . , pk} ⊆ P such that p1

originates at r, pk terminates at v, and for 1 ≤ i ≤ k − 1, the end vertex of pi is the
starting vertex of pi+1.

For example, consider the multicast tree T in Figure 1(a). A basic virtual topology
for this tree using two wavelengths is shown in Figure 1(b) where light-paths using the first
wavelength are indicated by solid edges and light-paths on the other wavelength are indicated
by dashed edges.

Let P be a positive integer which models the amount of power used to transmit a message.
A tap-and-continue virtual topology is a generalization of a basic virtual topology in which
each light-path may deliver the message to up to P vertices on the path. In other words, up
to P vertices may tap the message as it passes. This is formalized in the following definition
where the notation 2X denotes the power set of X.

Definition 2 A tap-and-continue virtual topology for a tree T = (V, E) is a triplet Γ =
(P, f, t) where P is a set of light-paths in T , f : P → {1, . . . ,W} is an assignment of
light-paths to wavelengths, and t : P → 2(V −r) specifies which vertices tap each path such
that:

• Any two light-paths in P which share a directed edge are assigned distinct wavelengths
under function f .

• For each p ∈ P , the function t assigns at most P vertices on that light-path to tap the
message. That is, for each path p ∈ P , |t(p)| ≤ P and if v ∈ t(p) then v is on path p.

• For each v ∈ V − r there exists a set of light-paths {p1, . . . , pk} ⊆ P such that p1

originates at r, v ∈ t(pk), and for 1 ≤ i ≤ k − 1, ∃v ∈ t(pi) such that v is the starting
vertex of pi+1.

1Our results are easily extendible to the general case that only a subset of nodes in the multicast tree are
destination nodes.
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Note that when P = 1, a tap-and-continue virtual topology degenerates into a basic virtual
topology. At the other extreme, unlimited power can be modeled by letting P be equal to the
height of the tree. For simplicity, we henceforth say that a vertex v terminates a light-path
p if v taps p but no descendant of v taps p.

For example, consider again the multicast tree in Figure 1(a). A tap-and-continue virtual
topology for this tree using two wavelengths and P = 4 is shown if Figure 1(c). The solid and
dashed lines indicate the two different wavelengths and the rectangles indicate intermediate
vertices at which a light-path is tapped.

A splitting virtual topology is a further generalization of a basic virtual topology employing
light-trees instead of light-paths where each light-tree may deliver the message to up to P of
its vertices. This is formalized in the following definition.

Definition 3 A splitting virtual topology for a tree T = (V, E) is a triplet Γ = (P, f, t)
where P is a set of directed trees in T called light-trees, f : P → {1, . . . ,W} is an assignment
of light-trees to wavelengths, and t : P → 2(V −r) specifies which vertices tap each light-tree
such that:

• Any two light-trees in P which share a directed edge are assigned distinct wavelengths
under function f .

• For each tree p ∈ P , the function t assigns at most P vertices on that light tree to tap
the message. That is, for each p ∈ P , |t(p)| ≤ P and if v ∈ t(p) then v is in the tree p.

• For each v ∈ V − r there exists a set of light-trees {p1, . . . , pk} ⊆ P such that p1

originates at r, v ∈ t(pk), and for 1 ≤ i ≤ k − 1, ∃v ∈ t(pi) such that v is the starting
vertex of pi+1.

For example, Figure 1(d) shows a splitting virtual topology using two wavelengths and
P = 4 for the multicast tree shown in Figure 1(a).

We use the term virtual path to indicate a path from the source to a destination vertex
comprising one or more light-paths or light-trees. For simplicity and without loss of gener-
ality, we assume that in any virtual topology there exists exactly one virtual path to each
destination. In other words, while there may be multiple light-paths or light-trees passing
through a destination vertex, a destination vertex taps exactly one of these light-paths or
light-trees. The hop distance of a destination vertex is the number of distinct light-paths
or light-trees on the virtual path to that vertex. Thus, if the hop distance to a destination
vertex is one then the connection from the source to that vertex is entirely optical. If the
hop distance is larger than one then the message incurs retransmissions en route to the des-
tination. The maximum hop distance for a virtual topology is the maximum hop distance
to any destination vertex.

For example, in the basic virtual topology shown in Figure 1(b), the maximum hop
distance is 3. In particular the hop distance to vertex 9 is 3: The virtual path consists of a
light-path from vertex 1 to vertex 4, a light-path from vertex 4 to vertex 6, and a light-path
from vertex 6 to vertex 9. It is easily verified that for this multicast tree and 2 wavelengths,
any basic virtual topology must have maximum hop distance at least 3. In contrast, the
tap-and-continue virtual topology shown in Figure 1(c) has maximum hop distance 2. In
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particular, vertices 6, 7, 8, and 9 all have hop distance 2. It is easily verified that for this
multicast tree with 2 wavelengths and P = 4, any tap-and-continue virtual topology must
have maximum hop distance at least 2. Finally, the splitting virtual topology shown in
Figure 1(d) has maximum hop distance 1; all vertices receive the message on a light-tree
directly from the source vertex.

In general, we consider the problem of finding virtual topologies which minimize the
maximum hop distance. We define the following three optimization problems.

Problem 1 (Basic Virtual Topology Optimization Problem) Given a directed tree T =
(V, E) with root r ∈ V , a positive integer number of wavelengths W and a positive integer
H, construct a basic virtual topology with maximum hop distance at most H or determine
that no such virtual topology exists.

Problem 2 (Tap-and-Continue Virtual Topology Optimization Problem) Given a
directed tree T = (V, E) with root r ∈ V , a positive integer number of wavelengths W, a pos-
itive integer transmission power P, and a positive integer H, construct a tap-and-continue
virtual topology with maximum hop distance at most H or determine that no such virtual
topology exists.

Problem 3 (Splitting Virtual Topology Optimization Problem) Given a directed tree
T = (V, E) with root r ∈ V , a positive integer number of wavelengths W, a positive integer
transmission power P, and a positive integer H, construct a splitting virtual topology with
maximum hop distance at most H or determine that no such virtual topology exists.

Problem 1 was studied by Gerstel et al. [6] in the context of ATM networks and a linear
time algorithm was found for this problem. In Section 3 we show that Problem 2 can also
be solved in polynomial time, albeit with a substantially more complicated algorithm. As
noted earlier, Problem 1 is a special case of Problem 2 in which the parameter P is set to 1.
In Section 4 we show that Problem 3 is NP-complete.

3 The Tap-and-Continue Virtual Topology Optimiza-

tion Problem

In this section we solve the splitting virtual topology optimization problem. For simplicity,
throughout this section we use the term “virtual topology” to mean a “tap-and-continue
virtual topology” using at most W wavelengths per edge, P power per light-path, and with
maximum hop distance at most H. In subsection 3.1 we state and prove a necessary and
sufficient condition for the existence of a virtual topology in a given multicast tree. We use
these results in subsection 3.2 to give a polynomial time algorithm for constructing a virtual
topology or determining that none exists. In subsection 3.3 we describe experimental results
obtained using this algorithm.
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Figure 1: (a) A multicast tree. The source is vertex 1 and all other vertices are destinations.
(b) A basic virtual topology with maximum hop distance 3. (c) A tap-and-continue virtual
topology with P = 4 and maximum hop distance 2. (d) A splitting virtual topology with
P = 4 and maximum hop distance 1. Rectangles indicate intermediate tap points on light-
paths and light-trees.
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3.1 A Necessary and Sufficient Condition

Consider a virtual topology, Γ, for tree T . When the root r transmits a message on a
light-path, that light-path is said to have H hops remaining. If a destination vertex taps
that light-path and retransmits a new light-path, the new light-path is said to have H − 1
hops remaining. In general, when a vertex v receives a message on a light-path with h hops
remaining, any light-path transmitted by v will have h− 1 hops remaining. Each light-path
must have at least one hop remaining. Similarly, a light-path has some amount of power,
k, remaining at each vertex v on the path. The light-path has power P remaining at the
vertex at which it is transmitted. Let v be a vertex on the light-path and let p(v) denote the
parent of v. If the light-path has power k remaining at p(v) then the light-path has power k
remaining at v if p(v) does not tap the light-path and has power k− 1 remaining at v if p(v)
does tap the light-path. Each light-path must have at least one unit of power remaining at
every vertex on the path.

Our definitions will be simplified by allowing a vertex in a virtual topology to “artificially
reduce” the number of hops and amount of power remaining when transmitting a light-path.
Thus, when a vertex v receives a message with h > 1 hops remaining, it may transmit a
new light-path with any number of hops remaining between 1 and h− 1 rather than strictly
h − 1. Similarly, v may transmit a message with any amount of power remaining between
1 and P rather than strictly P . Clearly, if there exists a virtual topology which artificially
reduces the number of hops and power remaining at some transmitting vertices, then there
exists a virtual topology which transmits at the standard number of hops remaining and full
power.

Throughout this section, H × P matrices will be used in our algorithm and proofs.
Henceforth, we use the notation Xi to denote row i of matrix X and we use the notation
X(i,j) to denote the entry at row i and column j.

Definition 4 A matrix is valid if its dimensions are H × P, all of its entries are non-
negative, and the sum of its entries is at most W.

Definition 5 Let T be a multicast tree and let v be a destination vertex in T . Let Tv be the
subtree rooted at v with the addition of a source vertex r and an edge from r to v. Let X be a
valid matrix. Vertex v is said to be routable by X if there exists a virtual topology Γv for Tv

such that v receives exactly X(i,j) light-paths with i hops and j power remaining, 1 ≤ i ≤ H,
1 ≤ j ≤ P.

Definition 6 Let T be a multicast tree, let Γ be a virtual topology with respect to T , and let
v be a destination vertex in T . Let the supply matrix for v with respect to Γ be the H× P
matrix sΓ(v) such that sΓ(v)(i,j) is the total number of light-paths entering v with i hops and
j power remaining.

Note that since Γ is a virtual topology then sΓ(v) is necessarily valid for each destination
vertex v in the multicast tree.

We begin with a tree T and no virtual topology. Our objective is to determine whether
or not a virtual topology exists for T . (Recall that our use of the term “virtual topology”
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means a tap-and-continue virtual topology using at most W wavelengths per edge, P power
per light-path, and with maximum hop distance at most H.) To this end, our algorithm
associates a H × P matrix, called a constraint matrix, with each destination vertex in the
tree. The constraint matrices for the destination vertices are computed according to a set
of rules in a bottom-up fashion beginning at the leaves. We show that there exists a virtual
topology if and only if all constraint matrices are valid. Moreover, if this condition is met,
we show how to construct the actual virtual topology.

The following definitions provide the components used to compute the constraint matri-
ces.

Definition 7 Let U(i,j) denote the H × P matrix with all entries 0 except for the entry in
row i and column j, which is 1.

Definition 8 An H×P constraint matrix is said to be reducible at row i if the first entry
in row i is at least 1 and the sum of the first P − 1 entries in row i is at least 2.

Definition 9 The reduction function, Ri(X), is a function from H×P matrices to H×P
matrices defined as follows. If X is not reducible at row i then Ri(X) = X. Otherwise, let
X ′ = X − U(i,1). Let j be the smallest index such that X ′

(i,j) > 0. (Note that j may be 1.)
Then Ri(X) = X ′ − U(i,j) + U(i,j+1).

The reduction function is now used to define the following function which will be used
to compute the constraint matrices.

Definition 10 M(X) is a function from H × P matrices to H × P matrices defined as
follows. Let i be the smallest index for which Xi contains a non-zero entry. Let X ′ = Ri(X).
Let s be the sum of all entries in X ′. If i = H or s ≤ W then M(X) = X ′. Otherwise let
X ′′ be identical to X ′ except that row i of X ′′ is all 0s. Then M(X) = M(X ′′ + U(i+1,1)).

We now define the constraint matrices constructively.

Definition 11 For a vertex v, let C(v), the constraint matrix of v, be defined as follows.
If v is a leaf, then C(v) = U(1,1). Otherwise, let the children of v be denoted by v1, v2, . . . vk.
Then C(v) = M(

∑k
i=1 C(vi) + U(1,1)).

For example, consider the virtual topology in Figure 1(a) with 2 wavelengths (W = 2), 2
hops permitted (H = 2), and power 4 per light-path (P = 4). Then 2×4 constraint matrices
will be associated with each vertex. The constraint matrices for the leaves, vertices 5, 7, 8,
and 9, are

U(1,1) =

(
1000
0000

)
These constraint matrices indicate that each of the leaves requires, at a minimum, a single
entering light-path with 1 power and 1 hop remaining. By Definition 11, the constraint
matrix for vertex 6 is

M

((
2000
0000

)
+

(
1000
0000

))
= M

((
3000
0000

))
=

(
1100
0000

)
(1)
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Intuitively, the two leftmost expressions in Equation 1 indicates that vertex 6 and its descen-
dants, vertices 8 and 9, can be reached if vertex 6 receives 3 light-paths with 1 hop and 1
power remaining on each light-path. However, since there are only 2 wavelengths available,
vertex 6 cannot receive 3 light-paths. Thus, the reduction function applies here and gives
the constraint matrix on the right-hand side. This constraint matrix indicates that vertices
6, 8, and 9 can be reached if vertex 6 receives 1 light-path with 1 hop and 1 power remaining
and 1 light-path with 1 hop and 2 power remaining.

Similarly, the constraint matrix for vertex 4 is, by Definition 11,

M

((
1100
0000

)
+

(
1000
0000

)
+

(
1000
0000

)
+

(
1000
0000

))
= M

((
4100
0000

))
=

(
0000
1000

)
(2)

Intuitively, the two leftmost expressions in Equation 2 indicates that vertex 4 and all of
its descendants can be reached if vertex 4 receives 4 light-paths with 1 hop and 1 power
remaining and 1 light-path with 1 hop and 2 power remaining. However, since there are only 2
wavelengths available, vertex 4 cannot receive 5 light-paths. The reduction function is applied
to yield the matrix on the right-hand side, indicating that vertex 4 and its descendants can
be reached if it receives 1 light-path with 2 hops and 1 power remaining.

Continuing up the tree in Figure 1(a) we see that the constraint matrices for vertices 3,
2, and 1, as defined by Definition 11, are(

1000
1000

)
,

(
0100
1000

)
, and

(
0010
1000

)

respectively. Notice that in this example, the constraint matrix computed by Definition 11
is valid for every vertex in the multicast tree (since every constraint matrix has the property
that the sum of its entries does not exceed 2, the given number of wavelengths). The following
lemma and theorem state that if every vertex has a valid constraint matrix then there exists
a tap-and-continue multicast topology for the given wavelength, maximum hop distance and
power constraints.

Lemma 1 If v is a destination vertex and every vertex in the subtree rooted at v has a valid
constraint matrix, then v is routable by C(v).

Proof: The proof is by strong induction on the height of the subtree rooted at v. For the
basis, assume that the height of the multicast subtree rooted at v is 0. Then v is a leaf and
its constraint matrix is therefore C(v) = U(1,1). Moreover, any single vertex is routable by
U(1,1) since it requires only a single light-path with one hop and one power remaining.

For the induction step, assume that the claim is true if v is the root of a subtree of
height less than n. Now, consider a vertex v whose subtree has height n and let v1, . . . , vk

denote the children of v. For convenience, let S(v) =
∑k

i=1 C(vi). By Definition 11, C(v) =
M(S(v) + U(1,1)).

Let r denote the smallest index such that row r of C(v) contains a non-zero entry. By
Definition 10, C(v) and S(v) do not differ in rows r + 1 through H. We now consider two
possible cases.
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Case 1: r = 1. If S(v) + U(1,1) is not reducible at row 1 then by Definition 10, C(v) =
S(v) + U(1,1). In this case, v taps and terminates a light-path with 1 hop and 1
power remaining. The remaining light-paths represented by S(v) are distributed to
the children of v such that child vi receives supply vector C(vi). By the induction
hypothesis, each vi is routable by C(vi) and thus v is routable by C(v). If S(v)+U(1,1)

is reducible at row 1 then C(v) = R1(S(v) + U(1,1)). Therefore, by Definition 9,
C(v) = S(v)− U(1,j) + U(1,j+1) for some j < P . In this case, vertex v taps a light-path
with 1 hop and j + 1 power remaining. This decreases the number of light-paths with
1 hop and j + 1 power remaining by 1 and thus increases the number of light-paths
with 1 hop and j power remaining by 1. Consequently, the remaining light-paths are
represented by S(v). Thus, the light-paths represented in S(v) are distributed to the
children of v as above and v is again routable by C(v).

Case 2: r > 1. Let Ŝ(v) be identical to S(v) except that all entries in rows 1 through r− 1
are 0. By Definition 10, C(v) = Rr(Ŝ(v) + U(r,1)). If Ŝ(v) + U(r,1) is not reducible at

row r then C(v) = Ŝ(v)+U(r,1). In this case, v taps and terminates a light-path with r
hops and 1 power remaining. Vertex v forwards C(vi)(j,k) light-paths with j hops and
k power remaining to each child vi, 1 ≤ i ≤ k, r ≤ j ≤ H, 1 ≤ k ≤ P. Thus, the total
number of forwarded light-paths with j hops and k power remaining is exactly Ŝ(v)(j,k),
r ≤ j ≤ H, 1 ≤ k ≤ P. In addition, v transmits C(vi)(j,k) light-paths with j hops and
k power remaining to each child vi, 1 ≤ i ≤ k, 1 ≤ j < r, 1 ≤ k ≤ P. Vertex v can
transmit such light-paths since it taps a light-path with r hops remaining. Moreover,
the total number of light-paths transmitted by v to any child vi does not exceed W
since each C(vi) is valid. The supply matrix for each vi is now exactly C(vi) and thus,
by the induction hypothesis, v is routable by C(v). If Ŝ(v) + U(r,1) is reducible at row

r then C(v) = Ŝ(v) − U(r,j) + U(r,j+1) for some 1 ≤ j < P . In this case, v taps a
light-path with r hops and j +1 power remaining and the forwarding and transmitting
of light-paths is otherwise exactly identical to the above. 2

Theorem 1 If every destination vertex v in the multicast tree T has a valid constraint
matrix then there exists a virtual topology for T .

Proof: Let r denote the root of the multicast tree and let v1, . . . , vk denote the children
of r. For each i, 1 ≤ i ≤ k, all vertices in the subtree rooted at vi have valid constraint
matrices by assumption. Therefore, by Lemma 1, vi is routable by C(vi). Thus, vertex r
simply transmits to each vi the W or fewer light-paths specified in C(vi). 2

Next, we prove that if there exists a virtual topology then every destination vertex has a
valid constraint matrix.

Definition 12 A virtual topology is said to be frugal if each light-path is transmitted at some
power between 1 and P and each transmission incurs between 1 and H− 1 hops such that

• If vertex v is a leaf of the multicast tree then the light-path p entering v has exactly 1
hop remaining.

• If vertex v terminates a light-path p, then p has exactly 1 power remaining at v.
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Note that if there exists a virtual topology Γ for multicast tree T then Γ can be trivially
modified to become a frugal virtual topology.

Lemma 2 Let Γ be a frugal virtual topology and let vertex v terminate a light-path with i
hops remaining. If sΓ(v) is reducible at row i then there exists a frugal virtual topology Γ′

such that:

• sΓ′(v) = Ri(sΓ(v)) and

• sΓ′(u) = sΓ(u) for all vertices u not on the path from the root to v.

Proof: Let p1 denote the light-path with i hops remaining which terminates at v. Since
sΓ(v) is reducible at row i, by Definition 9 there exists at least one other light-path with i
hops and strictly less than P power remaining which passes through vertex v without being
tapped. Among all such light-paths, let p2 denote one that enters v with the least power,
j < P , remaining. If light-path p2 is not tapped by any ancestor of v then construct virtual
topology Γ′ to be identical to Γ except that p2 is transmitted with one more unit of power, v
taps p2, and p1 is terminated prior to entering v. All vertices that are not on the path from
the root to v are unaffected by this transformation and sΓ′(v) = sΓ(v)−U(i,1)−U(i,j)+U(i,j+1)

and therefore sΓ′(v) = RisΓ(v).
The remaining case is that p2 is tapped at an ancestor of v. Let vertex u denote the

least ancestor of v which taps p2. Note that p1 may be transmitted by an ancestor of u or
by some descendent of u above vertex v. However, p1 cannot be transmitted by u since any
light-path transmitted by u has at most i− 1 hops remaining.

Case 1: p1 is transmitted by an ancestor of u. Construct virtual topology Γ′ to be identical
to Γ except that p1 is tapped at u and p2 is tapped at v. All vertices that are not on
the path from the root to v are unaffected by this transformation. Because light-path
p2 is not tapped at u in Γ′, p2 has one more unit of power remaining at v than it does
in Γ. Light-path p1 is terminated before arriving at v. Thus sΓ′(v) = sΓ(v) − U(i,1) −
U(i,j) + U(i,j+1) and therefore sΓ′(v) = Ri(sΓ(v)).

Case 2: p1 is transmitted at some vertex x below u but above v. Let p denote the amount of
power remaining on light-path p2 at x. Note that p < P since u tapped p2. Construct
virtual topology Γ′ from Γ by partitioning p2 into two light-paths: p′2 and p′′2. Light-
path p′2 terminates at the last vertex above x at which p2 was tapped and is transmitted
with reduced power in order to ensure that the new virtual topology is frugal. Light-
path p′′2 is transmitted by x with power p+1. Vertex v taps p′′2 rather than p1 which is
terminated prior to entering to v. All vertices that are not on the path from the root to v
are unaffected by this transformation. Moreover, sΓ′(v) = sΓ(v)−U(i,1)−U(i,j)+U(i,j+1)

and therefore sΓ′(v) = Ri(sΓ(v)). 2

Lemma 3 Let Γ be a frugal virtual topology and let vertex v tap but not terminate a light-
path with i hops and ` power remaining at v. If there exists another light-path with i hops
and k < ` power remaining at v then there exists a frugal virtual topology Γ′ such that:

• sΓ′(v) = Ri(sΓ(v) + U(i,1) + U(i,`−1) − U(i,`)) and
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• sΓ′(u) = sΓ(u) for all vertices u not on the path from the root to v.

Proof: Let p1 denote the light-path with i hops and ` power remaining tapped by v and let
p2 denote the light-path passing through v with i hops and the least power k < ` remaining.
If light-path p2 is not tapped by any ancestor of v then construct virtual topology Γ′ to be
identical to Γ except that p2 is transmitted with one more unit of power, v taps p2, and p1 is
transmitted with one less unit of power. All vertices that are not on the path from the root
to v are unaffected by this transformation and sΓ′(v) = Ri(sΓ(v) + U(i,1) + U(i,`−1) − U(i,`))
since path p1 with i hops and ` power remaining is replaced by a path with i hops and `− 1
power remaining and tapping p2 with one more unit of power corresponds to performing
the reduction Ri. The remaining case is that p2 is tapped at an ancestor of v. This case is
handled identically to that in the proof of Lemma 2. 2

We now define a recursive transformation τ on frugal virtual topologies.

Definition 13 Let Γ be a frugal virtual topology and let v be a destination vertex. Trans-
formation τ is performed with respect to Γ and v as follows:

1. If v is a leaf then let Γ′ = Γ. Return Γ′.

2. If v is not a leaf then let v1, . . . , vk denote the children of v. Transformation τ is first
applied recursively to each of the children of v in arbitrary order. Let Γ1 denote the
resulting virtual topology. Let p denote the light-path tapped or terminated by v and
let h denote the number of hops remaining on light-path p. Let r denote the smallest
index such that row r of C(v) contains a non-zero entry. Let u denote the parent of v.

3. If h = r then

(a) Let Γ2 be identical to Γ1 except that all light-paths with fewer than h hops re-
maining at v are terminated prior to entering v. For each such light-path that
previously passed through v, vertex v now transmits a new corresponding light-
path with the same number of hops and power remaining. (Note that vertex v
can transmit light-paths with h − 1 hops and P power remaining, but hops and
power are reduced as necessary to ensure that the supply matrices at each child of
v remain unchanged from Γ1 to Γ2.)

(b) If v terminates light-path p then

i. If sΓ2(v) is not reducible at row h then Γ′ is identical to Γ2.

ii. If sΓ2(v) is reducible at row h then Lemma 2 is used to construct a virtual
topology Γ′ such that sΓ′(v) = Ri(sΓ2(v)) and sΓ′(u) = sΓ2(u) for all vertices
u not on the path from u to v.

Else (v taps but does not terminate light-path p)

i. Let j denote the amount of power remaining on p at vertex v. If there exists a
light-path with h hops and less than j power remaining which passes through
v then Lemma 3 is used to construct a virtual topology Γ′ such that sΓ′(v) =
Ri(sΓ2(v) + U(i,1) + U(i,`−1) − U(i,`)) and sΓ′(u) = sΓ2(u) for all vertices u not
on the path from the root to v.
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ii. Else Γ′ is identical to Γ2.

4. Else if h > r

(a) Vertex v no longer taps p.

(b) If u is the root or u taps a light-path with at least h hops remaining then p is
transmitted with one less power. Else (u is not the root and u taps a light-path
with fewer than h hops remaining) let p′ denote the light-path tapped by u. light-
path p′ is transmitted with one less power and u taps path p.

(c) All light-paths with fewer than h hops remaining at v are terminated prior to
entering v. If such a light-path previously passed through v with between r and
h− 1 hops remaining then u now transmits the corresponding light-path with the
same number of hops and power remaining. If such a light-path previously passed
through v with fewer than r hops remaining then denote the light path a pending
light-path. The pending light-paths are considered in step 4(e) below.

(d) If row r of sΓ1(v) contains a non-zero entry in some position less than P then let j
be the least such index. From step 4(c), this corresponds to a light-path transmitted
by u with r hops and j < P power remaining. Vertex u now transmits this light-
path with power j + 1 and v taps this light-path. Else (row r of sΓ1(v) contains 0s
in all entries with position less than P) vertex u transmits an additional light-path
with r hops and 1 power remaining and v taps this light-path.

(e) From step 4(d), vertex v taps a light-path with r hops remaining. Vertex v now
transmits a new light-path in lieu of each pending light-path in step 4(c), with
the same number of hops and power remaining as the pending light-path. The
resulting virtual topology is Γ′.

5. Return Γ′.

Note that the transformation τ described above has no provision for the case that h < r. It
will be shown in the proof of the following lemma that this case cannot arise.

Lemma 4 Let Γ be a frugal virtual topology for tree T and let v be a destination vertex.
Transformation τ constructs a frugal virtual topology Γ′ such that

1. sΓ′(u) = C(u) for each vertex u in the subtree rooted at v.

2. If w is on the path from the root to v then sΓ′(v) may differ from sΓ(v). For each vertex
w not on the path from the root to v and not in the subtree rooted at v, sΓ′(w) = sΓ(w).

Proof: The proof is by strong induction on the height of the subtree rooted at v. If v is a
leaf then Γ′ is identical to Γ and thus the lemma is true. Assume that the claim is true for
any vertex whose subtree height is less than n and let v be a vertex whose subtree height is
n > 0. Let v1, . . . , vk denote the children of v. By the induction hypothesis, after applying
transformation τ to each of the k children of v in step 2, the resulting virtual topology Γ1
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is a frugal virtual topology such that sΓ1(u) = C(u) for each vertex u in the subtree rooted
at v except possibly at vertex v itself. The second part of the lemma is also true by the
induction hypothesis. We now consider separately the case that h = r and the case that
h > r and show that in both cases the requirements of the lemma are satisfied. Afterwards,
we show that the case h < r cannot occur.

Henceforth, let S(v) =
∑k

i=1 sΓ1(vi). By the induction hypothesis C(v) = M(S(v) +
U(1,1)).

Case 1: h = r. Let Ŝ(v) denote the matrix identical to S(v) except all entries in rows 1
through h− 1 are 0. Since Γ2 terminates all light-paths with fewer than h hops prior
to entering v, sΓ2(v) contains only 0s in rows 1 through h− 1. Moreover, since v taps
a message with h hops remaining in Γ2, any light-path transmitted by v has at most
h − 1 hops remaining. Thus, sΓ2(v) does not differ from Ŝ(v) in rows with indices
higher than h.

Since h is the least index such that C(v) contains a non-zero row, Ŝ(v) and C(v) are
identical in rows 1 through h− 1. By Definition 10 and the fact that row h of C(v) is
not entirely 0s, C(v) does not differ from S(v) in rows h + 1 through H. Thus C(v)
can only differ from Ŝ(v), and thus sΓ2(v), in row h.

Since Γ′ is either identical to Γ2 or results from using Lemma 2 or Lemma 3, sΓ′(v)
and sΓ2(v) can only differ in row h. Thus, sΓ′(v) and C(v) can only differ at row h.

Consider the case that v terminates a light-path with h hops remaining in Γ2. Then
sΓ2(v) = Ŝ(v)+U(h,1) where U(h,1) accounts for the light-path which v taps with h hops
and 1 power remaining. If sΓ2(v) is not reducible at row h then sΓ′(v) = sΓ2(v) and thus
row h of sΓ′(v) is identical to row h of Ŝ(v) + U(h,1). In this case, Definition 10 implies

that row h of C(v) is also identical to row h of Ŝ(v) + U(h,1). If sΓ2(v) is reducible at

row h then Lemma 2 is used to construct Γ′ where sΓ′(v) = Rh(Ŝ(v) + U(h,1)). In this

case, Definition 10 implies that C(v) is also Rh(Ŝ(v) + U(h,1)).

Next, consider the case that v taps but does not terminate a light-path with h hops
and power j > 1. Then sΓ2(v) = Ŝ(v) − U(h,j−1) + U(h,j) since some path with h
hops and j − 1 power remaining at v is now replaced with a path with h hops and j
power remaining at v. If there exists a light-path with h hops and less than j power
remaining which passes through v then Lemma 3 is used and sΓ′(v) = Rh(sΓ2(v) +
U(h,1) + U(h,j−1) − U(h,j)) = Rh(Ŝ(v) + U(h,1)) = C(v). If there does not exist a light-
path with h hops and less than j power remaining which passes through v then Γ′ = Γ2.
Thus, sΓ′(v) = Ŝ(v)− U(h,j−1) + U(h,j). Therefore, Ŝ(v)(h,j−1) ≥ 1 and Ŝ(v)(h,`) = 0 for

1 ≤ ` < j − 1. Consequently, Ŝ(v) + U(1,1) is reducible at row h and by Definition 10,

C(v) = Ŝ(v)− U(h,j−1) + U(h,j).

Thus, sΓ′(u) = C(u) for each vertex u in the subtree rooted at v. Moreover, each
vertex w not on the path from the root to v, sΓ′(w) = sΓ(w).

Case 2: h > r. Let S(v) denote the matrix identical to S(v) except that all entries in rows
1 through r− 1 are 0. From steps 4(c) and 4(e), rows 1 through r− 1 of sΓ′(v) consist
entirely of 0s and thus these rows are identical to the corresponding rows in S(v). From
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step 4(c), rows r through h− 1 of sΓ′(v) do not differ from the corresponding rows of
S(v). Moreover sΓ′(v) and S(v) cannot differ in rows with indices higher than h since
v taps a light-path with h hops remaining and thus any light-path transmitted by v
has at most h − 1 hops remaining. Thus, sΓ′(v) can only differ from S(v) in row h
due to the fact that v taps a light-path at row h in Γ1. However, in step 4(a) and 4(e)
the virtual topology Γ1 is modified so that vertex v no longer taps a light-path with h
hops remaining. Thus, S(v) and sΓ′(v) do not differ in row h and are thus identical in
all rows.

By assumption, rows 1 through r − 1 of C(v) consist entirely of 0s. Moreover, by
Definition 10 and 11, C(v) does not differ from S(v) in rows with indices higher than
r. Thus, C(v) can only differ from S(v), and thus sΓ′(v), in row r. If row r of sΓ1(v)
contains a non-zero entry in some position less than P and j is the least such index
then S(v) + U(r,1) is reducible at row r and by Definition 10 row r of C(v) is identical
to row r of sΓ′(v) as constructed in step 4(d). Otherwise, S(v) + U(r,1) is not reducible
at row r and again C(v) = sΓ′(v) by the construction of Γ′ in step 4(d).

Finally, we must show that the construction in step 4 does not use more than W
wavelengths on the edge from u to v. Assume by way of contradiction that the edge
from u to v uses more than W wavelengths. Then sΓ′(v) is not valid and thus C(v) is
also not valid. However, by Definition 10, if C(v) is not valid then r = H. However,
h > r by assumption, which is a contradiction. Therefore, Γ′ is a virtual topology and
sΓ′(u) = C(u) for each vertex u in the subtree rooted at v. Moreover, each vertex w
not on the path from the root to v, sΓ′(w) = sΓ(w).

Case 3: h < r. We show that this case cannot occur. Assume by way of contradiction that
h < r. Recall that S(v) =

∑k
i=1 sΓ1(vi) and C(v) = M(S(v) + U(1,1)). Let σ denote the

sum of the entries in rows r− 1 through H of S(v). Since row r− 1 of C(v) is entirely
0s, by Definition 10 σ + 1 > W . Thus, in Γ1 the total number of light-paths entering
the children of v with r−1 or more hops remaining is at least σ ≥ W. Since h < r, any
light-path transmitted by v may have at most h−1 < r−1 hops remaining. Therefore,
at least σ light-paths with r − 1 or more hops remaining must pass through v to its
children. Clearly, σ ≤ W since at most W light-paths may enter v and thus σ = W .
Therefore, v must tap, but not terminate, one of these W light-paths with at least
r − 1 hops remaining. By assumption, v taps a light-path with h < r hops remaining
which implies that v taps, but does not terminate, a light-path with exactly r−1 hops
remaining. Now consider the computation of C(v) according to Definition 10. Either
the matrix was reducible at row r− 1 or not. If it was not reducible, then row r− 1 of
S(v) contains 0s at positions 1 through P − 1. Thus, v cannot tap a light-path with
r − 1 hops remaining since to do so would require a non-zero entry at some position
between 1 and P − 1 in row r− 1 of S(v), a contradiction. If the matrix was reducible
at row r − 1 then performing the reduction leaves the first entry in row r − 1 of S(v)
unchanged and then increments one entry and decrements another. Thus, the total
sum of the entries in row r − 1 of S(v) is unchanged by the reduction. However, since
this row contains only 0s in C(v), by Definition 10 it must be that the sum of the
entries in rows r − 1 through H of S(v) exceeds W . Thus, more than W wavelengths
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pass through v, which is again a contradiction. 2

Theorem 2 If there exists a virtual topology Γ for tree T then every destination vertex has
a valid constraint matrix.

Proof: Without loss of generality, Γ is a frugal virtual topology. Let v1, . . . , vk denote the
children of the root. Using Lemma 4 repeatedly at each vi results in a virtual topology Γ′

such that sΓ′(u) = C(u) for every destination vertex u. Since sΓ′(u) is valid, C(u) is also
valid, for each destination vertex u. 2

Theorems 1 and 2 state that a tree T has a virtual topology if and only if the constraint
matrices are valid at all destination vertices.

3.2 A Polynomial Time Algorithm

The results of the previous subsection immediately imply a polynomial time algorithm for
determining whether a virtual topology exists in a given tree and, if so, constructing the
actual virtual topology.

First, Definition 11 is applied to compute the constraint matrices for all destination
vertices in a bottom-up manner. If every constraint matrix is valid, the virtual topology is
constructed as suggested by Lemma 1. The algorithm is summarized below.

1. Compute the constraint matrix for each destination vertex v in the tree as specified in
Definition 11. Also store S(v), the sum of the constraint matrices of the children of v.

2. If any vertex has an invalid constraint matrix then no virtual topology exists and exit.

3. Else (all vertices have valid constraint matrices)

(a) The root vertex transmits to each child vi the set of light-paths specified in C(vi).

(b) For each vertex v which receives a set of light-paths from its parent, let r denote
the smallest index such that row r of C(v) contains a non-zero entry.

i. If r = 1 and S(v)+U(1,1) is not reducible at row 1 then v taps and terminates
a light-path with 1 hop and 1 power remaining and distributes the rest of
the incoming light-paths to its children so that each child receives the set of
light-paths specified in its constraint matrix.

ii. Else if r = 1 and S(v) + U(1,1) is reducible at row 1 then find j such that
C(v) = S(v) − U(1,j) + U(1,j+1). Vertex v taps a light path with 1 hop and
j + 1 power remaining and distributes the rest of the incoming light-paths to
its children so that each child receives the set of light-paths specified in its
constraint matrix.

iii. Else let Ŝ(v) be identical to S(v) except that all entries in rows 1 through
r − 1 are 0.
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iv. If r > 1 and Ŝ(v)+U(r,1) is not reducible at row r then v taps and terminates
a light-path with r hops and 1 power remaining, forwards all light-paths
with r or more hops remaining to its children as specified in their constraint
matrices, and transmits light-paths with r− 1 or fewer hops remaining to its
children as specified by their constraint matrices.

v. Else (r > 1 and Ŝ(v) + U(r,1) is reducible at row r) find j such that C(v) =
S(v)−U(r,j) +U(r,j+1). Vertex v taps a light path with r hops and j +1 power
remaining and forwards and transmits light-paths as in the previous case.

The running time of this algorithm is easily verified to be O(H×P×N). Since H and P
need not exceed the height of the tree, in the worst case the running time of the algorithm is
O(N3). However, if the tree is asymptotically height balanced, then the worst case running
time is O(N log2 N).

3.3 Experimental Results

The algorithm described above can be used to experimentally investigate a variety of at-
tributes of virtual topologies for multicast. For example, Figure 2 summarizes experimental
results in which 100 multicast trees were generated at random where each tree had height
exactly 10, each vertex had between 1 and 3 children, and each edge had 5 wavelengths
available. The multicast requests in these experiments were, in fact, broadcasts; all nodes
in the tree were destination nodes. For maximum hop distances fixed at 2, 3, and 4, we
examined the percentage of the randomly generated trees which have virtual topologies. On
the horizontal axis, transmission power ranges from 1 unit (basic virtual topology) to 10
units (effectively “unlimited power”, since the tree height is 10). The vertical axis indicates
the percentage of cases in which a virtual topology could be found. These results suggest
that increasing the maximum number of hops permitted can have a significant impact on the
probability of the existence of a virtual topology. Moreover, while 2 units of initial power
provide an advantage over 1 unit of power, increasing the power above 2 units has a very
modest impact.

Figure 3 shows data from a second set of experiments using the same 100 multicast
tree demonstrated in the first experiment. In these experiments, the initial power was set
at 1unit (basic virtual topology) and 10 units (unlimited power). The maximum number
of permitted hops is indicated on the horizontal axis and the percentage of instances with
virtual topologies is again shown on the vertical axis. Note that as suggested by the previous
data, initial power of 10 units is only slightly better than initial power of 2 units in the trees
used in these experiments. The data for 2 units is not perceptibly different from the data
for 10 units and is therefore not shown here. Collectively, these results suggest that with
tap-and-continue switches a small amount of power suffices (2 units of power for the trees
used in these experiments) and that this additional power has an impact for some maximum
hop distance values. However, when the maximum hop distance constraint is sufficiently
relaxed, tap-and-continue switches are no more effective than switches with no multicast
functionality.
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Figure 2: Percentage of randomly generated trees with virtual topologies as a function of
transmission power when maximum hop distance is fixed to be 2, 3, or 4. All trees have
height 10 and each vertex has between 1 and 3 children selected at random. Each edge has
5 wavelengths available.
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Figure 3: Percentage of randomly generated trees with virtual topologies as a function of
maximum permitted hop distance when transmission power is fixed to be 1 or 10. All trees
have height 10 and each vertex has between 1 and 3 children selected at random. Each edge
has 5 wavelengths available.
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4 The Splitting Virtual Topology Problem

In the previous section we have shown that the tap-and-continue virtual topology problem
is solvable in polynomial time. In this section we show that the related splitting virtual
topology problem is NP-complete. The splitting virtual topology decision problem is the
decision version of the optimization problem and is stated as follows:

Splitting Virtual Topology Decision Problem (SVTDP): Given a directed tree T =
(V, E) with root r ∈ V , a positive integer number of wavelengths W, a positive integer
transmission power P, and a positive integer H, does there exist a splitting virtual topology
with maximum hop distance at most H?

The NP-completeness proof uses a reduction from the Bin Packing decision problem
which is stated as follows:

Bin Packing: Given a set U = {u1, . . . , un} of items, a positive integer size s(ui) associated
with each item, bin capacity B, and a positive integer number of bins K, can U be partitioned
into K disjoint sets U1, . . . , UK such that the sum of the sizes of the items in each set Ui is
B or less?

The Bin Packing problem is known to be NP-complete in the strong sense2 [5].

Theorem 3 SVTDP is NP-complete.

Proof: SVTDP is clearly in the class NP since a certificate can be easily verified in polyno-
mial time. We show that SVTDP is NP-hard by a reduction from Bin Packing. Consider
an instance of Bin Packing. Let S =

∑n
i=1 s(ui). Without loss of generality, we may

assume that S < BK: If S > BK no solution to the instance exists. If S = BK we can
modify the given instance by adding one more bin and adding an additional element to set
U with size B − 1. It is easily verified that this new instance has answer “yes” if and only
if the original instance has answer “yes”.

Since S < BK, we define d = BK−S− 1 and note that d is non-negative. We construct
an instance of SVTDP with W = K, P = B, and H = 2. In order to construct the multicast
tree, we first define some gadgets. A gray gadget is a tree with a root and (W − 1)P − 1
children. A white gadget is a tree with a root and WP + 1 children. A k-white gadget is
a path of k vertices, called path vertices, each of which has an additional WP + 1 children.
(Thus, a 1-white gadget is the same as a white gadget.) These gadgets, with their iconic
representations, are shown in Figure 4. The multicast tree T is now constructed as follows:
The root of the tree is a single vertex r with one child s, which is the root of a white gadget.
In addition to the WP +1 children in the white gadget, s also has n+ d children, v1, . . . , vn,
x1, . . . , xd, each of which is the root of a gray gadget. Each vertex vi has one additional
child, wi, which is the root of a s(ui)-white gadget and each vertex xi has one additional
child, yi, which is the root of a white gadget. This construction is shown in Figure 5.

Since Bin Packing is NP-complete in the strong sense, we may assume that all pa-
rameters in the given instance are bounded by a polynomial in the size of the instance.

2Recall that NP-completeness in the strong sense means that the problem is NP-complete even when all
of the integer parameters of the problem are bounded by a polynomial in the size of the problem instance.
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Consequently, the number of vertices in the constructed multicast tree is bounded by a poly-
nomial in the size of the Bin Packing instance and thus the reduction can be performed in
polynomial time.

We now show that the answer to the given instance of the Bin Packing decision problem
is “yes” if and only if the answer to the constructed instance of SVTDP is “yes”. Assume
that the answer to the given instance of Bin Packing is “yes”. Then we construct a virtual
topology in the corresponding multicast tree as follows. Let U1, . . . , UK be a partition of U
such that the sum of the sizes of the elements in each Ui is at most B. Let ui1 , . . . , uim denote
the items in Ui and let S(Ui) =

∑m
j=1 s(uij). Then, a single light-tree pi is transmitted on

wavelength λi from r to the S(Ui) path vertices in the gadgets with roots wi1 , . . . , wim . A
total of K = W light-trees are thus constructed. Since S(Ui) ≤ B = P , each constructed
light-tree does not exceed the available power. Moreover, the total amount of unused power
among these K light-trees is BK−S = d+1. Therefore, the K light-trees can be collectively
augmented to reach the d + 1 vertices s and y1, . . . , yd. The remaining vertices in the white
and k-white gadgets can now be reached from these vertices in a second hop. Since only one
wavelength has been used so far between s and each of its children v1, . . . , vn and x1, . . . , xd,
s can now transmit W − 1 light-trees on each such edge with full power P . Each such light-
tree can thus reach all (W− 1)P vertices in each gray gadget. Thus, all vertices are reached
in at most 2 hops and the answer to the constructed instance of SVTDP is also “yes”.

Conversely, assume that the answer to the given SVTDP instance is “yes”. Let u denote
the root of a white gadget or a path vertex in a k-white gadget. Since u has more than WP
leaf children, at least one of these children must receive the message on a second hop on a
light-tree transmitted by u. Thus, each such vertex u must receive the message in one hop.
The total number of such vertices is 1+S +d = BK = WP . Thus, the single edge from r to
s must transmit W distinct light-trees, each with power P , in order to reach these vertices.
Let these W light-trees be called white gadget light-trees. Moreover, each edge from s to a
child v1, . . . , vn or x1, . . . , xd has at least one wavelength used by a white gadget light-tree.
Since all wavelengths on the edge from r to s have been used, each vertex in a gray gadget
must receive the message on a second hop via a light-tree transmitted by s. Since each gray
gadget has a total of (W−1)P vertices and at most W−1 wavelengths remain on each edge
from s to v1, . . . , vn and x1, . . . , xd, s must use all W−1 wavelengths at power P on each such
edge. Therefore, exactly one wavelength may be used on each such edge by the white gadget
light-trees. Thus, all s(ui) path vertices in a gadget labeled wi must receive the message
on the same white gadget light-tree. Consider the white gadget light-tree transmitted by r
using wavelength λj, 1 ≤ j ≤ W. For each gadget labeled wk which it reaches, include item
uk with size s(uk) in bin Uj. In this way, the items u1, . . . , un are partitioned into K = W
bins. Moreover, since B = P , the total size of the items placed in each bin does not exceed
B. Therefore, the answer to the Bin Packing instance is “yes”. 2

Finally, we note that if the switches have limited splitting capabilities, permitting each
wavelength to be split to just two outgoing ports in addition to the local node, the optimal
virtual topology problem remains NP-complete. The gadgets used in the proof of Theorem 3
can be trivially modified so that each vertex v with out-degree larger than two is simply
replaced by a binary tree in which the leaves represent the children of v.
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Figure 4: The three gadgets used in the reduction. The iconic representation is shown below
each gadget. (a) A gray gadget. (b) A white gadget. (c) A k-white gadget.
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Figure 5: The multicast tree constructed in the reduction.
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5 Conclusion

We have investigated the problem of finding an optimal multicast topology, with respect
to minimizing the maximum hop distance, for a given multicast tree. We have shown that
the problem can be solved by a polynomial-time algorithm for the case of tap-and-continue
virtual topologies but is NP-complete for splitting virtual topologies. This fundamental dif-
ference in the computational complexity of the two problems is both theoretically interesting
and also suggests that heuristics will be required for splitting virtual topologies.

The techniques proposed in this paper may be applicable to other optimization objectives
and this is an interesting direction for future research. In addition, our results apply for a
single multicast (or for multiple multicasts using edge-disjoint multicast trees). An interest-
ing and important extension is to the case of multiple multicasts using shared or overlapping
multicast trees. A related problem arises when multicast sessions requires only a fraction of
the bandwidth provided by a WDM channel. In this case, a traffic grooming problem arises
and such problems merit further research. Finally, our work considers splitting loss alone.
Other factors such as attenuation and other impairments could be modeled in future work.
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