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Abstract. The use of XML as a format for message exchange makes Web ser-
vices well suited for composition of heterogeneous components. However, since
clients must manage differences in message schemas between services, inter-
operability is still a significant problem. Interoperability currently can be sup-
ported through the use of transformations provided by a Web service interme-
diary. However, intermediary technologies do not provide a way for clients to
reason about the composition of services and intermediaries. We propose an ap-
proach to provide clients with an interface composed of schema information from
a Web service and an intermediary. Composition is performed by applying rewrit-
ing rules, defined by the intermediary, to the server interface schema. This new
interface takes into account what transformations are available at an intermediary.
The advantage of the approach is that clients can continue to benefit from code-
generation and static type-checking offered by interface definition languages such
as WSDL; while still making use of the flexibility offered by intermediary trans-
formations. We provide the algorithmic details of composition, including a proof
of correctness and an upper bound on complexity. We demonstrate the approach
in the context of a Web service composition of three publicly available Web ser-
vices.

1 Introduction
Web services are flourishing on the Web as an important part of the information tech-
nology infrastructure. They provide building blocks for clients who can compose new
applications or services out existing reusable services. Here, a client could also be a ser-
vice itself, made up of a “mash-up” of existing services. The use of XML as a message
exchange format makes Web services well suited for composition of heterogeneous
components. The schemas [1] of these messages define the service’s interface and are
often described by an interface definition language such as the Web Services Definition
Language (WSDL) [2]. However, since clients must manage differences in schemas be-
tween services, interoperability is still a significant problem. There is often some level
of semantic overlap between schemas even when there is no syntactic match.

Since distinct services will naturally have certain distinct semantics, we cannot re-
alistically hope to completely shield clients from differences in schemas. So, we are
investigating support for interoperability through the use of element-wise type-based
adaptation. This partial approach to adaptation is motivated by the desire to keep client
applications simple. Complexity is reduced because clients only have to understand
one particular schema for those XML elements where the types of multiple schemas
semantically overlap (i.e. intersect).

Previous work on type-based adaptation [3, 4] has solved problems related to the
reuse of components in contexts that were not originally anticipated. The core problem
is to take a typed interface provided by a component, a typed interface required by a



client, and to help produce or locate a type adaptor which adapts between the required
and provided interface. This helps a developer who takes components “off-the-shelf”
and needs a way to connect them; as illustrated in Figure 1.a.

We seek to extend this line of work to an element-wise approach, for use in a Web
services setting. Using Web service middleware, clients can make use of adaptive mes-
sage transformations provided by a Web service intermediary [5]. Transformations can
be implemented using handlers (described in Section 3) which can be applied to in-
dividual elements of XML messages. In our setting, an intermediary could either be a
network proxy (e.g. Enterprise Service Bus [6]) or a local middleware layer. The im-
portant property of an intermediary is that it can be managed separately from the client
business logic.

Consider a company that uses Web services to schedule shipments with companies
such as FedEx and UPS. Naturally, FedEx and UPS share many semantic elements in
common. In this case, the intermediary for the company could be programmed to trans-
form to and from the company schema to FedEx and UPS. Here is how our approach
would apply: when a developer at the company starts to write client code to commu-
nicate with FedEx or UPS, they can see what the FedEx and UPS interfaces (WSDL)
look like, after the semantically overlapping elements have been replaced with their in-
ternal schema. This way they can reason about the composition of their intermediary
with either the FedEx or UPS service. We call this a composite schema.

So we extend previous work in the following way: given a target Web service
schema, T S , and an intermediary, we generate a composite schema, CS . Once this
composite interface is provided to the client, they can then use it to generate stub code
and perform type-checking. In our research the adaptations are known variables and the
interface the client can use is an unknown variable instead of vice versa. Our setup is
then shown in Figure 1.b.

Fig. 1. (a.) Interface adaptation, and (b.) Intermediary interface composition. Dotted lines repre-
sent the unknown variable.

Our contribution is to demonstrate an architecture and algorithm for intermediary
interface composition. We provide the algorithmic details including a proof of correct-
ness and an upper bound on complexity. We demonstrate the approach in the context of
a mash-up of three publicly available Web services.

The rest of the paper is as follows: Section 2 presents a motivating scenario, Section
3 describes background material, Section 4 presents an architectural overview, Section
5 presents technical details, Section 6 presents the example scenario in more detail,
Section 7 presents related work and Section 8 concludes the paper.



2 Motivating Scenario
We consider a typical mash-up scenario where a Web service is built by composing
services from eBay, FedEx, and UPS. Let’s examine a typical business process flow for
the mash-up.

First, a request is made to the GetSellerTransactions operation for eBay.
This provides information regarding auctions managed by a particular user. The re-
sponse contains transaction information, including a shipping address and a choice of
shipping options for auction winners. Here we assume FedEx was chosen by some auc-
tion winner.

Second, the mash-up company wants to verify the address of the buyer before
scheduling a shipment with FedEx. Unfortunately, the FedEx service does not include
a separate operation for validating address information, but UPS does. So, the mash-up
sends an AVRequest (address validation) to UPS. A part of the information in this
message is specific to UPS, such as the UPS account number. On the other hand the
address to be validated can be extracted from the response message received from eBay
and simply routed to UPS.

Finally, after address validation, the mash-up must additionally transform address
information to FedEx before sending a final FDXShipRequest request. This moti-
vates transformation of the address information between eBay, UPS, and FedEx for-
mats, but complicates things for the programmer without additional support.

Motivated by this scenario, a separate transformation layer deployed on a intermedi-
ary could be implemented which imports and exports address information in a common
format. This has the benefit of factoring the entire transformation concern out of the
core mash-up business logic. This could simplify the mash-up implementation since
the address format will be a common element in many operations for all three services.
However, without additional support, this would break the sound engineering process of
writing software against statically defined interfaces. The WSDL of the three services
does not take into account the intermediary transformations so their presence is implicit
and not explicitly accounted for in a typed interface. The client could not generate stub-
code from the WSDL that accounts for the transformations or type-check against these
stubs.

3 Background
3.1 Handlers

Intermediaries are often a repository of message handlers (i.e. interceptors [7]) which
read and write elements of XML-based messages. For example, a handler might be
responsible for just the translation of elements representing shipping addresses in two
schemas with disparate formats. Traditional handlers could be modeled as a function
with a type Document→Document, since they accept any XML document type and
do not place any guarantees on the output document type.

This type does not provide useful information for reasoning about the
composition of document handlers. On the other hand, if handlers spec-
ified specific types at the granularity of entire documents, for example
PlaceEBayOrder→PlaceAmazonOrder, the types could be too specific.
This is because document handlers might apply specific element-wise transformations.



For example, they might transform just the address information in an eBay or Amazon
order. These problems help motivate a different approach based on element-wise type
information.

3.2 XML Schema

WSDL [2] is based on the standard W3C XML Schema [1] grammar for defining types
of XML documents. Web service developers use this grammar to specify sets of XML
documents that are accepted or provided by service operations. A document instance
that is a member of the set, defined by a type, is said to be valid for the type. Figure 2
provides the grammar and notation of a mini-schema language that we use throughout
the paper to model salient properties of XML Schema.

Here a schema consists of a root ElementType which defines an XML element
tag name and the ContentModel. The types of elements can also be declared through
reference to existing definitions by use of an ElementRef. The content model defines
the valid structure of nested children. The content model 1 is either a Primitive type
or a regular expression of element types. The use of recursion to other ElementTypes
in an expression is what gives XML Schema its power to express tree structures; as
opposed to flat strings which are normally described by regular expressions.

Web services middleware can perform validation to ensure messages match the
types defined in their WSDL. Our approach combines the mechanism of message val-
idation with a message transformation mechanism. Here we describe some technical
details of standard message validation mechanisms so we can build on this background
to describe details of our approach.

ElementType ::= name[ContentModel] //Named element with child content
ElementRef //Reference to a named element

ContentModel ::= Primitive //primitive type
ContentModel, ContentModel //sequence
ContentModel || ContentModel //choice
ContentModel* //unbounded occurences
ContentModel? //optional occurence
ElementType //recursive nesting of elements

Fig. 2. Mini XML schema language BNF. Note: This figure defines a grammar language, Mini-
Schema, in terms of another grammar language, BNF. So the figure should be interpreted care-
fully. We avoid using any symbols from the BNF language except for the non-terminal assign-
ment (::=). Non-terminal alternatives are separated by newlines. All other symbols are part of the
defined Mini-Schema language. Terminals are shown in italics. Java-style comments are used.

Message validation can be performed by middleware at runtime using a parser. An
important property of the W3C XML Schema specification is that many aspects of the
specification are motivated by the requirement to keep this parsing process simple. In
particular, the schema language is designed to prevent parsers from needing to back-

1 For simplicity, we don’t currently deal with some features of XML Schema, such as numeric
occurence indicators or the all content model. These features could be added using the ap-
proach in [8]



track at runtime 2. This is achieved by restricting the regular expressions describing a
ContentModel to those that are unambiguous.

This property allows XML Schema parsers to be implemented using only small
extensions to standard deterministic finite automaton (DFAs). As usual, a DFA is a
mechanism for parsing sequences of strings which consists of: a set of states and a set
of transitions between states. One state is distinguished to be the initial state and some
subset of states are final (accepting) states. Each transition is associated with a symbol
from some alphabet. Parsing begins at the initial state and is driven by reading symbols
of an input string from left to right. As each symbol is read, the current state is changed
by following a transition labelled with that symbol. If the sequence is consumed and
the automaton is in a final state then the string is accepted.

But XML documents consist of trees instead of strings! Still, Thompson shows how
XML Schema is parsed using a set of cooperating DFAs [9]. Intuitively, each level of
sibling elements in the hierarchy of the XML tree is considered as a separate string.
When an element is consumed, the parser simply parses the content of the element
using a different DFA, before allowing the transition to occur. Parsing of XML trees
is thus handled through this nesting of operations on separate DFAs. This process is
illustrated in Figure 3.

Our approach to composition involves integrating this parsing process with the pro-
cess of message transformation. This is achieved by building automaton that are aware
of the transformations that handlers can make.

Fig. 3. A parser for the ElementType: Person[Name[string], PhoneNumber[string]?]. Parsing
begins at the root (top-most) DFA and its final state is the final state for validating a complete
document. Final states of internal DFAs are used to determine if transitions in a parent DFA are
successful.

3.3 Regular Expression Types

We use the paradigm of regular expression types [10] for added flexibility during the
process of creating a composite schema. Unlike popular OO languages, under this disci-
pline a sub-type relationship holds for two types if the set of instances described by one
type completely contains (i.e. subsumes) the set of instances described by another type.
This is different from typing in standard OO languages where a sub-type relationship
needs to be explicitly declared.

2 This is called Unique Particle Attribution in W3C parlance.



So under regular expression typing, person (below) would be a sub-type of
personExtra because the set of documents validated by personExtra in-
cludes all of the those validated by person. Here new types are declared using an
element keyword in the obvious way. Intuitively, a person can be used wherever
a personExtra is expected. This is commonly notated using the sub-type operator
(<:), as in, person <: personExtra.

element person = Person[Name[string]]
element personExtra = Person[Name[string], PhoneNumber[string]?]

We will especially take advantage of these two axioms of regex typing:
Axiom 1. (a <: b) implies (a <: (b || c)), for all types a, b, and c.
Axiom 2. (a || a) = a, for all types a.

Axiom 1 is clear since (b || c) accepts a larger set of documents than b alone.
Axiom 2 simply says that a choice between a type and itself is idempotent.

4 Overview of the Approach
Our approach is divided into two stages: interface composition and handler compo-
sition. We describe how these stages work from a high-level architectural viewpoint
before going into low-level details in Section 5.

4.1 Interface Composition

One technical challenge is to return a new composed schema, CS , to the client. This
is an extended version of some target schema, T S . This requires that programmers
assign a typed interface to each handler on an intermediary (Section 5.1). This interface
composition process (Section 5.2) occurs off-line at development-time; not during the
actual execution of a deployed system. Our middleware uses our algorithm described in
Section 5.3 to compose handler type information with a Web service’s type information.

Fig. 4. The composition service produces a composite schema, given the set of handlers and some
server interface chosen by the client. A digest of this process is saved by the intermediary for use
at run-time. We place certain terms in italics; these terms will be referred to as Java objects in the
algorithm of Figure 7.

The data-flow of this process is shown in Figure 4. First (1), a client chooses some
T S that it wants to compose with an intermediary. It submits T S to any intermediary
that makes use of our prototype middleware. Second (2), the intermediary runs an al-
gorithm using T S and handlers deployed on the intermediary, to compose their type



information. Certain information about the algorithm execution is stored in a composi-
tion trace. This information will serve as handler dispatching instructions at run-time
(Section 5.4). Finally (3), the client receives the composed interface, CS from the inter-
mediary. The client can now use CS to generate stub code and type-check against.

4.2 Handler Composition

At run-time, our middleware dispatches the handlers to execute transformations. This
occurs when the intermediary receives a message from a client (or server reply). The
data-flow of this process is illustrated in Figure 5. In this paper, we focus only on the
algorithmic details and complexity of our approach. In an online technical report [11],
we have provided some initial benchmarks of our prototype performance.

First (1), a client sends a message valid for CS , which is intercepted by the interme-
diary. Second (2), client messages are validated and transformed by the intermediary.
Our prototype middleware decides which handlers should be executed, on which mes-
sage elements, and in what order. These decisions are guided by the composition trace
derived off-line, so no complex processing is required at this time. Finally (3), a mes-
sage valid for the T S is forwarded by the intermediary. This process is described in
more detail in Section 5.4. The reverse process for server replies is similar so we do not
show this data-flow in the figure or discuss the details specifically.

Fig. 5. The intermediary dispatches the handlers at run-time to make the message compatible with
the Web service, using the digest derived at development-time.

5 Technical Details
5.1 Handler Interfaces

Our composition mechanism requires a formal representation of the input and output
types of handler components. We provide support for programmers to describe
element-wise interfaces using XML Schema.

Definition 1: Element-Wise Interface. An element-wise interface is a pair of
ElementTypes, (input, output). The contract for a handler which implements the
interface specifies that the handler can transform any element of type input in a
document to some element of type output.

The implementation of the handler can be written as either Java or XSLT and
can perform arbitrarily complicated computation to make a transformation. The
implementation could be as simple as the logic required to convert between postal
code formats or as complicated as contacting an external service to perform a currency
conversion. Our tool uses the element-wise interfaces as input to schema composition



and associates an identifier with some implementation component which will be used
as a call-back by our intermediary middleware. In our algorithm we assume each
handler has a unique identifier, denoted as handler.id. The input and output element
types are denoted handler.input and handler.output respectively.

To motivate how element-wise interfaces are used, consider the simple example of
Figure 6. Here there are three type definitions for some user contact information in
different formats i.e. contact1-3. Following there are two element-wise interfaces for
some handlers listed: hander1-2. Notice that from the type information, we can infer
that a message of type contact1 can be transformed into a message of type contact2; by
applying handler1 to the Number element embedded within a contact1 message. From
there we can now apply handler2 on the whole message to obtain a message of type
contact3.

Composition in this case is not achievable by a traditional composition of function
types. Here, the output type of handler1 does not match the input type of handler2. Still,
composition is achievable if we consider element-wise composition. So we need a new
approach for composition in this setting.

element contact1 = Contact[Person[string], Number[string]]
element contact2 = Contact[Person[string], Phone[string]]
element contact3 = Person[Name[string], PhoneNumber[string]?]

element numberType = Number[string]
element phoneType = Phone[string]
handler1: numberType ↪→ phoneType

handler2: contact2 ↪→ contact3

Fig. 6. If we apply handler1 to an instance of contact1 (element-wise) and then handler2 to that
result, we are guaranteed an instance of contact3.

5.2 Interface Composition

At development-time an intermediary can be composed with the interface of a server.
Our middleware prototype exposes a Web service operation to accept WSDL schemas
from clients. The schema is processed into a composite schema and returned. Here we
explain how our middleware can reason over the composition of element-wise transfor-
mations in an efficient way.

Using a naive approach, determining the correct composition of handlers could take
exponential time in the number of handlers, because all permutations may need to be
examined. Also, if handlers are allowed to execute multiple times (for example to per-
form element-wise operations) the problem is even more complicated. Here, we limit
our approach to handlers providing optional transformation. This enables us to imple-
ment a tractable solution. This is exactly the case we have motivated: intermediaries
provide transformations as an optional convenience for clients. These optional handlers
are in contrast to handlers which enforce policies such as security. Our work does not
address that kind of mandatory interposition of intermediaries.

Using the interfaces of handlers deployed on an intermediary, an inference algo-
rithm is performed to determine the composed interface exposed to the client. This



process makes use of a rewrite rule which is a transformation to the server schema
itself; as opposed to the transformations made by handlers at run-time on a message
instance. We use the term “rewrite” here, rather than “transform”, to keep it clear when
changes are being applied to schema types versus message instances. For simplicity
we assume there are no two handlers deployed on the same intermediary which have
intersecting output types. This is sufficient to ensure the unambiguous nature of the
schema is maintained during rewriting.

Definition 2: Rewrite Rule. Assume there exists a handler with the element-wise
interface, (input, output), and also there exists an element type, t somewhere in the
target server schema. If output is a sub-type of t, then any reference to t should be
rewritten to the choice type: t || input.

Notice that we are matching outputs and then adding inputs to the schema. Intu-
itively, this process infers, in reverse, the transformations that handlers will be capable
of making at run-time.

In our algorithm, we repeatedly apply the rewrite rule until it is no longer useful.
Notice that since rewriting only causes the schema to grow, we do not need to worry
about what order we apply the rewrite rules. This is because some application of the
rewrite rule using one handler interface will never prevent the application of another
rewrite rule, at any later point in time (by Axiom 1). In other words, the types of the
schema only get wider.

However, we do need information to know at what point to terminate the algorithm.
Termination occurs when only idempotent rewrites can be made (as in Axiom 2).
For this purpose we introduce annotations on the composed schema that we call a
composition trace. The trace also records the ”backwards” type inference so that
the trace can be followed in the forwards direction at run-time to actually transform
message instances.

Definition 3: Composition Trace. Whenever a rewrite rule for the handler, h,
with interface, (input, output), is applied at an element type t, we add an annotation
on the reference to input that is created. The annotation is a sequence of handler
identifiers, consisting of the identifier for h appended to the beginning of any existing
sequence which annotates t. If t has no such annotation already, then the annotation is
simply the single handler identifier.

As a convenience for clients, our intermediary supports an additional post-processing
step to filter large composite schemas. Clients can provide preferences in the form of a
partial-ordering on XML Schema namespaces. If a choice exists between two element
types, a and b, and the namespace of a is preferred over b, then b will be removed as
a choice. An example of this is demonstrated in Section 6.

With these definitions in place, we can define an algorithm that computes a com-
posed schema. The question we need to answer is: given an intermediary and a server
schema, what is the schema which describes all documents that can be transformed into



a document valid for the server schema, using any combination of the element-wise
handlers?

5.3 Interface Composition Algorithm

The composite schema begins as a copy of the target schema, in Figure 7 line 1. The
algorithm is structured as a comparison between all element types in the schema and all
handler outputs. This is implemented as a double nested-loop, as in lines 3-4. Whenever
the schema is changed by a rewrite, the entire process begins again, because references
to new element types are added through the rewriting. This “restart” can be seen by the
break statement on line 10, which breaks out to line 2. This is certainly not the most
efficient implementation but it simplifies presentation of the algorithm and worst-case
analysis.

Now, we can see that the algorithm will continue to execute until one of the if
statements on line 5-6 fails for all iterations. The first if statement (line 5) implements
part of the rewrite rule that checks whether the handler output type (as in Definition 1)
is a subtype of some schema element type. The second if statement (line 6) checks
the trace annotation (as in Definition 3) on the existing schema type to see ensure this
rewrite would not be idempotent. If both of these checks succeed then a new reference
to the handler input type is created (line 7). The trace annotation on the new reference
is updated (line 8), according to Definition 3. Finally, the schema is rewritten (line 9),
according to Definition 2.

1. CS = TS;
2. loop:
3. forall(element in CS.elements)
4. forall(handler in intermediary)
5. if(handler.output.isSubTypeOf(element))
6. if(!element.trace.idempotent(handler.id))) {
7. ref = new ElementRef(handler.input);
8. ref .trace = concat(handler.id, element.trace);
9. CS.rewrite(element, new Choice(element, ref ));
10. break loop;
11. }

Fig. 7. Composition Algorithm. Shown in Java pseudo-code. Local variable dec-
larations are elided. Local variables shown in italics. We assume a method
Schema.rewrite(SchemaElement, SchemaElement) which replaces the oc-
curence of the first argument with the second argument by mutating the target schema. The
constructors Choice and ElementRef simply model the construction of new schema
productions as given in Figure 2.

Before proving the correctness and complexity of the algorithm. We walk through
a specific example where a target schema is composed with handler information. The
example makes use of the previous type definitions and handlers of Figure 6. In Figure
8, we see four schema files which consist of type definitions enclosed in curly braces.
The first file, T S , is the original schema chosen by the client. The next three files are
versions of the composite schema as it is rewritten. We use a subscript to denote the
number of rewriting steps.



CS0 starts out as a copy of T S . Then, in CS1, handler2.output is matched, so han-
dler2.input is added to the schema and added as a new choice. Next, in CS2, han-
dler1.output is matched (element-wise), so handler1.input is added to the schema and
added as a new choice. At that point no new matches can be made so the algorithm
terminates. The superscripts on types are the composition trace and will be discussed in
Section 5.4.

TS = { element contact3 = Person[..]; }

CS0 = { element contact3 = Person[..]; }

CS1 = { element contact3 = Person[..] || contact2(h2);
element contact2 = Contact[Person[string], Phone[string]];

}

CS2 = { element contact3 = Person[..] || contact2(h2);
element contact2 = Contact[PersonName[string],

Phone[string] || numberType(h1) ];
element numberType = Number[string];

}

Fig. 8. Composing a schema. The example makes use of the previous type definitions and handlers
of Figure 6. We use a subscript on CS to denote the number of rewriting steps. The superscripts
on types are the composition trace and will be discussed in Section 5.4.

Termination Proof: Termination is guaranteed because each rewrite does not actually
copy the type information for some handler.input type into a new location in the
composite schema. Instead, a reference to that type is used as an alternative in the
additional choice.

We know that the algorithm starts out with a fixed number of named types avail-
able as input at the beginning of execution. During execution, no new named types are
created. Since the algorithm will not add any idempotent choices, it must eventually
run out of rewrites that can be made and line 6 in the algorithm must fail for an entire
iteration of both loops.
Correctness Proof: We need to show that a message, msg, is a CS message if and
only if there is a sequence of element-wise transformations that can be performed on
msg to create a T S message. This can be shown in two directions. First, we show that
(1) if msg is a CS message, then it can be transformed into a T S message. Second,
we show that (2) if msg can be transformed into a T S message, then it is a CS message.

1. This is shown by induction on the sequence of rewrites (line 9) performed
during algorithm execution.

Base Case: When the algorithm begins, CS equals T S . So, if msg is valid for CS ,
it is already a valid T S message.

Induction: We assume that all valid CSk−1 messages can be transformed into T S
messages. Now, we show, that CSk messages can be transformed into T S messages.
We know on the kth rewrite, one additional choice is added by some handler’s



interface to CSk−1. So assume there is some message that is valid for CSk but not
for CSk−1. We know the message can only differ from a CSk−1 message by use of
this additional alternative. However, we also know we can transform the alternative
type back to one accepted by CSk−1 using the same handler. By the assumption, all
CSk−1 messages are CSk messages. Therefore, by induction, after the termination
of the algorithm, all CSi messages can be transformed to T S messages for any integer i.

2. This direction is straightforward. msg is valid for T S , and T S is a sub-type
of CS by Axiom 1 and Definition 2. Therefore, msg is valid for CS .

Complexity: We show that our offline algorithm runs in polynomial-time with respect
to the input size. This suffices to show that the algorithm is tractable. In other words,
execution will not suffer from “exponential explosion”. In the future we plan to give a
tighter upper-bound.

As was described, the input to the algorithm consists of n handlers and T S . Let the
sum of the sizes of all handler inputs and outputs be denoted |H|. Let the size of T S be
denoted |TS|. These sizes are in terms of the length of the respective type definitions.

In the pathological case, the output of all handlers could match every element type
in T S , and also every element type in the input of all handlers. Recall that handler.input
types become referenced by the schema as the algorithm progresses, so they become
fair game for matching. So the schema could have a maximum of (|H|+ |TS|) element
types. Each element type could be a choice between all types, giving a size of (|H| +
|TS|)2. To simplify analysis we assume that each match might require n∗ (|H|+ |TS|)
iterations of the double loop. In other words, we conservatively assume that matching
fails all the way up to the last evaluation of the loop body. Also, for clarity we assume
(|H|+|TS|) is much larger than n. Therefore we haveO(|H|+|TS|)3 total evaluations
of the loop body.

The only step of the loop body which cannot be implemented in constant time is the
check for sub-types (line 5). This check can be performed in polynomial-time [9] with
respect to the size of the input types 3. So, then the total complexity is this polynomial
sub-typing cost times the number of loop body evaluations, which is clearly polynomial.

5.4 Handler Composition

When an intermediary receives a particular XML message, the intermediary needs to
determine: for this message exactly which handlers should be used, on which message
elements, and in what order? We use the trace information from the interface compo-
sition to construct a transformation-aware automata. This allows handlers to be dis-
patched as part of the standard message validation process.

Revisiting Figure 8 we now see how annotations were added during rewriting. These
annotations are shown as superscripts on types: (h1) and (h2) for handler1-2. When a
message is received by our intermediary, we validate that message according to the
algorithm published by Thompson [9]. When some element validates to a type with
a trace we know that type is not actually valid according to the target server schema.
However, the trace annotation tells us the series of handlers which can be applied to

3 As described in [9], this is because the regular expression types are restricted to be unambigu-
ous.



create a valid message element. So, we dispatch the sub-tree rooted at that element to
the sequence of handlers specified in the trace.

Finally, a transformation-aware automata is now illustrated by the example in Fig-
ure 9. Certain transitions introduced by rewriting are attached to handlers. When these
transitions are followed, the handler is fed the XML message element for transforma-
tion.

Fig. 9. Transformation-aware automata for the type constructed in Figure 8:
Person[..] || Contact[PersonName[..], Phone[..] || Number[..]].

6 Example Revisited
Recall the example client implements a mash-up of three services: eBay, FedEx, and
UPS. This client prefers to use data formatted according to FedEx standards. So, they
develop several transformation handlers, two of which are listed in Figure 10. Next, they
compose these handlers with both the eBay and UPS schemas. Now we consider each
of these in turn. We qualify elements with namespaces using a (:) to avoid confusion.

eBay to eBay:address[Address] ↪→
FedEx FDX:destination[Destination]
FedEx to FDX:destination[Destination] ↪→
UPS Validator Address UPS:address[AVContent]

Fig. 10. eBay, FedEx, UPS handlers

element SellTxResponseT =
eBay:getSellerTxResponse[
transaction[
buyer[..,
address[..]

],
..],

..]

element SellTxResponseT =
eBay:getSellerTxResponse[
transaction[

buyer[..,
address[..] ||
UPS:address[..] ||
FDX:destination[..]

],
..],

..]
Fig. 11. Original and composite eBay GetSellerTransactions response using transformations from
Figure 10.



element AVType =
UPS:AVRequest[

RequestElement,
address[AVContent]

]

element AVType =
UPS:AVRequest[

RequestElement,
address[AVContent] ||
eBay:address[Address] ||
FDX:destination[Destination]

]

Fig. 12. Original and composite UPS Address Validation message using transformations from
Figure 10. Elements in italics are references to schema elements not shown.

In Figure 11, on the left, we see part of the original type definition for the eBay
GetSellerTransactions operation response. This is the first operation called by
the client in our example workflow. On the right, is the composed type definition after
being processed by the intermediary. Notice that the operation can now return addresses
in either one of three formats. If the client needs to pass this returned information to
another service as part of the mash-up, the client may no longer need to embed data
formatting conversion as part of the mash-up business logic. This can be seen by con-
sidering the next operation in the example workflow.

Recall the second operation in the workflow was to validate the address re-
turned from eBay. This is done through the UPS AVRequest operation, as shown
on the left of Figure 12. Some of this information is specific to UPS, such as the
RequestElement which carries UPS account information. We could not hope to
provide any conversion from eBay account information to UPS. Still, we can see in the
composite on the right of Figure 12, that at least the address information can be made
uniform. Finally, in Figure 13 we see both the composite types after being filtered for
element SellTxResponseT =
eBay:GetSellerTxResponse[
transaction[
buyer[..,
FDX:destination[..]

],
..],

..]

element AVType =
UPS:AVRequest[

RequestElement,
FDX:destination[Destination]

]

Fig. 13. Composite types for both eBay and UPS after being post-processed with a preference for
FedEx.

a preference to FedEx, using the described post-processing step. Now, when the client
receives an eBay response it will already include an address in FedEx format. That ad-
dress can be taken and passed directly to the UPS address validation operation. So we
can see how the implementation of the client might be simplified by making use of only
the FedEx format whenever possible.

7 Related Work
7.1 Web services

The standard language for XML transformation is the eXtensible Stylesheet Language
Transformation (XSLT). XSLT does not support any kind of inference for reasoning



about the composition of templates. We see our work, not as an alternative to such lan-
guages but as complementary. Our approach applies at the level of interface definition
languages. So, it is agnostic to the implementation language that is used.

Several tools [12] have been developed to type check an XSLT program given an
input and output type, but this does not address the motivation described in this paper
where a composite type definition should be provided given a particular target output
type.

In previous work [13] we proposed an AOP approach to programming transfor-
mation using the familiar advice-pointcut style. However that work did not address the
generation of a composite schema or automatic middleware dispatching and shares very
little in terms of technical details to the research here.

Work on the semantic web [14] including standards for semantic web services
(WSDL-S) could help to ease the task of manually programming transformations for
interoperability. However, since many enterprises still do not have semantic standards,
we have focused on helping automate handler composition where the transformation
handlers are programmed manually by developers using common languages such as
Java and XSLT.

Ponnekanti [15] presented a taxonomy of Web service interface mismatches that
can occur when interfaces are allowed to evolve independently as well as a static and
dynamic analysis tool to discover mismatches in WSDL. We think their taxonomy pro-
vides a good overview to the kinds of problems where an intermediary can be useful.

7.2 Adapters for Components

Purtilo et al. [16] show how external adaptation can be valuable to reduce the non-
functional constraints affecting application code. They provide a new language called
Nimble that is used to generate adaptation code. In some cases, the generation of
adapters can be automated [17] using type-based inference.

Gschwind et al. [3] provide a solution for the problem of composing software com-
ponent interfaces and software built on different component models. That work was
done under the paradigm of OO typing where sub-type relationships are explicitly de-
clared. So an element-wise transformation approach was not applicable. To address
element-wise transformation in a Web service environment, we have provided a new
composition algorithm.

Other works [18] concentrate on mismatches between components at the be-
havioural level (i.e., the protocol between components). We have not addressed this
issue in our research.

8 Conclusion
The transformation of an entire schema can be broken down into handlers responsible
for only specific pieces. This comes at a price to service clients who are then unable
to reason about the composition of an intermediary and a service. Our approach is to
provide the flexibility of transformation without sacrificing an explicit interface contract
for clients.

Currently we are planning an empirical study of the performance of our prototype
implementation. We expect the performance overhead should not be prohibitive because
the complex processing in our approach occurs mainly offline. We expect that at run-



time the actual message transformations will dominate the time for handler dispatching.
Thus far this has been the case in our initial studies [11]. In addition to standard valida-
tion mechanisms, our approach only adds constant-time hashtable lookups to dispatch
handlers at run-time. For high-performance applications, additional consideration will
be needed to determine how the buffers which hold message streams should be allocated
and copied. We have not yet considered these fine-grained performance characteristics.

This paper described an architecture and algorithm for composition of Web ser-
vice interfaces with intermediaries. We provided a proof of algorithm correctness and
showed that it executes in polynomial-time. Finally, we motivated and demonstrated a
realistic mash-up scenario as an illustration of our approach.
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