
Scr ipt InSight: Using Models to Explore JavaScr ipt Code
from the Browser View

Peng Li and Eric Wohlstadter

University of British Columbia
{lipeng, wohlstad}@cs.ubc.ca

Abstract: As Web programming standards and browser infrastructures have matured, the
implementation of UIs for many Web sites has seen a parallel increase in complexity. In order
to deal with this problem, we are researching ways to bridge the gap between the browser view
of a UI and its JavaScript implementation. To achieve this we propose a novel JavaScript
reverse-engineering approach and a prototype tool called Script InSight. This approach helps to
relate the semantically meaningful elements in the browser to the lower-level JavaScript syntax,
by leveraging context available during the script execution. The approach uses run-time tracing
to build a dynamic, context-sensitive, control-flow model that provides feedback to developers
as a summary of tracing information. To demonstrate the applicability of the approach we
present a study of an existing open-source Web 2.0 application called the Java Pet Store and
metrics taken from several popular online sites.

Keywords: Reverse-Engineering, Software Maintenance, Rich Internet Applications,
JavaScript

1 Introduction

The user interface (UI) is a key aspect of most Web sites. As Web browser
programming standards such as JavaScript and the W3C Document Object Model
(DOM) have matured, the implementation of UIs for many sites has seen a parallel
increase in complexity. These rich Web applications have the advantage of providing
a seamless and interactive experience for end-users. However, these applications also
require more development effort to build and maintain than older Web UI. As the
Web has become more interactive and complex, we are researching a more
interactive, model-based approach for Web application reverse-engineering and
debugging.
 Most existing work on modeling of UI-intensive Web applications focuses on
development but not specifically maintenance and debugging. For example, [1]
introduces a framework for the integration of presentation components in mashup
applications. Trigueros et al. present a model driven approach, the RUX-Model, for
the design of rich Internet applications [2]. Valderas et al. introduce an approach to
support the coordinated work between Web UI designers and analysts during the
development of a Web application [3]. In [15], Rossi et al. use a model-driven
approach to transform conventional Web applications into rich Internet applications
by applying refactoring at the model level. Meliá et al. propose a model-driven

development methodology which extends a traditional Web modeling methodology
for use with the Google Web Toolkit [16]. Some research in software maintenance
and reverse-engineering has been used for testing of Ajax applications [14], but not
specifically for interactive debugging, as we focus on in this paper.

As with any complex software development task, creating a user interface requires
an iterative cycle of design and implementation. Starting with an initial design, an
interface would first be prototyped and then refined over several cycles into a final
product. At each stage, some design decisions may need to be reconsidered and the
implementation adjusted accordingly. The UI might even evolve after the release of
an application in order to fix bugs or add new features.

After each cycle, developers can determine the quality of the current application by
executing the implementation and evaluating the UI appearance and functionality in a
Web browser. If they notice anything wrong with the browser view of the UI, they
would need to map the problem back to some part of the implementation, to enact the
appropriate change.

Unfortunately, reversing engineering a rich interactive Web page and mapping the
appearance or behavior of some element in the Web page to the corresponding
implementation can be quite difficult. This is because today’s Web UI are stateful and
reactive. Their appearance and behavior vary over time based on mutations of state
made from JavaScript. This problem is exacerbated by the fact that a developer
working on the UI might not have written the original code for all parts of the Web
site. In that case, they may need to dig through unfamiliar code to try and reverse-
engineer the source. This process is especially difficult since code for some systems
on the Web is poorly documented. As described by Hassan et al. [4], “Currently,
[code] inquiries can only be answered by scanning the source code for answers using
tools such as grep, consulting documentation, or asking senior developers.”

In order to deal with this problem, we are researching an interactive approach to
bridge the gap between the browser view of a UI and the JavaScript piece of the
implementation. This is motivated by the fact that the browser view is usually easy to
understand and semantically meaningful, unlike the implementation code. We want to
help developers use the live UI as an entry-point into the lower-level implementation
details.

To achieve this, we propose a novel JavaScript tracing approach. To a first
approximation, when a change is made by a script statement to a visual DOM
attribute (e.g. color, height, etc...), we record a link between the effected browser
element and the code responsible. The intuition is that a developer can now easily
navigate through the code by hyperlinking directly from browser elements. However,
a basic implementation of this approach is vulnerable to two problems.

First, mapping semantically meaningful events, such as the mutation of a visual
attribute directly to a location in the source code (e.g. a statement) may not be helpful,
because that one statement might be reused for several different purposes in the
execution of the script. For example, informing a developer that an attribute was
changed in a “setter” method for that attribute provides little useful information. The
“setter” method could be called many times in the execution of a script, in different
contexts, for a variety of different purposes.

For this reason we are researching the use of context-sensitivity to help provide a
mapping. A context-sensitive approach captures not only the execution of individual

statements, but also the state of the call stack, which can help distinguish between
multiple executions of the same statement.

Second, the visual behavior of a Web page (e.g. the way widgets are animated) is
often achieved by a set of coordinated DOM attribute mutations. For example, a
button’s appearance may change to reflect the button is active when a panel is closed,
and change again to reflect it is inactive when the panel is open. The changes to the
button appearance and panel appearance have a causal relationship. If a developer
wants to change the widget animation they may need to make coordinated changes to
several DOM nodes. For this reason we are researching the use of a custom control-
flow model, the DOM mutation graph (DMG), that developers can use to leverage
their understanding of these causal relationships, seen in the browser view, in
mapping from the browser view to script source code.

 To demonstrate our approach of using this DMG to explore script code, we
present a study of an existing open-source Web 2.0 application called the Java Pet
Store [9] and metrics taken from several popular online sites. We show how this
model is used to understand animation effects in the application which require
coordinated changes to several page elements. The metrics taken from other pages
provide evidence supporting the need for context-sensitivity in Web application
reverse-engineering.

The rest of the paper is organized as following: Section 2 presents a motivating
example and an overview of our approach, Section 3 presents technical details,
Section 4 presents metrics from online sites, Section 5 presents a further detailed
example, and in Section 6 we give related work and we conclude in Section 7.

2 Motivating Example and Approach Overview

In order to motivate our approach, we use a case-study of an existing open-source
Web application called Java Petstore 2.0 (henceforth, JPS). This online pet store
offers the end-user several interactive widgets to control the application, as shown in
Figure 1. Here we see the “Catalog Browser” page from which the end-user can
browse prospective pets. This one page alone makes use of 1232 lines of JavaScript
code spread across 3 files.

Running down the left-side of the page is an accordion bar. This widget is a
stylized tree-view for browsing categories of pets and their respective sub-categories
(e.g. the specific kinds of cats). The table rows for the categories interactively
expand/deflate to reveal/hide sub-categories when the mouse cursor is
positioned/removed from a category name. This “accordion” animation requires
JavaScript programming to mutate the DOM in an event loop. In Figure 1, the “Cats”
row is expanded and the other categories remain deflated.

Consider the perspective of a front-end developer who would like to make changes
to this Web page. They have to remember or understand how the 1232 lines of code is
mapped to elements of the page and their behavior.

In the original JPS, each accordion row is expanded and deflated at a constant
speed. Here we consider a change task where a front-end developer wants to change

Fig. 1. A snapshot for the “Catalog Browser” from the Java Pet Store. Label (A) is an expanded
accordion row, “Cats”. The labels (B) and (C) will be described later, in Section 4.

the animation to accelerate at a decreasing/increasing rate when a row is
expanding/deflating. During the task the developer is confronted with three problems.
 First, they would need to determine which DOM nodes and which attributes of
those nodes are responsible for the animation. This could be difficult because the
implementation details could vary. For example, the animation might involve any
combination of style attributes such as height, top, clip, etc...

Second, suppose a developer figures out that height is the key to change the
animation. However, when they search through the code, there are two assignment
statements to the height of some node in the JavaScript implementation. One of them
is shown in Figure 2 and another one turns out not to be relevant. By looking at each
statement individually, it is not always clear if the statement is relevant to the task at
hand. They may also have to search the code to understand the calling context of each
height setting statement. In other words, the function calls which lead to the
statement’s execution.

Fig. 2. The function setHeight on its own lacks the calling context which is needed to
properly associate the function with the accordion bar animation.

Third, suppose the developer determines the function as shown in Figure 2
contains the assignment statement they are interested in. In order to create the new

Row.prototype.setHeight = function(nH) {
this.h = nH;
this.div.style.height = nH + "px";

}

acceleration/deceleration effect, they would want to change the argument value that
was passed to a function call to setHeight, but not the definition of the
setHeight code itself. But now, when a developer searches setHeight in the
code, they find two places where the setHeight function is called, as shown in
Figure 3. Each one is relevant for the change task, but for different reasons.

Fig. 3. Two function calls related to the accordion bar animation. The developer will need
information to disambiguate the purpose of each function call. Some code is elided for
illustration purposes.

After some investigation, they may find that the first one (line 149) is involved
with expanding an accordion row and the second (line 157) is involved with the
deflating.

Using our proposed approach, a developer could have chosen to see a model of the
accordion row’s execution. The model generated by our tool is shown in Fig. 4. In the
model, each node represents a statement that mutated some visual DOM attribute and
the calling context in which that statement execution. Notice that the model contains
two nodes, although we are only concerned with one source code statement (the
height setting statement in Fig. 2). From the model a developer could determine that
the animation was created by alternating, repeated executions of the context
represented by height0, followed by repeated executions of the context represented
by height1.

By selecting each node in our tool, the developer can perform two functions. First,
the developer can view a trace of the values which were set in each context. From the
trace, it is clear which one is responsible for expanding and which one is responsible
for deflating. Having the information in mind, the developer can hyperlink to the
corresponding source for the one they are interested in. In the model, height0 links
to the executions of Fig.2, which were made from line 149 in Fig 3; height1 links
to the following repeated executions of Fig. 2, which were made from line 157 in Fig.
3.

147. if(...) {
148. nHeight = nHeight + INCREMENT;
149. divs[nExpandIndex].setHeight(nHeight);
150. if(...) {
151. if(...) {
152. ...
153. }
154. else {
155. oHeight = oHeight - INCREMENT;
156. }
157. divs[oExpandIndex].setHeight(oHeight);
158. }
159. }

Now, the developer can find the correct locations to change argument values for
each call to implement the desired acceleration/deceleration change. In the remainder
of the paper we describe more precisely the details regarding using a DMG for
exploring JavaScript code using Script InSight.

Fig. 4. The abstract behavior of an accordion row presented as a DMG. The two traces of the
height values (overlayed on the model with block arrows, in the figure simply for illustration)
show the information displayed to a developer when selecting one of the two nodes in the
model.

3 Implementation Details

Our prototype is implemented as a JavaScript front-end, to execute within a standard
Web browser, and a separate HTTP proxy executable. A developer using our tool will
install and point their browser to the HTTP proxy which provides instrumentation of
existing JavaScript code. First, we describe our prototype tool from a developer’s
perspective to provide an overview of the lower-level details involved in our run-time
tracing infrastructure, which is described in Section 3.1. The DMG model
presentation for UI execution history is presented in Section 3.2.
 Using Script InSight, developers can switch the Web browser between normal
execution mode and inspection mode. In script inspection mode, a developer can
select an element in the browser view. For example, the developer might select a
particular image or table row they are interested in. Next, a list of the event handlers
that have affected that node during execution are displayed. When the developer
selects one of the handlers, a DMG of its previously recorded behavior is displayed.

By selecting a node in the DMG, the developer is hyperlinked to the file for the
associated JavaScript statement in a special text editor, as shown in Figure 5. In the
editor, the cursor position is set for the line number of the statement for convenience.
This text editor includes a drop-down menu for the developer to navigate the calling
context for a given statement execution. This allows the developer to jump up and
down the call stack that was captured precisely for that instance of statement
execution in the trace history.

3.1 Tracing JavaScr ipt Execution

Run-time tracing is implemented as a set of JavaScript functions which are called by
tracing code injected into existing scripts. Scripts are intercepted and manipulated by
a client-side HTTP proxy. We use the open-source Rhino [10] JavaScript compiler
framework to convert scripts into an abstract syntax tree (AST) which is then
transformed to add the tracing code. In the remainder of this section we describe the
details of this tracing procedure.
 During program execution, our tool monitors a subset of the JavaScript statements
executed. We refer to these statements as DOM mutators. A DOM mutator is a
JavaScript statement which mutates the state of the DOM. This can be either by
directly setting an attribute of a node (e.g. node.id = ‘submit’) or through any
one of the functions in the W3C DOM standard (e.g. node.appendChild(..)).

For example, in JPS, the height attribute of some nodes is mutated dynamically.
Our tool records this fact so that a developer concerned with an animation concerning
the height can quickly locate the corresponding implementation.

Fig. 5. Selecting a function call location from the calling context. The (?) entry references an
anonymous JavaScript event handler function. A mutation of the style.height attribute for
some DOM node was made in the function setHeight which is shown at the top of call
stack. This mutation corresponds to the height0 node from Fig. 4. The stack contents serve
to distinguish this execution of setHeight from those corresponding to node height1.

In many cases, dynamic information is needed to distinguish the calling context in

which some statement executed. For this reason, our tool captures the calling context
of each DOM mutator execution instance. The DOM Mutator Context is an ordered
list containing the location of all JavaScript function calls active at the moment of
execution for some DOM mutator. This context captures the path of function calls
from some event handler invoked by the browser, to the statement.

 Consider an example from eBay where JavaScript library code is used to build
“widgets”. These widgets are an aggregation of DOM nodes which are encapsulated
behind a high-level widget interface.

Suppose a developer is interested in a particular instance of an eBay drop-down
menu. They might wish to modify the parameters that were used in the construction of
the menu. Using our tool they could click on some part of the menu to be hyper-
linked to the DOM mutator where that part of the menu was created. However, since
these nodes were created as an internal part of the widget library, the developer would
not want to actually change the library code but rather find where it was called from
for this menu instance. This could be achieved using the captured context modeled in
the DMG.

3.2 DOM Mutation Graph

Many Web 2.0 and Ajax style sites use JavaScript to control dynamic UI effects and
animations. We want to help developers navigate directly to the code responsible for
controlling this part of the UI. In this case, it could be hard for a user to determine
precisely the moment when the UI transitioned between states which are responsible
for creating the effect or animation.

To help developers review mutations in an animation which occur over the span of
some time, we need to consider the history of DOM mutations related to each DOM
node attribute. Our tracing infrastructure captures a complete trace of all DOM
mutator contexts, including the value (e.g. 10, ‘red’,’http://..’) which is assigned by
the mutator for each context. However, it is well known that dynamic traces can
sometimes overwhelm a user with a large magnitude of data, making the information
not valuable.

To abstract large execution traces for developers, we designed a mechanism to
represent JavaScript execution as a variation of a traditional control-flow model, the
DOM mutation graph. Each DMG is an abstract representation of the execution
history for a specific instance of a JavaScript event handler (e.g. onclick,
onhover). This execution history captures all mutations made during the activation
of the handler (i.e. while the handler is on the call stack).

We use this partitioning of trace information because each particular event-handler
is commonly responsible for creating one particular animation or dynamic effect on
the page. Scoping the generation of models to align with event-handlers, allows a
developer to focus on a particular animation or effect, and the way it may affect
multiple attributes of multiple DOM nodes, in a coordinated fashion.

Our model is similar to traditional control-flow models, such as a control-flow
graph or call-graph, in that each node represents some implementation level artifact.
However, we consider only the set of statements which affect the visual appearance of
the UI and distinguish those statements based on dynamic context information. These
statements serve as a bridge between the browser view and the implementation. This
is because a developer can plainly observe their effect from the live UI.

In the model, each node corresponds to a mutator context, abstracting over all the
particular values which may have been assigned in that context. The trace of concrete
mutations, including the attribute values assigned, can be retrieved by interrogating

each node (as illustrated in Fig. 4). Edges in the model correspond to the sequencing
of statement execution. A directed edge is created from node, u, to node, v, if there is
a trace entry for u followed by a trace entry for v. This allows the model1

Web
Page

 to become a
bridge between the flow of changes that a developer can see directly in the browser,
and the implementation which is causing those changes.

Using the DMG as a bridge is effective because the implementation-level
statements which can cause visual changes to the UI in standards-compliant Web
applications are limited to a standard set of HTML/CSS attributes and DOM
operations. Thus we are able to capture, and focus on, just these attributes and
operations. If implementation code was non-standardized or able to directly draw to
the browser window using pixel-level operations, such a mapping would be much
more difficult or even impossible to create.

4 JavaScr ipt Metr ics

In order to better understand if our approach is truly motivated by the complexity of
today’s JavaScript implementations for several existing Web applications, we
gathered metrics from JPS and several popular Web sites. These measurements were
taken using Mozilla Firefox 3.0.3 for Microsoft Windows.

of
Files

Total
Lines

Context
(see caption)

Memory
(MB)

Petstore 3 1,232 2.2 (1.6) /118 36 / 38
eBay 4 19,682 1.5 (.84) /43 40 / 44
Facebook 7 37,310 1.7 (1.3) /485 68 / 72
Yahoo 1 10,218 2.3 (1.4) /164 42 / 43
Amazon 4 5,903 2.0 (.95) /91 45 / 46
Priceline 9 11,667 3.5 (1.8) /73 38 / 40

Table 1: (# of Files) lists the number of JavaScript files downloaded for each page and (Total
Lines) is the sum of their file line counts (in some cases the code is obfuscated so we cannot
give an accurate estimate of non-commented lines of code). (Context) lists the average number
of distinct contexts which a mutator statement was executed in (standard deviation in
parentheses) / and the total number of DOM mutator statements executed for the page after the
slash. (Memory) is the original memory used by Firefox for page execution / with the memory
used for our instrumented page after the slash.

Table 1 shows four columns of metrics for each page. The second column, number
of files, counts the JavaScript files which were referenced by the page. The total lines,
column three, is the sum of the files sizes (in terms of lines) for those files.

1 To generate the visual appearance of the model, we use a GraphViz-based extension for

Firefox.

The column labeled Context describes information about the DOM mutator
statements which were executed. The first number lists the average number of distinct
calling contexts in which a statement executed. For example, considering the Petstore,
each assignment statement to a DOM attribute was executed in 2.2 different contexts
on average. The second number shows the standard deviation. The third number lists
the total number of DOM mutator statements executed for the page.

The final column lists the memory usage of Firefox with a page loaded, after
having its UI exercised; first without our tool in use and second with our tool being
used. Memory consumption is discussed further in Section 4.2.

For JPS we use the Catalog Browser which has already been described in detail.
The eBay page is a simple list of results for searching auctions related to “iPods”.
The FaceBook page is the default “Profile” page for a new Facebook user. For Yahoo,
Amazon, and Priceline, we used the default homepages.

We took the metrics by triggering a measurement function injected into the code.
Since these metrics measure properties of the JavaScript execution, we needed to
exercise the UI of the page before taking measurements. We did this by simply
manually manipulating any part of the UI which did not cause the page to be changed
(hence losing the script state for the page).

4.1 Discussion

By looking at the results for the Context metrics, we see for which pages our
calling context capture could be useful. Here we see that these pages either:
frequently execute mutators in more than one context and/or execute some mutators
in many different contexts.

In general, we see that it was common for a mutator of a DOM node to be used in
more than one context. At first this could seem unintuitive because even most
interactive Web pages tend to have a large amount of static content. However, this
makes sense since we are only including mutations made in the JavaScript code and
not any HTML attributes which are set in the static HTML or HTML generated by the
server. If some attribute was going to be set only one time and never mutated, it
would make sense that the developer chose to generate the value on the server. Thus
for JavaScript execution, the reuse of code from different contexts appears to be
prominent for these pages.
 Developers working on a particular Web page without the help of a model, will
need to create a mental map which connects an element of the Web page to a
particular location in code. This would currently be done in an ad-hoc fashion. Two
possible examples are as follows.

First, a developer could scan the code to identify relevant code. From the # of files
and total LOC in Table 1, we believe that this approach is not scalable. There is
simply too much code to consider across the files.

Second, a developer could associate an identifier such as a JavaScript function
name or file with each element of the Web page. For example, they might use a
particular file for all “information pane” functions. In this way, when they want to
work on some code related to a particular element, they could use a text-based search
to find the relevant code. However this one-to-one mapping does not appear scalable

in light of the Context metrics from Table 1, because a distinct page element may be
associated with code reused by several elements or for different purposes. Next, in
Section 5 we turn to an example in our JPS case-study to demonstrate how our
approach could be leveraged to deal with these problems.

4.2 Per formance Considerations

Since our tool collects a history trace of DOM mutations, we wanted to determine
how much memory overhead was used for the example Web pages in Table 1. These
measurements are listed in last column. Here we see that the amount of memory used
was never more than 4MB. Since we only exercised the parts of the UI that were
obvious to us, it is possible we had missed some button, menu, or other widget that
was not clearly marked. Still, since the amount of memory used was small relative to
that in today’s desktop machines, we did not consider this to be a large issue.

Certainly the memory used will depend on the code for the page itself. For
example, looking back at Fig. 4, we see that the history for expanding and deflating
one accordion bar, one time, required 16 trace entries. If JPS was programmed
differently, this number could certainly increase but we believe that JPS and the
example pages in Table 1 are a fair representation of UI programming practices for
many of today’s Web applications.

We have used our tool extensively in the exploration of JPS and also as part of
collecting the measurements for Table 1. Using the tool we did not notice any
perceptible slow down caused by the run-time tracing while interacting with the page.

5 Catalog Browser Example

In order for us to be able to describe some details of our study in depth, we choose to
focus on the “Information Pane” (B) and “Collapse Button” (C) on the Catalog
Browser page of JPS in Fig. 1.

In this section, we will first introduce the behavior of this information pane and
collapse button at a high level. Then, we will give a more low level description from
the developer’s perspective. Finally, we describe the model that is generated by using
our approach to bridge these two different perspectives. A developer can use this
model as linked from the browser view, to quickly get into the script programming
details.

The information pane (B) describes the detail information for a selected pet (e.g.
name, description and rating). This widget is mapped to a div element in the DOM.
In Fig 1., the information pane appears raised, partially obscuring a pet image. When
the pane is lowered, it appears to slide behind the scrollbar (positioned beneath it).
This animation is performed by mutating clip, height, and top attributes in
coordination.

The collapse button (C) controls the raising and lowering of the information pane.
It is an img element in the DOM. There are two places in JavaScript which set the
src attribute. The collapse button’s icon is changed to a down arrow when the

information pane becomes fully raised and changed to an up arrow when the
information pane becomes fully lowered.

DOM Mutator Context Trace Values
height0 [75px…177px]

top0 [452px…350px]
clip0 [75px…177px]
src0 up-to-down.gif

height1 [177px…75px]
top1 [350px…452px]
clip1 [177px…75px]
src1 down-to-up.gif

Table. 2. The various contexts in which attributes of the information pane and collapse button
are mutated. The trace information of value changes associated which each context are shown
in the second column (some are elided for illustration). Note that as is common, the coordinate
for top is measured as the pixel distance from the top of the screen, hence it is decreasing. The
clip value actually includes four coordinates but only one changes in this example so the others
are elided.

Table 2 summarizes the three mutated attributes of the information pane and one

attribute of the collapse button. Each attribute is mutated in two contexts, which
correspond to each of the nodes in Fig. 6. The figure encapsulates changes made to
multiple attributes of multiple DOM nodes, to show the flow of execution which was
monitored.

From Fig. 6, we can see that the two sets of nodes related to the information pane
(at the top and bottom of the figure) are separated by the nodes related to the button
icon, which reflects the raising and lowering of the information pane. For each set of
information pane attributes, the mutation of the three different attributes, height,
top, clip have been executed continuously in an event-loop, shown by the
recursive edges out of clip0 and clip1.

By examining the trace of values captured for different DMG nodes we can
observe the changes which occur to create the raising and lowering effect. For
example, by looking at the entry in Table 2 for height0. Here we see the height
increases. Without examining the source code, we can already tell that this context is
responsible for raising the information pane.

After discerning this information, then by an understanding of the information
pane and collapse button behavior from the browser view, and examining the
topology of the flow relationships between the DMG nodes, we can plainly determine
that src0 is the context responsible for setting the image of the down arrow; top0
and clip0 must then be responsible for part of the information pane raising effect;
so then, height1, top1, and clip1 must be responsible for the lowering effect;
and finally we can surmise that src1 changes the down arrow to up arrow. Now, we

can link to the code associated with any of the DMG nodes we are interested in for
performing any changes during maintenance or debugging.

Fig. 6. The flow of the information pane and collapse button presented as a DMG; each node
corresponds to the entries from Table 2.

6 Related Work

JavaScr ipt Programming Tools
Due to the popularity of Ajax based applications, there is an increasing demand for
JavaScript programming tools. One representative tool for developing Ajax
applications is the Firebug [13] extension for the Mozilla Firefox browser. Using
Firebug, a developer can simply click on a rendered element in the browser and be
hyperlinked to an expanded tree-view of the corresponding DOM element. Now, a
developer can inspect the low-level attributes of that specific DOM object and also
understand its context relative to its ancestor and children objects.

Although this practice is useful, Firebug still does not provide any help for the
developer to understand the connection between a DOM node and the JavaScript
which acts on the DOM. Essentially, our research addresses this mapping between the
DOM and JavaScript which is not addressed in existing practice.

GUI Maintenance
In [11], McMaster et al. present how to use calling context information collected
during a GUI program’s execution to solve the GUI test suite reduction problem (i.e.
finding a minimal satisfactory test set). Their research considers two GUI test cases to
be equivalent if they generate the same set of call stacks after execution. This new
call-stack coverage criterion can be used to address the challenges for GUI-intensive
applications, which are difficult to be handled by some other criteria such as
statement or branch coverage. Similar with their research, we also use calling context
to distinguish two artifacts. However, our research is used to resolve the ambiguity of

the different UI changes instead of GUI test cases, for example, accordion row
expanding and deflation.

In [17], Michail introduced a tool to provide GUI-guided browsing of source. Their
objective was to allow developers to find where in the code a feature was
implemented, based on how code was related to the GUI. For example, to find “spell
checking” code, they could locate the code which executed when the spell checking
menu was selected. Similar to our approach, they use a GUI as an entry-point into the
lower-level implementation details. However, they user the GUI to understand its
relation to other program features and not the GUI implementation itself.

Model-Based Approaches
Several projects looked into the possibility of recovering a high-level architecture for
a Web application from its implementation [4, 12]. In [4], Hassan and Holt describe a
set of semi-automated tools that parse the source code and binaries of Web
applications and extract relations between the different components to create a model.
Their model helps Web developers to understand the high level architecture of
traditional HTML and server-side template based Web applications.

Using a finite state machine model to present GUI behavior has been studied in [7].
Their paper describes a Java toolkit called SwingStates which is used to assist in the
development of GUIs for non-expert developers. The novel part of their research is
that they use finite-state machines to describe the behavior of interactive UI systems.
However, their research is concerned about how to create a user interface instead of
reversing engineering from an existing UI.

In [8], Shehady and Siewiorek introduced how to use a Variable Finite State
Machine (VFSM) interface model to present the behavior of the user interface. Each
node in the VFSM is the state of the GUI, and an edge represents the possible events
that can be triggered in that state. This model is useful for determining the flow of
user-triggered events which change the state of the GUI. In contrast, our model is
useful for mapping the live DOM nodes which make up the GUI to implementation-
level statements.

Ali et al. introduces a tool called CrawlJax in [14]. Their research uses a dynamic
approach to crawl Ajax based applications by triggering the event handlers in the
code. After crawling, a state-flow graph is constructed. In this graph, each node
represents the snapshot of the DOM tree for a Web UI after some event handler is
triggered; each edge in the state-flow graph represents the clickable elements that
transform one state to another state. This state-flow graph can be used to provide
automated testing of Ajax applications. Similar to the research in the previous
paragraph, their research is not concerned with providing a mapping for a
programmer to the implementation level details of the UI.

7 Conclusion

In this paper we have studied the problem of JavaScript implementation complexity
for interactive Web UI. These details of the UI are easy to understand from the
perspective of the Web browser view but can be hard to map to the related code. We
proposed an approach which leverages execution history and calling context so that

developers can explore the code from the browser view. The DMG model was
introduced to present the obtained history and context information to developers for a
better understanding of the behavior of the UI. We presented some script complexity
metrics for popular Web sites to further motivate the need for our interactive script
development approach. We found that many of the sites that we measured included
significant complexity based on the number of calling contexts for a given statement.
To demonstrate how the DMG could help, we presented examples from the open-
source Java Pet Store Ajax application.

References

1. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., and Matera, M.: A
framework for rapid integration of presentation components. In: Proc. of the International
Conference on the World-Wide Web (2007)

2. Trigueros, M.L., Preciado, J.C., Sánchez-Figueroa, F.: A Method for Model Based Design
of Rich Internet Application Interactive User Interfaces. In: Proc. of the International
Conference on Web Engineering, pp:226-241 (2007)

3. Valderas, P., Pelechano, V., Pastor, O.: Introducing Graphic Designers in a Web
Development Process. In: Proc. of International Conference on Advanced Information
Systems Engineering,pp: 395-408 (2007)

4. Hassan, A. and Holt, R.: Architecture recovery of web applications. In: Proc. of the
International Conference on Software Engineering (2002)

5. Dojo JavaScript Toolkit, http://dojotoolkit.org/
6. jQuery JavaScript Library, http://jquery.com/
7. Appert, C., Beaudouin-Lafon, M.: SwingStates: adding state machines to Java and the

Swing toolkit. Softw., Pract. Exper. 38(11): 1149-1182 (2008)
8. Shehady, R.K., Siewiorek, D.P.: A Methodology to Automate User Interface Testing

Using Variable Finite State Machines. In: Proc. of the International Symposium on Fault-
Tolerant Computing,pp:80-88 (1997)

9. Java Pet Store, Sun Microsystems, http://java.sun.com/developer/releases/petstore/
10. Rhino JavaScript compiler framework. Mozilla, http://www.mozilla.org/rhino/
11. McMaster, S., Memon, A.M.: Call Stack Coverage for GUI Test-Suite Reduction. In: Proc

of the International Symposium on Software Reliability Engineering, pp:33-44 (2006)
12. Ricca, F., Tonella, P.: Analysis and Testing of Web Applications. In: Proc. of the

International Conference on Software Engineering, pp: 25-34 (2001)
13. FireBug, http://getfirebug.com/.
14. Mesbah, A., Bozdag, E., Deursen, A.V.: Crawling AJAX by Inferring User Interface

State Changes. In: Proc. of the International Conference on Web Engineering, pp: 122-134
(2008)

15. Rossi, G., Urbieta, M., Ginzburg, J., Distante, D., Garrido, A.: Refactoring to Rich
Internet Applications. A Model-Driven Approach. In: Proc. of the International
Conference on Web Engineering, pp: 1-12 (2008)

16. Meliá, S., Gómez, J., Pérez, S., Díaz, O.: A Model-Driven Development for GWT-Based
Rich Internet Applications with OOH4RIA. In: Proc. of the International Conference on
Web Engineering, pp: 13-23 (2008)

17. Michail, A. Browsing and searching source code of applications written using a GUI
framework. In: Proc. of the International Conference on Software Engineering (2002)

	6 Related Work

