Automated Object Persistence for JavaScript

Brett Cannon
University of British Columbia
201-2366 Main Mall
Vancouver BC V6T 1Z4
drifty @cs.ubc.ca

ABSTRACT

Traditionally web applications have required an internet con-
nection in order to work with data. Browsers have lacked
any mechanisms to allow web applications to operate offline
with a set of data to provide constant access to applica-
tions. Recently, through browser plug-ins such as Google
Gears, browsers have gained the ability to persist data for
offline use. However, until now it’s been difficult for a web
developer using these plug-ins to manage persisting data
both locally for offline use and in the internet cloud due to:
synchronization requirements, managing throughput and la-
tency to the cloud, and making it work within the confines
of a standards-compliant web browser. Historically in non-
browser environments, programming language environments
have offered automated object persistence to shield the de-
veloper from these complexities. In our research we have cre-
ated a framework which introduces automated persistence
of data objects for JavaScript utilizing the internet. Un-
like traditional object persistence solutions, ours relies only
on existing or forthcoming internet standards and does not
rely upon specific runtime mechanisms such as OS or in-
terpreter/compiler support. A new design was required in
order to be suitable to the internet’s unique characteristics of
varying connection quality and a browser’s specific restric-
tions. We validate our approach using benchmarks which
show that our framework can handle thousands of data ob-
jects automatically, reducing the amount of work needed by
developers to support offline Web applications.

Categories and Subject Descriptors

D.1.5 [Software]: Programming Techniques— Object-oriented

Techniques; D.3.2 [Software]: Programming Languages—
JavaScript; E.2 [Data]: Data Storage Representations—
Object Representation

General Terms
Design

Keywords
JavaScript, JSON, HTML5, Web Storage, object persistence

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2010, April 26-30, 2010, Raleigh, North Carolina, USA.

ACM 978-1-60558-799-8/10/04.

Eric Wohlstadter
University of British Columbia
201-2366 Main Mall
Vancouver BC V6T 174
wohlstad@cs.ubc.ca

1. INTRODUCTION

Offline Web applications are a new class of application
on the Web which can support page browsing and execu-
tion of scripts when disconnected from the Internet. Some
popular examples include Gmail, WordPress, MySpace, and
AutoDesk Online. The technical considerations needed to
provide such offline use are currently being standardized as
part of the new HTMLS5 standard [16].

Although most browsers have historically had the capa-
bility to cache some components of a Web page [9], such as
HTML and media resources, this did not include the inter-
mediate results of computations performed by script logic.
As script logic has become a more integral part of applica-
tion functionality, this deficiency has made the deployment
of complex, feature-rich, Web applications difficult.

Offline Web applications allow for data created and man-
aged by script logic to be stored locally in the browser. This
allows Web application use to be suspended and resumed
offline, and also for offline data to be synchronized on the
Web at some time in the future. However, unlike the auto-
matic caching of page components by Web browsers, the per-
sistence of intermediate script computations unfortunately
requires careful consideration and manual intervention by
script programmers.

Historically in non-browser environments, distributed pro-
gramming language environments [4], [20] have offered auto-
mated, object persistence to shield the developer from these
complexities. In this research we investigate the feasibil-
ity of automating persistence of data objects for JavaScript.
Developers can work with objects as they normally do, by
getting /setting properties and calling methods, while having
persistence of objects managed for them.

Through this research we have identified and tackled sev-
eral requirements and challenges of object persistence which
are unique in the specific case of support for Web browser
embedded JavaScript objects. These challenges and require-
ments can be described roughly in three categories.

1. Interoperability
The common Web browser based JavaScript execu-
tion environment is standardized through a set of stan-
dards such as ECMAScript 5 and HTML. While EC-
MAScript defines the core JavaScript language seman-
tics, other standards such as HTML4 and the emerging
HTMLS5, define sets of APIs that are available to Web
application authors. As part of the requirements for
transparent JavaScript object persistence, we decided
to investigate what techniques were possible while still
conforming to standards. This is challenging since

it means we would not have the capability to make
changes to the JavaScript interpreter layer itself, but
must make automated object persistence work entirely
at the application level. This decision also induces our
focus on the next two specific technical challenges.

2. Extensibility facilities in JavaScript

Compared to many other languages, JavaScript has
only very primitive support for extensibility. JavaScript
is also a dynamic programming language where intro-
ducing a compilation step would be a shift in devel-
opment for a typical JavaScript developer. This has
led us to use a different approach from previous work
which typically relied on compiler modifications [6} [8]
17]. We leverage the use of JavaScript property acces-
sors, an extensibility mechanism being introduced in
ECMAScript 5, but also describe how we have needed
to work around some lack of support for extensibility
in JavaScript.

3. JavaScript’s concurrency model

Also different from most modern programming lan-
guages is JavaScript’s model and support for concur-
rency. Unlike the thread model used by most lan-
guages, JavaScript is purely event-based. This has a
direct consequence for our purposes: it is not possible
for a separate thread of control to be used for manag-
ing persistence. Operations which manage persistence
must either: suspend application progress or delay un-
til the application is idle. These two options both offer
different tradeoffs which we have needed to investigate
in our research. We show how application level mainte-
nance tasks implemented by timed event-handlers can
efficiently maintain a persistent heap.

We validate our approach using benchmarks which show
that our framework can handle thousands of data objects
automatically, to reduce the amount of work needed by de-
velopers to support offline Web applications.

The remainder of the paper is structured as follows: in
Section [2] we describe a motivating example application, in
Section [3] we present an overview of our work, in Section [
we present technical details of how to detect mutations of
JavaScript objects, in Section [Bl persisting objects locally is
discussed, in Section [6lthe server communication is covered,
in Section[7lwe present an evaluation, in Section [§we present
related work and we conclude in Section

2. MOTIVATING PROBLEM

Consider a scenario where a developer would like to de-
ploy an offline Web application to support a Web-based e-
mail client. Without offline support, a user would not be
able to access their inbox while disconnected from the Inter-
net. Furthermore, a user would not be able to compose new
e-mail messages while disconnected. This is because such
modern Web applications make use of JavaScript for the
management of data items such as individual e-mails. This
practice is common on today’s Web as one of the central
techniques of the Ajax application paradigm.

Persistence of data for offline use by JavaScript is now be-
ing widely deployed in all major browsers. Some support is
provided for both simple persistent hash maps [14] and also
for SQL-style database APIs [I3]. However, none of the ex-
isting mechanisms directly support either object structured

data or automatic persistence. This means that developers
still must manage several difficult problems by themselves.

First, developers must determine how and when to save
data from heap-allocated JavaScript objects to local browser
storage. This must be done carefully to balance several
tradeoffs. If changes are saved too frequently, the overhead
of each save action could degrade performance. Also, since
JavaScript is single threaded, writing a single large batch
of changes will suspend the application from servicing any
event-handlers: such as those which respond to user actions
or timers which control activities such as page animations.
For example, on the one hand, if every keystroke while com-
posing a new e-mail triggered an expensive saving action it
could have visible delays in the user experience. However,
on the other hand, leaving changes unsaved for an extended
period increases the chances of data loss; no one wants that
email draft to be lost because the browser crashed.

To deal with this problem, we have investigated the use
of persistence by reachability [I7] for JavaScript. In this ap-
proach, the object heap is divided into transient and persis-
tent sub-graphs. Our runtime framework consists of several
time-scheduled event handlers which process a work list of
persistence-related tasks periodically. In this way, a devel-
oper could use JavaScript data objects to build a persistent
data structure representing a user’s email folder. When a
new e-mail object is added to the data structure, our frame-
work would ensure the new e-mail is automatically saved to
local storage in such a way as to not degrade application
response when dealing with thousands of objects.

Second, a developer must determine how and when to
synchronize offline data stored in a browser with a server
copy of the data. This is difficult because copies of data may
become inconsistent if they are made available to more than
one browser session. For example, an e-mail draft might be
copied to two different browsers that are used by the same
user. If the user edits one of the copies offline, it may become
inconsistent.

To deal with this problem, we have investigated and de-
veloped an application framework for automated persistence
at an individual object granularity. This allows the browser
to communicate updates of data for individual objects which
map directly to the object model created by the application
developer. Conflicts between object versions are detected
automatically which triggers a conflict resolution callback.
The developer simply needs to implement the callback to
apply any semantically relevant resolution strategy. For ex-
ample, an e-mail draft composed while offline would auto-
matically be synchronized to a server when an internet con-
nection is re-established. Also if that same e-mail draft was
in conflict with other edits made while the browser was of-
fline the user could be notified of the conflict in order to
resolve it.

While previous work on object-oriented databases and
distributed object languages have similar motivation, we
have had to deal with different technical issues that are
unique to the browser embedded JavaScript programming
environment. We had to provide specific mechanisms to
work around JavaScript’s lack of threading, primitive sup-
port for language extensibility, and make sure that support
does not require the use of any features that are not part of
browser standards.

3. OVERVIEW

To solve problems similar to the one presented in Sec-
tion[Zlwe have implemented an automated object persistence
framework for JavaScript. The architecture of our frame-
work is shown in Figure[ll Our approach involves detecting
mutations of persistent objects, serializing the objects to lo-
cal storage, and then synchronizing the serialized form of
the persisted objects to a server on the internet.

We use two approaches to detecting mutations of persis-
tent objects in the application (Section H]). First, we have
a maintenance task that detects dynamic property additions
which periodically scans all of the persisted objects under
use during the current execution of the browser for changes
to the objects (Section F3)). The set of persisted objects
under use is called the live object set. We also use acces-
sors that we have attached to persisted objects which detect
mutations at the time of assignment (Section[H). Two sepa-
rate approaches for detecting mutations is required to work
around shortcomings in JavaScript (Section [L2]).

The detection of a mutation leads to two actions occur-
ring locally in the browser (Section [Bl). The first is that
the mutated object is serialized into a format called JSON
(JavaScript Object Notation) which is subsequently put into
local storage. This makes sure that if the browser crashed
the state of the persisted object is stored for later retrieval.
The second action after detecting mutation is to add any
new objects to the live object set.

Periodically all mutations of objects are pushed to a server
on the internet through a remote synchronization task (Sec-
tion [6). The browser sends the new serialized form of any
persistent objects that have mutated since the last time the
browser and server communicated. The server responds with
any updates to objects that the browser is lacking. Option-
ally, the developer can assign objects to specific groups to
improve locality.

Normal reading and writing of persisted objects is allowed
while offline so that the web application can continue to
work as normal. Upon reconnection with the server any
conflicts created while offline are detected by the server to
the browser so the web application has an opportunity to
resolve the conflict.

4. DETECTING MUTATIONS
4.1 Background

In any application, data naturally falls into two classes:
transient and persistent. Transient data is applicable only
for the lifetime of a session, whereas persistent data must
survive across individual application sessions. In object-
oriented languages, object persistence is a technique for au-
tomatically binding object instances to secondary storage,
making them persistent. As mentioned previously, this al-
lows developers to work with objects as they normally do, by
getting/setting properties and calling methods, while having
persistence of certain objects managed for them.

Even when using an object persistence framework, devel-
opers still must apply their knowledge of application seman-
tics to classify objects as transient or persistent. Persistence
by reachability has often been advocated as providing the
simplest solution for classification. In this approach, the ob-
ject heap is divided into transient and persistent sub-graphs.
A persistent “root” object is made available to developers
and any object that can be reached transitively from this

root is considered to be persistent [I7]. In our approach,
we automatically make a special root object available, per-
sist.root, that is attached to the global window object in
JavaScript. To support this notion of persistence, we will
need to have some way of monitoring the object heap to
know when objects are made reachable or unreachable.

4.2 Detecting Reachability in JavaScript

If we were able to modify a JavaScript interpreter directly,
this problem would be straightforward. Even still, there is
some support in JavaScript to provide a subset of what is re-
quired. In JavaScript, special functions called accessors (see
Figure[l) can be used which are called transparently when a
specific object property is read or written. One can bind in-
dividual accessors to a property for assignment/writing and
a separate accessor for accessing/reading. In our framework,
when a write accessor is triggered it records that the object
was mutated and stores the written value so it can be re-
turned by our read accessor. By masking the function call
behind standard property manipulation syntax the object’s
interface remains consistent while its behaviour changes to
that of a function call.

Accessors allow us to detect some mutations implicitly
from the fact that an assignment has taken place. Still
there are two more related problems to consider. First,
saving the new state of the application when a mutation
is detected could take some time. Since JavaScript is not
multi-threaded, this process will block any other application
functions, so we consider this problem carefully in Section
Second, JavaScript is a dynamic programming language,
this means we must consider not only changes to existing
object properties but also the dynamic addition of proper-
ties.

Unlike languages with static object schemas (e.g. Java
or C++), properties in JavaScript can be added to an ob-
ject at any time. Although some dynamic languages provide
support for intercepting the event of a new property being
added to an object (e.g. Python), JavaScript does not sup-
port this feature.

To deal with this problem, we make use of a scheduled
dynamic property addition task (see Figure [I) which iter-
ates over specific groups of persistent objects to search for
new properties, known as stabilization [I7]. This task is a
JavaScript event handler running at a developer-specified in-
terval. JavaScript supports tasks to be run at timed intervals
through the use of the standard function window. setTimeout.
This process must be done efficiently so that it does not
block the main application from executing its own event
handlers.

Deletion of properties is handled by the assignment of
undefined to a property that has our write accessor set. A
transient property that is created and then deleted before
the detection of the new properties is of no consequence to
us.

4.3 Detecting Dynamic Property Additions

When a persistent object is loaded, it is added to the
“live” object set (see Figure [M)). This set is periodically it-
erated over and each object is processed by the function
detectNewProperties shown in Figure 2 This function it-
erates over each property in an object to see if it already
has accessors bound to it, initially assuming that there are
no new properties (reflected through the foundNew variable).

(Browser

Persistent Objects

Application

/7
/ intercepted by
{indexes

\
\ read/

Remote

Sync y . S e I'VG r

, e Accessors
\
\
Dynamic
. Property
Live adds Additions
Object
Set removes Garbage
Collection

read/write | Storage

Local

Figure 1: Architecture diagram. Accessors act as a read barrier to alert us to when a persistent object has mutated.
Mutations (both accessors and the dynamic property addition maintenance task) cause objects to be added to the live object
set and have their state stored in local storage. Garbage collection removes dead objects from local storage. Finally, mutations

are sent to a server during remote synchronization.

function detectNewProperties(object) {
var foundNew = false;
for(property in object) {
if (isNewProperty(object, property)) {
foundNew = true;
if (object[property] instanceof Object) {
var newObject = object [property];
registerObject (newObject) ;
persistObject (newObject);
log(newObject, "created");
detectNewProperties(newObject) ;
}
addAccessor(object, property);
}
}
if (foundNew) {
persistObject(object);
log(object, "updated");
}
}

Figure 2: Pseudocode for detecting new properties
and persisting any new parts of the object graph.
Described in Section 3]

For each property on the object being processed, we check
to see if the property is new. If the property is new accord-
ing to our framework, we mark the object being processed as
mutated by assigning true to foundNew. If the new property
points to an object itself we consider it a new object that
we must persist as we reached it through another persistent
object. The new object must be registered with our frame-
work, persisted for safe keeping, logged as new for eventual
sending to a server on the internet, and then itself checked
for other new objects.

During the window of time when a set of objects is re-
trieved and the maintenance task of searching for new prop-
erties executes, all persisted objects must be considered un-
stable (i.e. data could be lost in a crash) as we can be
unaware of new properties that have occurred on persisted
objects [I7]. Once we have performed our iteration, though,
the objects are guaranteed stable as we will have checked all
objects which have been loaded and thus checked all objects
that could have been mutated. JavaScript’s concurrency
model guarantees no objects are mutated while we iterate
over the set.

We restrict this object graph traversal to only those ob-
jects that have been loaded during the current execution of
the browser as those are the only objects that could have
been mutated. We also allow the stabilization task to be
paused after a certain amount of time has elapsed to pre-
vent the locking up of the user interface. By setting a small
interval between iterations over the live object set to stabi-
lize it, we can minimize the window where data mutation
could be lost by a browser crash. This needs to be balanced
against the cost of the maintenance task, so we explore this
issue in the evaluation (Section [7]).

S. PERSISTING DATA LOCALLY

Stabilization from searching for new properties along with
mutations detected by accessors gives us the knowledge of
what needs to be persisted locally. To do so we need both a
persistent data store in the web browser as well as a serial-
ization format for JavaScript objects.

For storing objects, we use the persistent key/value map
called localStorage (referred to as “local storage” in Fig-
ure [I)) that is being standardized as the W3C Web Storage
standard [14]. Saving an object to storage may also require
that any objects referenced by the object are saved. This is
currently not handled by any existing JavaScript standard.
So, when an object is saved to storage, a traversal of the
object is performed to flatten the transitive graph of object
references into a set of objects. The traversal transforms
each object property that holds an internal JavaScript ref-
erence to an external globally unique identifier [4] [5] [20].
These GUIDs are then used to insert a serialized version of
each object into the map.

For serialization we rely on the standard JavaScript Ob-
ject Notation (JSON) to represent each individual object
after the graph has been flattened. This promotes interop-
erability with any components on the synchronization server,
discussed in Section[6l Note that while there is already stan-
dard browser support for serializing JavaScript objects using
a JSON API, this API does not support cycles in an object
graph; only trees are supported. Additionally, a serialized
JSON object tree is represented by a single string, which
does not allow for the indexing, retrieval, and update at the
granularity of individual objects. Using GUID references we
can isolate objects in the object graph.

A side-effect of introducing the concept of GUIDs as ref-
erences is it allows for the lazy loading of persistent objects
from local storage. When a property of an object is ac-
cessed that points to a persisted object, the live object set
is checked for the object, and if found is returned. However,
if the object is not live, the GUID is used to load the object
from local storage and has its properties bound to accessors
before caching the object in the live object set and returning
the object.

The consequence of this strategy is that if a persisted ob-
ject is never used during an execution of the browser it is
not loaded from storage, saving the cost of loading it from
disk and deserializing it. This allows our accessors to act as
a read barrier to make sure that an object gets loaded from
whatever storage location is the fastest (memory, local, or
remote). It also speeds up start-up costs by avoiding hav-
ing to wait for all persistent objects to be loaded from local
storage before work can begin.

5.1 Garbage Collection

Ideally when a persisted object is deleted or made to be no
longer reachable, we would like receive immediate notifica-
tion of property deletions. In some languages, it is possible
to use a deletion accessor or tie into the garbage collector
and denote the fact that an object has been deleted [I7].
Unfortunately JavaScript provides no such mechanisms to
be notified when an object is deleted.

In order to know when a persisted object is no longer
reachable from persist.root we implemented our own per-
sistent garbage collector task at the application level (see
Figure). This is reasonable, because this garbage collec-
tor is used to remove dead objects from secondary storage,

function gc() {
intiallyLive = clone(live);
tempLive = {};
worklist = [persist.root];
for(object in worklist) {
if (id(object) in tempLive) {
continue;
}
tempLive.add(id(object));
for(property in object) {
subObject = object[propertyl;
if (subObject instanceof Object))
lookAt .append (subObject) ;
}
}
live = initially_live;
for(key in guidsInStorage()) {
if (1tempLive[key]l) {
localStorage.removeltem(key) ;
delete(live[keyl);
log(key, "deleted");
}
}
}

Figure 3: Pseudocode for our garbage collection
step. Described in Section [5.11

not from main memory, so it does not need to execute fre-
quently and incur its overhead cost. While also clearing out
dead objects from local storage, our garbage collector simul-
taneously removes dead objects from the live object set to
prevent including them during stabilization.

We use a mark-and-sweep algorithm to implement our
garbage collector as shown in Figure Bl We initially clone
the live object set to know what it was set to before we begin
walking the object graph. We construct a work list starting
at persist.root so we can perform a breadth-first search of
the object graph. Any objects that are reached during the
traversal are considered live and added to the tempLive set.
Once we have finished our traversal we set the live object set
back to what it was before we began the traversal. While
having to temporarily load all persistent objects defeats lazy
loading, the fact that garbage collection is not expected to
be run until late into the execution of the web application
allows the benefit of lazy loading to manifest as increased
startup responsiveness.

Now knowing what objects are reachable from
persist.root, we go through each known persistent
object in local storage to see if it was marked in our
traversal as stored in tempLive. If an object that exists in
local storage but was not marked is discovered, the object
is removed from local storage, removed from the live object
set, and then logged as deleted.

6. PERSISTING DATA REMOTELY

When dealing with a distributed system that allows for
offline use, two approaches can be used: optimistic or pes-
simistic updating of the data while offline [19]. In an op-
timistic updating scheme you allow for offline mutation of
data, with the hope that when it comes time to synchronize

the data you will most likely be able to without conflicts. A
pessimistic scheme is the reverse of optimistic updating: as-
suming that reconnection will lead to conflicts with changes
made while offline, you do not allow a user to make any
mutations while offline (reading is of course allowed).

To support the user in doing work offline, we need to use
an optimistic approach. For those instances where the server
automatically detects a conflict during an update (discussed
in Section [6.2.7]), we follow the tradition of letting the appli-
cation handle how to semantically resolve conflicts [10]. This
allows developers to create web applications where data is
shared; either structure the objects such that only a single
user edits any one object at a time or develop their own ap-
proach to resolving conflicts while synchronizing persistent
objects with the server, when they know it is going to be a
recurring issue.

Supporting persistent updates at the level of individual
objects is difficult in a browser setting because it must be
done at the application level for interoperability, however as
described below, this is necessary to support efficient push-
ing and pulling of fine-grained updates for synchronizing
with a server.

6.1 Browser-Side Logging

For each mutated object its GUID, what triggered the
mutation (creation, update, or deletion of an object), the
JSON stored in local storage for the object, and the object’s
group labels (discussed in Section [5.2.2)) are sent. Each log
entry is stored individually in local storage so that the log
can be reconstructed if the browser is closed before log is
sent to the server. We chose to update the server in a batch
— which requires a log — instead of after each individual mu-
tation, to prevent having many mutations in a short period
of time trigging a large number of network connections being
created.

6.2 Synchronization With A Server

While the client-side log lets us know what needs to be
pushed to the server, it does not tell us what needs to be
pulled from the server. In the case of updating the local copy
of the persisted object graph there are two situations. One
is where the local copy is “cold”; either the browser is loading
a web application for the first time or has been disconnected
for quite some time. The other situation is when the local
copy of the object graph is “hot”; the difference between
what the browser has and what the server has is minimal.

6.2.1 “Hot” Synchronization

To start we will address “hot” synchronization. If the
churn rate on data mutation is low then it is not hard for the
browser to stay in sync with the server. When the browser
is synchronized to a specific point in time with the server we
say the browser is a “snapshot” of the server.

When it comes time to sync with the server (see Figure[I),
the browser sends the log of mutated objects (Section BG.1])
along with the timestamp for the last snapshot. The browser
leaves the connection open, waiting for a response from the
server.

On the server’s end, each mutated object is to be stored if
no conflicts exist. For each object, the server stores at least
its GUID, JSON representation, timestamp of the last mu-
tation, and what groups it belongs to (groups are discussed

in Section [6.2.2)).

As the server processes the log sent by the browser, each
object is checked to see if there is a conflict with the pro-
posed update from the browser. For newly created objects,
a conflict occurs if the object already existed. For updated
objects, a conflict occurs if the timestamp on the object is
newer than the snapshot timestamp the browser sent with
the log. A deletion of an object is in conflict if the object
has mutated since the last sync [1].

Preferring the version of an object in the server over the
browser provides master copy semantics [2} [3]. If there is no
conflict the server’s version of the object is updated based
on the values sent over in the log from the browser.

As a return value sent to browser, the server sends all
objects (and their respective details) whose timestamp is
newer than the browser’s snapshot timestamp. An array of
all objects’ GUIDs who were found in conflict are also sent
along.

Once the response is received by the browser for the log
it sent over, the browser processes the data. First, each
object that the server sent over as mutated is processed. All
updates are stored to localStorage immediately. For each
updated object another callback is optionally called so the
application is aware of any changes that have occurred. If
the object is in the live object set, it is updated in-place
automatically.

Next, all found conflicts are processed. For all conflicts,
a callback is called which passes in the state of the object
as found on the server and the conflicted state the browser
originally sent to the server. This gives the web application
a chance to resolve conflicts in an application-specific way
[10].

Synchronizing with the server occurs at regular intervals
through asynchronous XMLHttpRequest calls. By synchro-
nizing regularly and on short intervals the local copy of the
object graph can be kept in sync to the server with minimal
skew between the two. But as our framework supports of-
fline use of objects, it is entirely possible that the snapshot
stored by the browser becomes far out of sync with the mas-
ter copy the server contains based on a developer-specific
amount of time passing. This “cold” browser scenario is es-
pecially acute in a browser that has never accessed the web
application before.

6.2.2 “Cold” Synchronization

If the browser is “cold” and still downloading the initial
set of persistent objects, the developer has the option of
using a callback mechanism similar to the standard XML-
HttpRequest API to ensure that all objects that an event
handler requires are loaded into memory before executing.
This prevents the handler from blocking when an object it
depends on has not yet been fetched. In the callback re-
quest, developers specify a list of object groups, and the call-
back is called when all the objects in the specified groups
have been retrieved. An object group is simply a numeric
tag to serve as indexes for efficient retrieval and to scope
sets of objects. An object is added to a group by call-
ing a function with the object and the group to add it to:
assignGroup(object, groupld).

The developer is shielded from the details of where the
objects in the specified groups are currently located. This
prevents the browser from becoming unresponsive while the
initial set of persistent objects is downloaded if meaningful
work can be done with only a subset of objects.

Objects / Properties per object
Experiment || 10/10 | 10/20 | 100/10 | 100/20 | 1000/10 | 1000/20 | 10,000/10 | 10,000/20
Control 10,273.6 | 5458.6 | 1303.4 | 611.03 | 136.23 61.24 11.78 4.86
Framework 2262.4 | 1795.8 | 265.14 | 202.32 25.32 18.8 2.12 1.52

Table 1: Comparison of serializing an object tree w/ JSON to our framework. Measurements are operations per
second. Shown for a varying number of objects, and number of properties per object.

The framework is also continually fetching entire object
groups, one at a time, in order to end up in a “hot” syn-
chronized state. If the browser tries to read an object that
has not been fetched yet without using the callback mech-
anism, it is retrieved on-demand in a blocking fashion from
the server, which also returns the entire object group the re-
quested object belongs in. The fetching of object groups au-
tomatically in the background is done in such a way that the
main browser thread has a chance to schedule other events
between object group requests. This allows for improved
interactivity and perceived application startup time by not
blocking the browser until all persistent objects are received
from the server.

7. EVALUATION
7.1 Benchmarks

Here we demonstrate the feasibility of our prototype frame-
work on several micro-benchmarks and a use-case based on
eBay Web service data. Our focus is to determine the scal-
ability of application-level persistence under a variety of ob-
ject configurations. We focus only on measurements of the
JavaScript client-side portion of the framework since this is
the contribution of the research. We have implemented a
server-side object repository in Python for use with our pro-
totype, but its performance characteristics are not a salient
part of this work as no novel contribution is dependent on
server performance.

All reported benchmark numbers were taken using the
Dromaeo JavaScript performance testing suite [23]. Each
benchmark is executed as many times as possible until the
total elapsed time surpasses one second, leading to a unit of
“operations/second”. This allows for extremely fast bench-
marks to be accurately measured as the accuracy of the
clock in browsers can be as coarse as 15 ms; executing for at
least one second makes a 15 ms skew lead to at worse-case
1.5% mis-report of results. Each benchmark is measured five
times and the average is reported.

The machine used to take the benchmark measurements
is an Apple MacBook laptop running a 2.2 GHz Intel Core
2 Duo processor with 4 GB of RAM. The operating system
is OS X. We report numbers from tests on the Apple Safari
4 browser.

We also tested our prototype on Mozilla Firefox success-
fully, however the numbers were far worse. For example,
just in the case of JSON serialization Firefox 3.6b1 is nearly
twice as slow as Safari. As for simple object property ac-
cess Firefox is over three times slower and when accessors
are involved is over six times slower. With both pieces of
technology essential to our framework all of our benchmark
numbers were subsequently nearly two times slower or more
on Firefox.

At the time of submission of this paper, the Chrome and

Opera browsers do not support the standard Web storage
API (although Chrome subsequently added support by fi-
nal publication). Internet Explorer 8 supports W3C Web
storage but it does not yet support ECMAScript 5 accessors
for JavaScript objects. Thus, our evaluation reflects what is
possible working within proposed emerging standards, but
not already widely deployed standards. Clearly, offline Web
applications are a new area and browser vendors are still
working towards finalizing their implementations.

7.1.1 Micro Benchmarks

For our first benchmark we measured the cost of persist-
ing objects (Table [M). The control test takes the object
described in each column, serializes it to JSON, and then
stores it to local storage. Our framework test takes the
reference object and persists all objects reachable from it.
This illustrates the up front cost of an entire new object sub-
graph becoming reachable instantaneously, by constructing
the graph as transient objects and then attaching the root
of the sub-graph to the persistent root.

Analyzing the results of the first benchmark shows our ap-
proach taking over 4.5x longer to just over 3x longer. While
the use of the framework clearly adds overhead, this would
most likely not be noticeable by a user until the sub-graph
was over 1000 objects and thus take longer than 150ms [7].
Developers using our framework would need to take care
when attaching entirely new sub-graphs of much larger sizes,
but that scenario seems unlikely, as described in Section
1.2l

Objects / Properties per object

Experiment [| 1000/10 [1000/20] 10,000/10] 10,000/20

[Stabilizing]| 160.62 | 7134 | 144 | 6.67

Table 2: Stabilization measurements. Measurements
are operations per second. Shown for a varying number of
objects, and number of properties per object.

The second benchmark measured the overhead of stabi-
lization (Table 2)). This table shows the overhead of simply
detecting that no new properties were added to the object
graph. This is the minimum cost paid for every stabilization
of the object graph assuming no objects had new properties
added. As the data shows we could check 10,000 objects
with roughly 15 properties each in 100 ms.

The final micro benchmark measured the overhead from
the garbage collection step (Table [3). All benchmarks in-
clude the creation of the test objects and the stabilization of
the object graph. Each row in the figure represents whether
all persisted objects were cached in memory (hot) or not
(cold) and whether all or no persisted objects were actu-
ally collected. This means in the “Live/All” row that af-

Experiments Objects / Properties per object

Object set / How much collected || 1000 / 10 | 1000 / 20 | 10,000 / 10 | 10,000 / 20
Live / All 5.49 3.3 0.5 0.3
Cold / All 5.55 3.22 0.48 0.3
Live / Nothing 5.65 3.18 0.5 0.28
Cold / Nothing 3.66 1.99 0.32 0.18

Table 3: Garbage collection measurements. Unit of measurement is operations per second. Shown for a varying number

of objects, and number of properties per object.

ter stabilization occurred the test object was deleted from
persist.root. Compared to the “New” row in Table 2] we
also measured the cost of clearing out local storage and the
live object set of all objects.

For “Cold/All” we cleared out the live object set, reloaded
persist.root and deleted the property the test object was
assigned to. The added cost compared to Table 2] is similar
to the “Live/All” measurements, except the live object set
had nothing removed.

The “Live/Nothing” measurement, after stabilization, sim-
ply triggered the garbage collector without any deletions.
This means the benchmark measures the cost of traversing
the entire object graph to discover that no objects need to
be removed from local storage or the live object set.

Finally, the “Cold/Nothing” measurement involves clear-
ing the live object set before traversing the object graph to
discover that no objects are to be deleted. The overhead
here is that while nothing is deleted, all objects need to be
revived from local storage in order to traverse the graph to
discover nothing needs removal.

Looking at the numbers for all garbage collector scenar-
ios in Table B compared to the “New” row in Table 2] you
will notice that only the “Cold/Nothing” scenario incurs any
great overhead. This makes sense as the other scenarios ei-
ther do not have to load objects or already have them loaded
to traverse. But in the “Cold/Nothing” scenario the entire
object graph needs to be brought out of local storage for
examination.

Luckily garbage collection should be a rare occurrence as
it should only be run after the web browser has been ex-
ecuting for some time and thus has at least some portion
of the object graph live. A task such as collecting garbage
on disk can be triggered by the user synchronously, through
a developer provided GUI button, such as “Empty Trash”.
For this reason, the overhead shown in these measurements
looks reasonable.

7.1.2 eBay Benchmark

Our micro-benchmarks were scaled to specifically demon-
strate the limits of our approach. For a quantitative evalua-
tion of our framework using real-world data we used eBay’s
web service. We queried the service using the search term
“iPod” and requested 100 auctions in JSON format. We
stored the JSON as a literal in our test code. The con-
trol experiment converted the JSON to an object represen-
tation, deserialized that object, saved the JSON represen-
tation to localStorage, and then converted the object to
XML (to exercise accessing every property on every object).
For benchmarking our framework we deserialized the JSON,
attached the object to persist.root, stabilized the object
graph, and then converted persist.root to XML.

The benchmark measures the overhead of our approach
compared to a very simple approach to storing an object
tree. By fully stabilizing the object graph for our frame-
work we not only measure the cost of persisting the data
but also the cost of adding accessors for all properties. And
by converting the object to XML we make sure to visit every
object and property, thoroughly exercising our accessors.

The results of the benchmark are that our framework can
operate 15.8 times/second versus 58.51 times/second for the
control. While there is an obvious overhead incurred by our
framework, the cost contains several features that are lack-
ing in our simple control benchmark. One, our framework
supports cyclic object graphs while native JSON only sup-
ports an object tree. Two, if a property were to be mutated
we would know about it immediately, minimizing potential
data loss from a crash. Three, we also log all data for syn-
chronization to a server for remote backup.

Although there is overhead, an operation that can be per-
formed 15.8 times/second is not going to be noticed by the
user [7]. This shows that our framework would be efficient
for scenarios such as querying a web service and persisting
the results of the query.

7.2 Experience

In addition to quantitative measurements, we wanted to
gain some experience using this approach to better under-
stand its use in an application. For this purpose, we both
ported an existing Web application to use the persistence
provided by the framework, as well as comparing it to an
existing JavaScript toolkit that provides some support for
persistence.

7.2.1 Moi Web Application

To initially make sure that our framework not only worked,
but understand how it could be used effectively, we ported a
Web application of our own design, called Moi, to our frame-
work. The application was designed to allow the authors to
report to each other what the other had done during the
prior week using a simple web page form to enter data and
an Atom feed to consume the data. The application sup-
ported offline use so that updates could occur at any time.

The original Moi application consisted of objects made up
of the date at the start of a work week and the summary of
what had occurred that week. When a user changed/added
an entry we saved the entry locally, added it to a log of
changed entries, and then submitted it to a web service to
store it, if there was a network connection.

When moved over to our framework this simplified Moi
greatly, dropping the LOC from 281 to 58 — a nearly 80%
reduction. The objects were attached to persist.root with
property names consisting of the Monday date in the object.

Our framework then did the rest. That eliminated all of the
code we had written to manage the storage of our data.
It also allowed us to focus on the usage and structure of
our data instead of its storage since our framework took
that over for us. In the case that a large number of entries
were necessary to be stored on a client, we can use object
groups to divide entries by their year. This would allow
the framework to automatically chunk 52 entries in each
batch. In the case of where data was updated while offline,
we registered a callback for when new data was received.
This allowed us to update the current view if needed. We
also provided a simple view to handle conflicts by popping
up a window with the data we originally tried to push, so
the user could view the updated data and manually decide
how to resolve the conflicts.

7.2.2 Dojo Toolkit

Probably the closest existing JavaScript library that pro-
vides data persistence and offline support is the Dojo
Toolkit. Dojo provides the dojox.data.JsonRestStore for
reading and writing data to a server using a HTTP REST
API [9]. Dojo also provides dojox.rpc.0fflineRest with
JsonRestStore to provide offline access to the data they
manipulate through JsonRestStore.

JsonRestStore allows a developer to work with objects
directly, like our approach, and not through a low-level data
manipulation API. The library does require, though, devel-
opers register objects for storage. To save any mutations a
developer must mark an object as “dirty” when they have
mutated and then explicitly call a global save function:

// Marking an object as ‘‘dirty’’ and saving it
jsonStore.changing(item) ;

item.attr = newValue;

jsonStore.save();

The explicit registering of objects for saving and the need
to mark mutated objects as dirty along with an explicit save
call prevent JsonRestStore from being as automatic as the
approach in this paper. JsonRestStore also does not process
mutations to sub-objects; every object that changes must be
marked as dirty to have changes be picked up.

A possible bigger difference between our framework and
JsonRestStore is that communication with the server is one-
way from the browser to the server. There is no support to
pull new objects from the server nor check to make sure data
unseen by the browser is not overwritten on the browser.
JsonRestStore takes the view that the browser is the master
copy of data, as opposed to our framework which makes sure
all browsers used by a user are consistent.

Dojo provides a simple e-mail application, Dojo Mail, to
demonstrate their GUI toolkit. We used this as a basis for
gaining further experience porting applications to use our
framework. Dojo Mail contains a tree representing the var-
ious folders an email user may have. That tree is rendered
using dijit.Tree and data exposed through an object im-
plementing the dijit.tree.model interface. The interface
itself exposes data in a tree structure and allows for notifying
the tree widget when the data it is rendering has changed.

By implementing the model interface that Dojo’s requires
for use with dijit.tree.model, we created a persistent ver-
sion of the model. This shows that it is possible to take our
persistence framework and use it with pre-existing JavaScript
libraries transparently.

8. RELATED WORK

8.1 Networked File Systems and Databases

A modification of the AFS file system by Huston and Hon-
eyman allowed for disconnected use using an optimistic up-
date policy much like we use [I8]. Callbacks were also used
to notify the user if conflicts arose from disconnected mu-
tations. The Coda filesystem also used optimistic updat-
ing [19]. Coda viewed local data as second-class replicas of
the master data, in line with our master-copy view. The
Bayou system influenced us by making it clear that meta-
data should never contain server-specific details as that pre-
vents scaling and thus all metadata should be globally ap-
plicable and usable[24]. The Ficus file system emphasized
“no lost update” semantics to retain data consistency [12].
The authors also pointed out that users act as their own
write token, minimizing actual conflicts in data from mul-
tiple updates while offline. While strictly not a networked
file system, Balasubramaniam and Pierce wrote about syn-
chronizing files where they pointed out optimistic updating
is a must for disconnected operation [I]. While all of these
researchers contributed to how we handle offline mutations,
their work focused on file systems and not object persistence.
Gray et al noted that conflicts from offline mutations should
be handled by the application as each application has their
own unique requirements [10].

8.2 Persistent Programming Languages

Brown et al showed that persistence can be treated as
orthogonal to the language, although it does require some
rather low-level access by the language [6]. Eliot and Moss
implemented the Mneme object store which used pointers to
represent edges in the object graph like in this research [§].
Hosking and Chen created an orthogonal persistence system
that tied into the garbage collection step of a programming
language, finding it acceptable to persist only when GC is
run and thus with a slight delay [I7]. Our work differs from
these papers by adding object persistence to a pre-existing
programming language without interpreter/compiler modi-
fication.

8.3 Distributed and Persistent Object Systems

Research on object-oriented, distributed programming lan-
guages solves many issues with how to transport objects over
a network to remote systems. The Emerald and Modula-2
programming languages were some of the the first languages
to provide location transparency but the language also did
not hide details that may be needed for performance reasons
[4, 20]. We borrowed ideas on how to identify objects from
these works even though they focus on moving objects for
execution while we have focused on persistence.

The Thor object-oriented database is a persistent object
system that supported disconnected operation in an opti-
mistic fashion [IT] 211, 22]. It was designed for desktop ap-
plications operating in a WAN environment where server
redundancy was key. In comparison to our work, our design
space was the internet where we had to operate within the
confines of the browser and not with the full power of C++
and the underlying OS. This required eager caching of all
objects in the browser to avoid latency issues, along having
to work within JavaScript’s restrictions where we could not
tightly integrate into the language.

8.4 Web Browsers

The Gears plug-in introduced the idea of local storage in
web browsers, which helped lead to the W3C Web Storage
API [14]. The Web Workers specification [15], while allowing
for concurrent processing in the web browser, can only be
passed copies of objects consisting of only data while also
not being able to access localStorage. These limitations
make Web Workers nearly useless to our framework.

9. CONCLUSION

Relying exclusively on mechanisms which are described in
emerging or proposed standards, we have created an auto-
mated object persistence framework for Web browsers. We
are able to work around shortcomings of the JavaScript pro-
gramming language in order to detect mutations of persis-
tent objects as quickly as possible; either on a set inter-
val for new properties or instantly for mutations of known
properties. All detected mutations are logged to allow for
synchronizing the mutations to a server on the internet.

For communication between a browser and a server, we
developed a communication scheme from scratch. It had
the requirement that it should work with only the browser
initiating a connection. It also was designed to work with a
potentially latency-heavy internet connection.

The framework not only works with a possibly sub-par
internet connection, but with no internet connection at all.
By utilizing offline storage our framework can persist objects
while disconnected from the internet. When a connection is
re-established all changes are sent to a server where they are
then persisted and potential mutation conflicts are detected.

Our evaluation of our work shows that thousands of ob-
jects can be persisted with acceptable performance overhead
on select browsers. Support for our framework is available
in three of the four major browsers, although one of the
supported browser only existed after initial evaluation and
another had extremely poor performance characteristics.

10. REFERENCES

[1] S. Balasubramaniam and B. Pierce. What is a file
synchronizer? In Proceedings of the 4th annual ACM/IEEE
international conference on Mobile computing and
networking, pages 98—-108. ACM New York, NY, USA, 1998.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ansi sql isolation levels. In SIGMOD
’95: Proceedings of the 1995 ACM SIGMOD international
conference on Management of data, pages 1-10, New York,
NY, USA, 1995. ACM.

[3] P. A. Bernstein and N. Goodman. A sophisticate’s
introduction to distributed concurrency control (invited
paper). In VLDB ’82: Proceedings of the 8th International
Conference on Very Large Data Bases, pages 62—76, San
Francisco, CA, USA, 1982. Morgan Kaufmann Publishers Inc.

[4] A. Black, N. Hutchinson, E. Jul, and H. Levy. Object structure
in the emerald system. In OOPLSA ’86: Conference
proceedings on Object-oriented programming systems,
languages and applications, pages 78-86, New York, NY,
USA, 1986. ACM.

(5]

(6]

(10]

(11]

(12]

(13]
(14]
(15]

(16]
(17]

(18]

(19]

(20]

(21]

(22]

[23
[24]

Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and

A. Silberschatz. Update propagation protocols for replicated
databates. In SIGMOD ’99: Proceedings of the 1999 ACM
SIGMOD international conference on Management of data,
pages 97-108, New York, NY, USA, 1999. ACM.

A. Brown, G. Mainetto, F. Matthes, R. Mueller, and

D. McNally. An open system architecture for a persistent
object store. In System Sciences, 1992. Proceedings of the
Twenty-Fifth Hawaii International Conference on, volume 2,
1992.

J. R. Dabrowski and E. V. Munson. Is 100 milliseconds too
fast? In CHI ’01: CHI ’01 extended abstracts on Human
factors in computing systems, pages 317-318, New York, NY,
USA, 2001. ACM.

J. Eliot and B. Moss. Design of the mneme persistent object
store. ACM Trans. Inf. Syst., 8(2):103-139, 1990.

R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, University
of California, Irvine, 2000.

J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of
replication and a solution. In SIGMOD ’96: Proceedings of
the 1996 ACM SIGMOD international conference on
Management of data, pages 173-182, New York, NY, USA,
1996. ACM.

R. Gruber, F. Kaashoek, B. Liskov, and L. Shrira.
Disconnected operation in the thor bbject-oriented database
system. In WMCSA ’94: Proceedings of the 1994 First
Workshop on Nobvile Computing Systems and Applications,
pages b1-56, Washington, DC, USA; 1994 IBEEE Computer
Society.

J. Heidemann, R. G. Guy, and G. g-Popek:-Primarily
disconnected operation: Experiences with ficus: T in
Proceedings of the Second Workshop on the Management of
Replicated Data, pages 2-5, 1992.

I. Hickson. W3C Web Database.
http://www.w3.org/TR/webdatabase/, September 2009.

I. Hickson. W3C Web Storage.
http://dev.w3.org/html6/webstorage/, July 2009.

I. Hickson. W3C Web Workers. http://wuw.w3.org/TR/workers/,
July 2009.

I. Hickson and D. Hyatt. Html 5. http://www.w3.0org/TR/html5/.
A. L. Hosking and J. Chen. Mostly-copying reachability-based
orthogonal persistence. In OOPSLA ’99: Proceedings of the
14th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages
382-398, New York, NY, USA, 1999. ACM.

L. B. Huston and P. Honeyman. Disconnected operation for
afs. In MLCS: Mobile & Location-Independent Computing
Symposium on Mobile € Location-Independent Computing
Symposium, pages 1-1, Berkeley, CA, USA, 1993. USENIX
Association.

J. J. Kistler and M. Satyanarayanan. Disconnected operation
in the coda file system. ACM Trans. Comput. Syst.,
10(1):3-25, 1992.

H. M. Levy and E. D. Tempero[NModules; objectsand
distributed programming: issues in rpc and remote object
invocation. Softw. Pract. Ezxper., 21(1):77-90, 1991.

B. Liskov, M. Castro, L. Shrira, and A. Adya. Providing
persistent objects in distributed systems. In In European
Conference for Object-Oriented Programming (ECOOP,
pages 230-257. Springer-Verlag, 1999.

B. Liskov, M. Day, and L. Shrira. Distributed object
management in thor. In Distributed Object Management,
pages 79-91. Morgan Kaufmann, 1993.

Mozilla Foundation. Dromaeo. http://dromaeo.com/.

D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in
bayou, a weakly connected replicated storage system. SIGOPS
Oper. Syst. Rev., 29(5):172-182, 1995.

http://www.w3.org/TR/webdatabase/
http://dev.w3.org/html5/webstorage/
http://www.w3.org/TR/workers/
http://www.w3.org/TR/html5/
http://dromaeo.com/

	Introduction
	Motivating Problem
	Overview
	Detecting Mutations
	Background
	Detecting Reachability in JavaScript
	Detecting Dynamic Property Additions

	Persisting Data Locally
	Garbage Collection

	Persisting Data Remotely
	Browser-Side Logging
	Synchronization With A Server
	``Hot'' Synchronization
	``Cold'' Synchronization

	Evaluation
	Benchmarks
	Micro Benchmarks
	eBay Benchmark

	Experience
	Moi Web Application
	Dojo Toolkit

	Related Work
	Networked File Systems and Databases
	Persistent Programming Languages
	Distributed and Persistent Object Systems
	Web Browsers

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

