
Web Service Mashup Middleware with Partitioning of XML Pipelines

Eric Wohlstadter, Peng Li, and Brett Cannon
University of British Columbia

{wohlstad, lipeng, drifty}@cs.ubc.ca

Abstract
Traditionally, the composition of Web services to create

mashups has been achieved by using an application server
as a mediator between a client browser and services. To
avoid this bottleneck, mashups are sometimes implemented
so that Web service composition takes place directly from
the end user’s browser. Creating such implementations is
difficult because developers must manage the separation of
software into various distributable pieces, in different lan-
guages, and coordinate their communication. In this pa-
per we describe a middleware for managing Web service
mashups in a disciplined, and flexible way. We build upon
the established abstraction of XML pipelines, but describe
a new approach for selectively partitioning pipeline compo-
nents between a browser client and application server. We
provide a performance evaluation for a common mashup
application scenario.

1. Introduction
One of the uses of Web services is in the construction of

Web applications. The term mashup [14, 15] is used to de-
scribe applications where Web services are composed with
traditional Web content and presented to the user. Tradi-
tionally, the composition of Web services to create mashups
was primarily achieved on an application server, the same
host which provides user interface elements in the form of
HTML and JavaScript. This application server acts as a
mediator between the client and third-party Web services:
composing resources from services and then presenting the
information to the end-user’s Web browser. Figure 1 pro-
vides an illustration.

Unfortunately, the use of the application server as a net-
work intermediary can become a significant performance
bottleneck. This is because many Web applications are
designed to support a large number of concurrent users.
Adding the cost of communication and processing between
the application server and a Web service – for each client re-
quest – can result in a large increase in processing latency.
As described in [7], “The drawbacks of this approach are
that the content makes several unnecessary round trips, re-

Figure 1. Mediator Architecture for Mashups

Figure 2. Client-Side Mashup Architecture

ducing performance; the proxy can become a choke point,
limiting scalability”.

Recently, there is a growing trend where some or all of
the Web service composition takes place directly from the
end user’s browser [3, 4]. Here the application server acts as
a logical intermediary, by providing scripts and stylesheets
to the client for the purpose of “mashing-up” services. The
browser will contact Web services directly as in Figure 2.

Although the client-side architecture helps mitigate a
performance problem, it can introduce its own problems in
the design and maintenance of mashup applications.

First, developers must manage the separation of mashup
processing into various distributable pieces, in different lan-
guages (e.g. XSLT, XQuery, object-oriented, etc.), and co-
ordinate their communication. This can result in an imple-
mentation with many components “glued” together in an
ad-hoc fashion. These kinds of implementations are diffi-
cult to debug and evolve. In the traditional mediator archi-
tecture these problems can be solved by architecting an im-
plementation as a collection of XML processing pipelines.

Pipeline languages such as XProc [11] and Cocoon [1]
serve as a unified architectural description for manag-
ing components in different languages. However, these
pipelines do not directly support the case where components
are executed on both the browser and application server. In



this paper we describe an approach to leverage a pipeline ar-
chitecture even when some processing logic is executed on
a client’s browser. This is achieved through a middleware
which partitions the pipeline processing across the browser
and application server.

The second problem with deploying a client-side archi-
tecture is caused by the high degree of heterogeneity ex-
hibited by client devices and platforms. So, although per-
formance can be improved by executing components on the
client, it must be guaranteed that each client can execute
such components. Furthermore, other non-functional re-
quirements such as the security preferences of a client need
to be taken into consideration. For this reason, we have
worked to provide client-specific partitioning in the middle-
ware. This allows the placement of components to depend
on the capabilities of specific clients using the application.

Support for distributing pipelines across hosts has been
researched in other domains [8]. However existing work
has not considered distributing pipelines between the Web
browser client and Web application server in an end-user
Web service mashup application. This new setting intro-
duces new technical hurdles which must be overcome to re-
alize this scenario. This is because clients and servers in
a mashup must be considered asymmetrically in terms of
their capabilities and requirements. Our technical challenge
then is to devise a middleware to mediate the requirements
of clients and servers and to layer the abstraction of pipeline
data-flow on top of the traditional client/server interactions.

In this paper we describe a middleware framework called
Metro for constructing Web service mashup applications,
where part of the pipeline is executing on an application
server and part of the pipeline is executing in the client’s
Web browser. We provide a performance evaluation of
Metro for a common mashup application use-case scenario.

The rest of the paper is organized as follows: Section 2
presents a motivating example, Section 3 presents related
work and background, Section 4 presents details of Metro,
Section 5 presents a performance evaluation, and Section 6
presents future work and conclusion.

2. Motivating Example
Consider a mashup application which is provided by an

application server and makes use of some third-party Web
service. In this example, the application server loads some
client-specific information, uses it to formulate a request to
a third-party Web service, transforms the retrieved response
through some number of processing steps, and then returns
the resulting output to the client.

An example pipeline is shown in Figure 3. We use the
syntax of XProc1 because it is the language supported by
Metro. Similar to the UNIX pipe-and-filter architecture, an

1XProc is a recent W3C Candidate Recommendation.

1 <pipeline>
2 <load name=favs
3 href= http://myapp.com/... />
4 <output port=fOut/>
5 </load>
6

7 <http-request name=eBay>
8 <input port=fOut/>
9 <output port=eOut/>
10 </http-request>
11

12 <load name=style>
13 href= http://myapp.com/... />
14 <output port=sOut />
15 </load>
16

17 <xslt name=xslt>
18 <input port=eOut/>
19 <input port=sOut/>
20 <output port=stdout />
21 </xslt>
22 </pipeline>

Figure 3. Example XProc Pipeline: XML ele-
ments and attribute names shown here are XProc keywords.
The attribute values and the configuration of elements are
specific to the example.

XProc pipeline consists of a set of processing compo-
nents connected by pipes. Each pipe connects an output
from one component to the input of another. Different
from UNIX, an XProc pipeline can manage multiple inputs
and outputs for each component.

The example pipeline (line 1) is made up of
four component instances of three types: load,
http-request and xslt. The load component type is
used to load XML data from a statically specified URL. In
the example there are two instances. The first (line 2) is used
to load information regarding some user’s account informa-
tion. This “favorites” information is used to determine a
query string sent to a Web service (in this example eBay).
The second (line 12) is used to load the XSLT stylesheet
which will be used to transform the response from eBay.
The http-request (line 7) component takes input from
the favs component and contacts eBay through a REST
request. Finally, the xslt component (line 17), takes input
from both of the previous components and outputs the final
transformed message.

Although this pipeline is not complex, it can be used to
highlight important design decisions with respect to the par-
titioning of components. For our example, we consider ben-
efits and tradeoffs of potentially executing the eBay and



Figure 4. Example Partitioning Configura-
tions: Used in Section 2 for motivating client-specific
partitioning and again in Section 5 for performance eval-
uation.

xslt components on the client.
We call the decision of where to execute each component

a partitioning configuration (or just configuration). Figure 4
demonstrates four possible configurations for the example.
In the figure the dashed line represents the division between
client and server for each configuration.

Considering interoperability, a developer may prefer
configuration AS over the others. AS requires no assump-
tions about the client’s platform. It corresponds to the tradi-
tional mediator architecture, so the scalability of the server
could be an issue.

To enhance the scalability of a Web application, a de-
veloper may prefer clients to contact services directly. This
decision justifies the use of either configuration EXC or EC.
Considering latency of pipeline processing, EXC appears
like the clear “winner”, because the client does not need to
make an additional round-trip and route the Web service re-
sponse back to the server. However, EXC requires the client
to support XSLT (and the correct version), while EC does
not. So, EC may be a useful tradeoff between performance
and interoperability.

Still, a client might not be capable of contacting Web ser-
vices directly for security reasons. Currently the only way,
supported by all popular browsers, to contact multiple third-
party XML-based Web services is by leveraging a plugin
(such as Adobe Flash). This is because of a security policy
imposed by browsers called the same-host restriction [7].

Flash (and some other plugins) provide an extended security
model which is safe [5] and provides for third-party Web
service access2. However, while some plugins like Flash
are popular, they might not be supported by all clients.

In that case, the configurations AS and XC could be used.
If the client supports XSLT, the server can off-load the bur-
den of message transformation to the client using XC, while
still serving as an intermediary for security reasons.

This example demonstrates the kinds of decisions that
need to be made when partitioning components in a mashup
application. The answers are not “black and white” but
depend on the capabilities supported by different clients.
Managing the execution of different configurations of com-
ponents, for different clients, serves then as our motivation
to explore a disciplined, yet flexible, approach to construc-
tion of XML pipelines for mashup applications.

3. Related Work and Background
Composable Network Services Previous work on active
networks has inspired research on frameworks for auto-
mated composition of network intermediaries. For exam-
ple, Active pipes [8] or CANS [6] can be used to stream
data across components on disparate network hosts; the
binding of components to hosts can be determined dynam-
ically based on network conditions. This is so that pipeline
data can be routed along the most efficient path. However,
this work did not consider integrating pipelines into a Web
application architecture where clients and servers must be
treated asymmetrically in terms of both capabilities and re-
quirements.

Context-Aware and Adaptive Services Research in
context-aware [2] computing provides for the adaptation of
delivered Web content. This is especially important for the
case of mobile [13] clients, where the operating environ-
ment of the client can change over time. The research in
this paper does not directly address context-awareness and
adaptivity because we only consider the client’s platform
and not temporally sensitive information such as location.
Furthermore, we consider client-specific partitioning for the
purpose of migrating processing components only and not
for adapting content.

Automatic Application Partitioning Closely related to
our research is the work on automatic application partition-
ing. Projects such as J-Orchestra [10] provide solutions for
automatically distributing software components across net-
work hosts. Middleware support for managing communi-
cation between components which have been partitioned on
different hosts is handled automatically. In this way some

2Another way to deal with this problem is to rely on JavaScript Object
Notation (JSON). However this requires each third-party service to support
JSON as an alternative to XML



existing applications which were written originally for a
single host can be transformed into distributed applications.
This work did not address coordination of message-oriented
pipelines and assumed that components communicated us-
ing synchronous procedure calls.

Business Process Orchestration Web services can be
implemented using orchestration languages such as BPEL.
While these languages are not directly comparable to the
XML pipeline languages discussed in this paper, it is use-
ful to place both in perspective. BPEL is generally used
to coordinate multiple activities of stateful, long-running,
business processes. BPEL uses a model where concur-
rency is explicit through the use of flow activities. Com-
pared to BPEL, XML pipelines are used to implement short-
lived message processing steps. Frequently, components are
stateless and used specifically to transform message con-
tent.

XML Pipeline Background Here we provide a brief de-
scription of the implementation details of a typical XML
pipeline processor. This is useful to understand some of
technical details of Metro.

XML pipelines can be implemented by instantiating the
pipe abstraction as a FIFO queue of XML messages. When-
ever at least one of the inputs for a component is empty,
the component is considered blocked and cannot execute.
Whenever all of the input pipes for a component contains
at least one message, the component can be scheduled to
execute.

When a component executes, one message from each of
its input pipes will be dequeued and provided to the compo-
nent implementation. The component can perform message
processing and place messages on its output pipes. This
may trigger the execution of some other component and
then execution will continue.

The topology of the pipeline forms a directed, acyclic,
graph (DAG). This can be viewed as a dependency graph
(i.e. task graph) where a component d depends on c if there
is a directed edge (c, d). Components with no dependen-
cies are called sources; components with no dependents are
called sinks.

We use two metrics of components in a pipeline to help
us schedule execution in Metro (in Section 4.3). Assum-
ing that components can freely run concurrently and each
component has unit execution cost, we can determine the
earliest start time of a component by finding the length of
the longest path from any source to the component. Ob-
viously, components do not always take a uniform time to
execute, so this is useful to find relative orderings.

Second, if one component, d, is assigned a start deadline
(i.e. time before it must start executing), we can determine
the latest start time of some other component, c, that d de-
pends on, by finding the length of the shortest path from c

to d. Now, c must start at a time earlier than the start dead-
line for d minus the length of the path. Both this metric
and the previous one can be determined in linear time using
standard algorithms [9].

4. Middleware Details
Developers can make use of Metro to partition the exe-

cution of components between the client and server. Our
server middleware is implemented in Java and the client
middleware in JavaScript. No special support for Metro is
needed by browsers, they only need to support JavaScript.
Both client and server middleware include a custom XProc
interpreter which extends XProc with our support for parti-
tioning pipelines. The use of Metro by a mashup is trans-
parent to the end-user.

4.1 Overview

A Metro developer will begin with a standard XProc
pipeline, such as the one in Figure 3, which will serve as the
basis for different configurations. Developers use Metro-
specific XML elements to annotate the pipeline with in-
structions for partitioning. The developer statically maps
a pipeline to a URL, but the partitioning configuration is
determined when a client contacts the URL at run-time.

During execution we use a batching approach to reduce
the number of requests made by a client. First, the client
may initiate execution of some source components. If a
client-side component places a message on a pipe destined
for the server, this message is placed in a queue. When
no more client-side components can execute (i.e. they are
blocked), the messages in the queue are batched into an
HTTP request.

When the server receives a batch request, it will unpack
all the messages and dispatch them to the corresponding
pipes on the server. The server will then execute compo-
nents as normal. When a server-side component places a
message on a pipe destined for the client, this message is
placed in a queue. When no more server-side components
can execute, the messages in the queue are batched and re-
turned as the response to the HTTP request.

Now when the client receives a batch response, it will
dispatch the messages similarly as described for the server.
Execution continues on the client, which may either result
in additional requests for the server or the execution of sink
components.

We refer to the transport of each message batch, either
in a request or response, as a hop. Metro schedules execu-
tion of components according to the number of hops which
should occur before a component executes. We call this the
hop-time. For example, consider the pipeline in the left-
hand side of Figure 6. Here we see that a will execute after
0 hops (i.e. has a hop-time of 0), b and c have a hop-time



of 1, d and e have a hop-time of 2, etc. Note that although
b takes no input from the client, it still requires one hop for
the client to initiate pipeline execution on the server.

It may seem odd at first that d and e have the same hop-
time since e depends on d. The first reason is that Metro
is not a real-time platform for scheduling precise timing of
distributed computations. We are only concerned with when
components execute, in order to control the number of hops
between client and server. Second, the way that intra-host
components (e.g. d and e) coordinate with each other can be
handled as in a traditional pipeline, so we ignore this detail.

Metro is designed to help developers manage (sometimes
competing) non-functional requirements of mashup appli-
cations, where client and server may be asymmetric in terms
of their goals and capabilities. In Section 4.2, we describe
a mechanism to balance use of the server with client in-
teroperability requirements. In Section 4.3, we describe a
mechanism to balance pipeline processing latency specifi-
cally with server memory usage requirements. In Section
4.4, we describe a mechanism to balance use of the server
with pipeline processing latency.

4.2 Client-Specific Partitioning: Manag-
ing server usage vs. interoperability

As motivated in Section 2, developers may want
mashups to bypass usage of the server as an intermediary.
However, this requirement must be balanced with the in-
teroperability requirements of clients to be able to execute
each component.

Developers can add a client element nested under any
component declaration. This element declares that the com-
ponent may be executed on the client. Execution is condi-
tional upon two attributes: requires (described here) and
fallback (described in Section 4.4). The requires an-
notation is used to express a predicate which determines if
a component can execute on the client. We make use of
XPath for expressing predicates. Predicates are evaluated
at run-time when a client makes a request to the URL for
a pipeline. Since we allow developers to annotate individ-
ual components with the requires predicate, a developer
does not need to actually enumerate individual configura-
tions (e.g. as we enumerated four of them in Figure 4).

These predicates can make use of parameter values
which are collected by a script that runs in the client’s
browser. The parameter name/value pairs are exposed to
the evaluation of predicates through a special XPath vari-
able named request, as in Figure 5. Any information
which is exposed by the client’s browser or HTTP head-
ers can be collected. Our middleware comes with a default
script which collects the values of commonly useful param-
eters.

Some examples of parameters we currently collect
are: userAgent, the identifier of the client’s browser;

<client

requires=‘request/flashVersion >= 8’
fallback=‘false’

/>

Figure 5. client element for eBay compo-
nent from Figure 4

xsltVersion, the version of XSLT supported by the
client; flashVersion, the version of Flash support3 (or
none); cookiesEnabled, client’s preference to allow for
cookie storage; domStorage client’s preference to allow
client-side persistent document storage.

This collection of information can be extended by a de-
veloper, by adding some simple JavaScript. Using this
client-specific information allows the specific configuration
of a single pipeline to vary according to the capabilities of
each client’s platform.

4.3 Scheduling: Managing latency vs.
server memory usage

In any pipeline, the order of component execution is con-
strained by the topology of dependencies. However, in gen-
eral, this is an under-constrained problem: some pipelines
will have a degree of freedom (i.e. slack) which we can take
advantage of when scheduling the hop-time of component
execution.

Our scheduling policy deals with client and server com-
ponents differently to satisfy different requirements. Client
components are scheduled to execute as soon as possible.
This promotes a smaller latency for the pipeline to finish.
Server components are scheduled to execute as late as pos-
sible without increasing the total number of hops. This pro-
motes a decrease in the amount of time the server is required
to store pipe queue messages in memory.

For example, consider the execution of component f on
the left-side of Figure 6. It is scheduled for a hop-time of
3 but clearly we could have scheduled it to execute at hop-
time 1. This is based on our policy which minimizes server
memory usage at the expense of latency. If we execute f
early, the output will need to be held by the server (as part of
the user’s session state), waiting for the rest of the pipeline
to catch up. Consider that f might be producing a large
database result set which is going to be filtered into a small
set by g. In that case, we certainly would not want to hold
on to it in RAM across multiple requests from a client.

On the other hand, consider the scheduling of component
a. This component is scheduled to execute immediately,
but we could have waited until hop-time 2. This is based
on our policy that a client is likely to prefer components
to execute early even if it means saving some session state

3Our current implementation uses Flash for cross-domain scripting



Figure 6. Pipeline Scheduling and Fallback:
Figure is divided into two sides illustrating differences
caused by choice of execution for d and e. Components are
labelled with letter names. Integer label indicates the hop-
time assigned by Metro. Underlined labels indicate compo-
nents which might have slack for their hop-time.

in the browser. Scheduling components early makes their
output available sooner. Since clients only maintain state
for themselves, they are more likely to be concerned with
speed in a browser application than memory consumption.

In the first step of our scheduling procedure, components
which are reachable from a client-side source component
(e.g. a, d, e, g, h) are scheduled to execute as soon as pos-
sible. These are the components in the figure whose integer
label is not underlined. These components have no slack
because they are either client-side components or directly
in the flow of client-side components.

To compute this metric, we use the standard approach
for determining an earliest start time (i.e. longest path from
any source), but only count pipes which cross the network in
measuring the path length. Essentially, these cross-network
pipes are given a weight of 1 and all others a weight of 0.
We call this the hop-length.

Any hop-length computed from a server-side source
starts at a hop-length of 1, because the client always needs
to at least contact the server for it to start pipeline execu-
tion. For example, d is given a hop-length of 2 in the first
step of our procedure because: it is reachable from a, and
the longest hop-length from any source node is 2 (the path
which starts at b). Notice that d could note have executed
any earlier.

In the second step of our procedure we consider the
hop-times for the components that are not reachable from
a client-side source (i.e. the components with an under-
lined label, b, c, f ). The execution of these components is
not pushed forward by any client-side components, so they
might have slack in their hop-time.

This is done by considering the hop-times for compo-
nents from step 1 as a deadline. Then, we use the standard
approach for determining the latest start time for the com-
ponents in step 2.

For example (left-side of the figure), g would be sched-

uled to a time of 3 in the step one. The hop-length from f
to g is 0, so f is scheduled to a hop-time of 3. This is the
latest hop-time it could execute without increasing the total
number of hops for the pipeline.

Allowing different scheduling policies for different hosts
in this way makes it possible to accomodate the varying re-
quirements of clients and servers in terms of their memory
usage profiles and processing latency demands.

4.4 Fallback: Managing latency vs. server
usage

Executing components on the client is good for control-
ling usage of the server. However, a developer may also
need to consider the topology of a configuration, to balance
the benefit of client-side execution with the cost of the num-
ber of round-trips needed to execute the configuration.

Consider the execution of components d and e on the
left-side of Figure 6. Their location causes an additional
round-trip between the client and server. This can be seen
by comparing to the right-side, where those two compo-
nents are partitioned on the server.

A fallback attribute is a boolean value that specifies
if a component with a client tag should fallback to exe-
cuting on the server in the case that executing it on the client
would add an additional round-trip. Essentially, it specifies
which concern is more important to the developer: execut-
ing the component on the client or saving a round-trip.

This determination needs to be made at configuration
setup time, after the requires attributes have been eval-
uated. This is because whether or not a component’s place-
ment saves a round-trip depends not only on the partitioning
of the component but also of the components it is connected
to. Consider a case where d was not declared fallback
(hence justifying its placement as in the left-side of the fig-
ure). Suppose e was declared fallback. Here, e would
still be executed on the client because changing the execu-
tion of e from client to server, in that particular case, will
not actually save any round-trips.

For each group of client-side components scheduled for
the same hop-time (e.g. d and e in the left-side of Figure
6), we determine if all of them are fallback. If all of
them are, then they are executed on the server, essentially
overridding the attempt to execute them on the client. For
example, if both d and e were fallback, they would be
moved to the server, as in the right-side of the figure.

In Figure 5, we see that the eBay component is not
fallback. This will cause it to execute on the client as
in Figure 4, configuration EC, even though it causes an ad-
ditional round-trip in that configuration.

Using the fallback attribute ensures that developers
have control of balancing the latency caused by round-trips
with the advantage of client-side execution, even while de-
termination of configurations is automated at run-time.



5. Performance Case-Study
To evaluate Metro’s implementation, we examine the

performance of the four example configurations from Fig-
ure 4. First, we describe our experimental setup. Second,
we describe an experiment to compare the perceived end-
user latency of pipeline execution for a single user. This
experiment reflects the performance in the ideal situation
where the server is only under the load of a single client.
Finally, we describe an experiment to compare each con-
figuration’s affect on the scalability of the server under in-
creasing client load. We hope to demonstrate that since the
ideal situation cannot always be achieved, the flexibility of
partitioning offered by Metro is useful.

5.1 Experimental Setup

For each experiment the server4 is a 2.8GHz (Intel Pen-
tium 4) machine with 2GB RAM. The client5 is a 1.6 GHz
(Intel Atom) machine with 1 GB RAM. The two machines
were connected over a LAN. Thus there is no significant
network latency between the client and server. This does
not affect the experiment analysis since we will only focus
on latency caused by processing on each machine. The con-
nection to eBay was made from the University of British
Columbia. Each entry for both tables of results shows an
average6 over 100 trials in milliseconds.

Each Web service request uses eBay’s FindItems
REST operation to search for 100 auction results matching
the query keyword “ipod”. The stylesheet used in the tests
was obtained7 from the eBay Web service online help.

For each configuration, we implemented a “hand-coded”
version for performance comparison. By hand-coded we
mean that the implementation does not make use of Metro
middleware, but achieves the same functionality and parti-
tioning of program logic. We made use of the same off-
the-shelf components that we used to build Metro, but all
of the “glue code” to hook components together was writ-
ten by hand. We made sure this glue code did not do un-
necessary buffering or parsing of XML message streams to
ensure high performance. The hand-coded versions are rep-
resented in the results by using an h subscript.

5.2 Perceived End-User Latency

Figure 7 shows the latency which is perceived by the user
when requesting a URL whose processing is implemented

4Server software: Tomcat 6 (App Server), HTTPClient 3.1 (REST),
Saxon-B 9 (XSLT), MySQL 5.1 (DB for favs information)

5Client software: Firefox 3 (Browser), flXHR (Cross-Domain Ajax)
6Standard deviation was no more than 26% of the average for all cases

except those marked with the dagger superscript. However, deviation
should be taken into account when comparing results which are close and
small differences may not be meaningful given the deviation.

7ebay.custhelp.com/cgi-bin/ebay.cfg/php/enduser/std adp.php
?p faqid=1197

Latency (ms)
AS 1,075
ASh 1,023

XC 1,030
XCh 944

EXC 1,343
EXCh 1,267

EC 1,546
ECh 1,525

Figure 7. End-User Perceived Latency: Single
client to server.

Requests/Sec. 10 20 40 80
AS 1,174 1,235 6, 631† 19, 402†

ASh 945 993 8, 439† 18, 234†

XC 948 932 4, 334† 19, 132†

XCh 845 989 5, 567† 19, 834†

EXC 63 67 75 93
EXCh 22 44 40 76

EC 102 125 142 184
ECh 56 76 149 155

Figure 8. Server Scalability: Multiple simulated
clients to server. (†) For these results the response time was
continually increasing over time.

by one of the pipeline configurations (in each row of the
table). By comparing the Metro results to the hand-coded
results for each case (e.g. comparing AS to ASh), we see
the middleware introduces some small but most likely un-
noticeable overhead.

The performance of the configurations which act more
like a traditional mediator architecture (AS and XC) perform
better than those which use the client-side architecture, in
this experiment. This difference is important but must also
be weighed against the affect that each configuration has on
the scalability of the server hosting the pipeline. Keeping
this in mind, we now explore this affect on scalability in
more detail.

5.3 Server Scalability

In these experiments the server was put under the load
of a varying number of client requests per second. Here
the clients are simulated by making the requests from the
same client machine using multiple threads. The simulated
clients make requests to the server but do not use the re-
sponse. Using this simulation rather than unique client ma-
chines does not adversely affect the results because we are



only focusing on the server performance in this experiment;
we are not including processing time on the client as in the
previous experiment.

Comparing the hand-coded and Metro versions, we can
see there is not much overhead. The next point to consider
are the results for the higher request rates(4 and 8) in both
AS and XC. These results can be considered as a failure for
the server to manage this level of workload8.

Since ASh is essentially the traditional mediator architec-
ture, this shows the kind of problems that could arise in that
architecture. To deal with this problem, a developer could
make use of Metro to partition part of the pipeline process-
ing to clients, without creating an entirely different version
of the application or investing in a higher performance (and
cost) cluster of servers.

In some cases like EC and EXC each individual client
might perceive some slowdown, as demonstrated in Figure
7. However, as shown in Figure 8, these configurations will
also allow the server to maintain high throughput for larger
client workloads. So, in the end clients may perceive better
response time.

Still, as motivated previously, not all clients may be able
to support configurations where the clients take on some
part of the work. Web application providers may not want
to simply reject service to these client “out of hand”. Using
Metro, Web application developers could take advantage of
those clients who can support aggressive client-side parti-
tioning, while still supporting clients who cannot. This is
possible in a disciplined way building on the XProc descrip-
tion language with our support for client-specific partition-
ing; rather than managing different versions for different
clients in an ad-hoc way.

6. Future Work and Conclusion
Supporting different clients in different ways moti-

vates the consideration for supporting different service-level
agreements for different pipeline configurations. For exam-
ple, in the case that off-loading some functionality is bene-
ficial to the server, the server could provide some incentive
for clients who are able to support this. Incentives might
come in the form of a lower-cost (for pay-per-use services)
or in the form of relaxed usage quotas (for usage limiting
services). In the future, we intend to investigate the man-
agement infrastructure necessary for coordinating service-
level enforcement with Metro’s pipeline partitioning.

In this paper we presented a middleware for manag-
ing XML pipelines distributed between a browser client
and a Web application server. This was motivated by the
emerging practice of composing (i.e. “mashing-up”) third-

8We have ensured that this was not caused by the eBay Web service.
i.e. eBay itself was not affected by the increase in request rate and did not
throttle our requests

party Web services directly from a client. Without middle-
ware support this practice requires manual integration of
components which may be written in different languages
and which communicate between different hosts. XML
pipeline languages, such as XProc, provided an initial so-
lution, but we had to account for the technical mismatch be-
tween pipeline architectures and the traditional (i.e. HTTP
client/server) Web application architecture. We demon-
strated through a case-study of 4 partitioning configura-
tions, the utility of our approach to flexibly adapt to the
heterogeneities of different clients. Also, we demonstrated
that we were able to manage these details without inducing
much performance overhead.

References

[1] Cocoon 2.2. Apache Software Foundation.
[2] F. Daniel and M. Matera. Mashing up context-aware Web

applications: A component-based development approach. In
Web Information Systems Engineering, 2008.

[3] Duane Merrill. Mashups: The new breed of Web app. IBM
Developer Works, 2006.

[4] Ed Ort and Sean Brydon and Mark Basler. Mashup Styles.
Sun Developer Network, 2007.

[5] Flash 8 Documentation. Allowing cross-domain data load-
ing. http://livedocs.adobe.com/flash/8/main/00001621.html.

[6] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti. Compos-
able, adaptive network services infrastructure. In Proc. of
Symposium on Internet Technologies and Systems, 2001.

[7] Howell et al. Protection and communication abstractions for
Web browsers in MashupOS. In Proc. of the Symposium on
Operating System Principles, 2007.

[8] R. Keller, J. Ramamirtham, T. Wolf, and B. Plattner. Active
pipes: Service composition for programmable networks. In
Military Communications Conference, 2001.

[9] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms
for allocating directed task graphs to multiprocessors. ACM
Computing Surveys, 31(4), 1999.

[10] E. Tilevich and Y. Smaragdakis. J-Orchestra: Automatic
Java application partitioning. In European Conference on
Object Oriented Programming, 2002.

[11] N. Walsh, A. Milowski, and H. Thompson. XProc: An
XML Pipeline Language. W3C Candidate Recommenda-
tion, 2008.

[12] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture
for well-conditioned scalable Internet services. In Sympo-
sium on Operating Systems Principles, 2002.

[13] S. Yang, J. Zhang, A. Huang, J. Tsai, and P. Yu. A context-
driven content adaptation planner for improving mobile In-
ternet accessibility. In IEEE International Conference on
Web Services, 2008.

[14] J. Yu, B. Benatallah, F. Casati, and F. Daniel. Understand-
ing mashup development. IEEE Internet Computing, 12(5),
2008.

[15] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and
M. Matera. A framework for rapid integration of presenta-
tion components. In International World Wide Web Confer-
ence, 2007.


