
Generating Wrappers for Command Line Programs:
The Cal-Aggie Wrap-O-Matic Project

Eric Wohlstadter, Stoney Jackson, and Premkumar Devanbu
Department of Computer Science,

University of California,
Davis, CA 95616 USA

wohlstad|jacksoni|devanbu}@cs.ucdavis.edu

Abstract

Software developers writing new software have strong
incentives to make their products compliant to standards
such as CORBA, COM, and Java Beans. Standards-
compliance facilitates inter-operability, component-based
software assembly, and software reuse, thus leading to im-
proved quality and productivity. Legacy software, on the
other hand, is usually monolithic, and hard to maintain
and adapt. Many organizations, saddled with entrenched
legacy software, are confronted with the need to integrate
legacy assets into more modern, distributed, componen-
tized systems that provide critical business services. Thus
wrapping legacy systems for inter-operability has been an
area of considerable interest. Wrappers are usually con-
structed by hand which can be costly and error-prone. In
this paper, we specifically target command-line oriented
legacy systems and describe a tool framework that auto-
mates away some of the drudgery of constructing wrap-
pers for these systems. We describe the Cal-Aggie Wrap-
O-Matic system (CAWOM), and illustrate its use to create
CORBA wrappers for a) the JDB debugger, thus supporting
distributed debugging using other CORBA components, and
b) the Apache web-server, thus allowing remote web-server
administration, potentially mediated by CORBA-compliant
security services. While CORBA has some limitations, in
several relatively common settings it can produce better
wrappers at lower cost.

1. INTRODUCTION

Legacy systems (LS) are ubiquitous and provide many
useful functions. Organizations often reluctantly endure a
continuing dependency on these systems for critical busi-
ness functions. Efforts to maintain, re-engineer and evolve
such systems are hindered by poor documentation, lack of

source code, lack of appropriate (perhaps outdated) skills,
and brittle architectures. On the other hand, there are strong
incentives to update these systems to support inter-operation
with the rest of an organization’s information technology
infra-structure. Systems that can inter-operate using stan-
dards such as CORBA, COM and Javabeans can exploit a
large and growing body of components (e.g., ACTIVEX
GUI components), services (e.g., CORBA Event and Secu-
rity Services), and architectures. Thus, organizations using
legacy systems face an unpleasant dilemma: bear the cost
and risk of updating legacy systems to inter-operate or live
with fractured information technology.

Wrappers offer a potential way out: a surrounding soft-
ware layer shields a LS from the burden of inter-operability.
Nestled within a wrapper, a LS can remain unchanged and
live comfortably in the past; the wrapper assumes the bur-
den of mediating the LS’s interaction with more modern,
standards-conformant systems. Traditionally, wrappers are
constructed by hand1. Building a wrapper for a specific LS,
for a particular inter-operability standard, requires expertise
both in the LS and in the standard. Standards are complex,
as are most LS ; thus, manual development of wrappers is
likely to be time-consuming, expensive and error-prone.

1.1. The Problem

Consider a fairly common situation—wrapping
command-line oriented LSs. Such systems are ubiquitous
both in Unix and in older legacy operating systems. Such
systems can certainly be used directly by a user sitting
at a terminal, typing commands and observing the reply.
They might also be driven by batch scripts that mimic
interactive users or by user-interface wrappers that hide
the command-line LS behind a nice GUI that provides a

1There has been work on automating wrapper generation for heteroge-
nous, distributed information systems, e.g., answering queries by extract-
ing data from web pages. We focus on behavior rather than data.

0-7695-1050-7/01 $10.00 © 2001 IEEE

243

more pleasant user-experience (e.g., the DDD [35] wrapper
for the popular debugger JDB). Wrapping command-line
LSs for standards-based inter-operability provides several
advantages:

1. At a basic level, the wrapper can enable remote access
to the LS’s services and thus allows for better integra-
tion of the LS.

2. The type system in the relevant interface definition lan-
guage (IDL), together with the applicable program-
ming language type system, impose a certain level of
programming discipline on the development of client
systems that use the legacy system via the wrapper.
This avoids run-time errors due to type errors. Sys-
tems that directly interact with the legacy systems do
not provide this discipline.

3. The leverage of other COTS standards-based compo-
nents can allow additional functionality. For example,
we wrap the JDB Java debugger and demonstrate how
the CORBA Event Service can be leveraged to support
distributed debugging sessions in a natural way.

4. Standards such as CORBA provide the opportunity for
finer-grained control over access to command-line sys-
tems. The traditional approach of providing a re-
stricted shell is fairly coarse-grained. CORBA’s Secu-
rity Service [31], for example, can be used to imple-
ment far more intricate access control policies.

Our research goal is to find ways to simplify the task
of wrapping command-line oriented systems for inter-
operability. In this paper, we describe a tool, the Cal-
Aggie Wrap-O’Matic (CAWOM), which generates wrappers
to enable command-line systems to be accessed through
the OMG CORBA inter-operability standard. Although CA-
WOM works with the CORBA standard, the problems we
confronted and the solutions we have developed transcend
the details of the CORBA standard itself and are applicable
in other settings. Specifically, we wrap the GDB-like de-
bugger for Java (JDB) to allow CORBA-compliant clients
to access JDB’s services. By simply adding a CORBA-
compliant Event Service, which effectively provides an off-
the-shelf multi-cast channel for debugging-related events,
we can easily support distributed debugging sessions with
one controller and many observers.

We assume that the reader has some familiarity with the
basic CORBA framework. The outline of the rest of the pa-
per is as follows. In Section 2, we present an overview of
our approach and delve in more detail into the issues that
arise. In Section 3.2, we describe the design choices we
have made, along with rationale. In Section 4.2, we de-
scribe our experience with wrapping two different systems:
the Java Debugger JDB and the Apache web server. Finally
we conclude with future directions.

2 APPROACH OVERVIEW

The overall scheme is shown in figure 12. The goal

ORB ORB

CLIENT
Command Line
Legacy System

Wrapper
Specification

Wrapper
Generator

Wrapper
Generated

Wrapper
Interface

Figure 1. Overview of wrapper-generation framework. The legacy
command line system is shown within a jagged boundary. The wrapper that
surrounds it allows it to inter-operate with a CORBA ORB. The wrapper it-
self is generated from a specification in a high-level language. The main
contribution of our work is the development of this language and an appro-
priate architecture and run-time environment for its implementation. Some
CORBA-specific details are omitted.

is to place a wrapper around a command-line LS (shown
with the jagged boundary) and make it available for inter-
operation as a CORBA object-implementation. This wrapper
interacts with the CORBA ORB, accepting CORBA method
calls, and forwarding them to the LS as ASCII commands.
The ASCII stream responses from the LS are parsed and the
appropriate CORBA-compliant response is forwarded back
to the ORB. A wrapper for a command-line system must
deal with the following aspects:

1. the interactions between the wrapper and the other
parts of the (standards-compliant) system (things that
happen across the dotted line in Figure 1), including
both the data-type aspects of the interaction (number
and type of arguments in method invocations) and the
pragmatics of the interaction, e.g., the synchronization
and direction of the interactions;

2. the “grammatical structure” of the strings accepted and
generated by the LS i.e., the strings exchanged be-
tween the wrapper and the LS at the jagged boundary.

We re-emphasize this point: these issues pertain to any
wrapper for a command-line LS, and transcend any spe-
cific inter-operability standard, such as CORBA, Java RMI,
or COM. Developing and implementing conceptual ap-
proaches to these issues is of central concern to our re-
search. The wrapper specification language, and code-
generation must deal with each of these aspects; we now
discuss these issues, using the example of the Java debugg-
ger JDB.

2Certain CORBA-specific details, such as object adapters, are omitted
here for simplicity

244

2.1. Interface Description and Pragmatics

The wrapper interface must support all and just those
features of the LS that are to be made visible on the wrapper
interface.

First, the number and types of arguments must be speci-
fied. For example, a stop at command in the JDB debug-
ger must include a class name and line number to set a break
point. Likewise, a break-point hit message reported by
the debugger will include the line number and class name.
These aspects of the interactions are described using fea-
tures in the interface description language (IDL) supported
by the inter-operability standard. For example, CORBA IDL
includes features for specifying the number and type of ar-
guments to a method call.

Second, a command-line program includes several
modes, or pragmatics, of interactions with users. Some
commands, such as classes, immediately print out the
list of active classes in the run-time. These interactions
can be naturally abstracted as synchronous procedure calls
inwards to the wrapper interface. In other interactions,
the command-line program may ask the user for informa-
tion; these might reasonably be abstracted as synchronous
calls outwards through the wrapper interface. Other inter-
actions are asynchronous: trace messages are freely gener-
ated by a command-line program without need for response.
These must be accommodated by sending asynchronous,
non-blocking messages outwards through the wrapper inter-
face. Deferred Synchronous interactions are also possible—
the command line program might accept a command from
a user and respond much later; additional information in
the response might provide the user with disambiguating
context. All these types of interactions are allowed within
CORBA, and must be supported by the wrapper interface,
and the wrapper specification language must be able to de-
scribe them. Currently, CAWOM can handle inwards syn-
chronous, asynchronous and deferred synchronous interac-
tions, and outwards asynchronous messages on a designated
multi-cast channel (CORBA event channel). In principle,
given the generic architecture of CAWOM, we believe there
is no hurdle to handling more general types of synchroniza-
tion primitives, including the ones in the ADA language or
in SR [1].

2.2. Interaction Syntax

The wrapper must send commands to the LS and also
process the messages it generates.

The wrapper must generate the commands sent to the LS
based on the data it receives through the wrapper interface.
Generating strings from data can be viewed in general as
unparsing, or pretty-printing [15, 32]. The wrapper speci-
fication must include high-level unparsing specifications to

determine the generation of commands based on received
data.

The wrapper must also process the messages generated
by the LS and extract the semantics of the message and the
contained data. This is certainly akin to parsing; however, in
theory, a LS, being an arbitrary program, can generate arbi-
trary strings. In general, an unrestricted grammar (i.e., Type
0 grammar) would be required to specify this set of strings;
the parsing problem would therefore be undecidable. How-
ever, from a pragmatic point of view, given a specific LS it
may well be possible and desirable to implement a wrapper
to process most (if not all) of the strings it generates. For
greater flexibility, it would thus be undesirable for the parser
to be limited to just context-free languages; we use definite-
clause grammars [19] for additional expressiveness. In the
following section, we describe in greater detail how the de-
sign of CAWOM handles these issues.

3. DESIGN RATIONALE

In this section, we describe the wrapper architecture, and
the wrapper-specification language.

3.1 Wrapper Architecture

Client:Process

2

Server:Thread

Parser:Thread
Thread Process

CommandInterface:

1

4

5

8

WrapperMediator:

Unparser

Parser

7

3

6

Figure 2. Details of the wrapper architecture, shown in the UML in-
teraction diagram style. The “thread” within the dotted line belong to the
wrapper. The “command interface process” box is the legacy system. The
Client process is the CORBA client that accesses the LS through the wrapper.
The interactions outside the wrapper are shown in heavy lines: the CORBA

interactions are solid lines and the command-line interactions are dashed.
The Server thread interacts with the CORBA environment. The Parser thread
listens to the LS systems output messages, parses them and generates re-
sponse events. The Wrapper mediator thread co-ordinates between the client
requests received from the server thread and the responses from the parser
thread. The Parsing and unparsing components are shown in shaded rect-
angles. The numbers indicate the interaction sequence, described in more
detail in the text.

A UML-style interaction diagram (Figure 2) describes
the architecture of our generated wrappers. The wrapper
consists of three Java threads, the Server, the Mediator, and

245

the Parser, all shown within the dotted line. The Client pro-
cess, which interacts with the wrapper via the CORBA infra-
structure (omitted in this diagram for simplicity), is shown
outside the dotted lines. The Server thread handles inter-
actions with the CORBA environment. The parser thread
handles the grammatical complexities of analyzing and cat-
egorizing the responses from the LS. The CORBA invo-
cations that arrive at the server thread and the responses
that come back to the parser thread can overlap in an arbi-
trary concurrent fashion. The mediator thread co-ordinates
between these two threads and provides a cleaner separa-
tion of concerns between the parser and the server threads.
The resulting reduction of coupling makes the entire wrap-
per structure easier to evolve and to handle other types of
legacy systems and inter-operability standards. Sullivan et
al [29] have described this type of mediation. This powerful
modularity-enhancing technique has a natural application in
CAWOM wrappers that must handle a variety of interactions
between the wrapped system and the outside environment.

Specifically, our mediator thread has two main responsi-
bilities. First, it handles the relatively simple task of gen-
erating command-line strings from the CORBA invocations.
Second, before it sends out these command strings to the
LS, it also arranges with the parser thread (using states en-
capsulated in so-called command objects3) to be notified
when the parser receives and recognizes the associated re-
sponses from the command-line programs. CAWOM wrap-
pers allow several requests to be outstanding, and allow
overlap between synchronous, asynchronous, and deferred
synchronous calls. The three threads in the wrapper man-
age multiple pending calls and events using synchronization
objects that encapsulate the state of each request.

We clarify these functions with a scenario. The server
thread gets a method invocation from the client through the
CORBA environment (Sequence number 1). In response, the
server thread creates a command object and forwards it to
the mediator thread (2). The mediator thread pretty-prints
the command into an equivalent ASCII command-line. This
command-line, together with a particular response from
the LS, may constitute a synchronous method call. Here,
the mediator forwards a command object with information
needed to find the matching response (3) to the parser, thus
alerting the parser to be on the lookout for this response.
It then sends (4) the command-line to the LS. When the
LS responds (5) and the parser recognizes this response as
one associated with the command object in step 4, it first
extracts required values from the response string (e.g., re-
turned or out values, fields of exception structures, etc.).
It then alerts the mediator thread (6) which then signals (7)
the server thread that a response to the particular invoca-
tion, initiated in step (1), is ready; the server then sends (8)
it back to the client process. If there are multiple pending

3Command object is a standard design pattern, see page 223 of [11]

command objects the parser matches the responses with the
right command object using the encapsulated state informa-
tion.

3.2 Wrapper Implementation

Our implementation exploits several off-the-shelf soft-
ware tools. These tools only require that the Java 1.2 run-
time is available. Again, we emphasize that the principal
concepts in CAWOM transcend language (Java) and inter-
operability standard (CORBA). The wrapper-generator itself
(shown in figure 1) is implemented with the Java version
of the ANTLR parser-generator [18, 24]; GJ [4] is used for
the parse-tree representation. We built a simple template-
style macro language to facilitate programming the code-
generation; future versions will use a more powerful hy-
gienic macro system, such as JTS [3]. The generated code
in the wrapper is all custom, except for the component that
parses the responses from the command-line LS.

Parsing responses from the LS is the most complex and
difficult aspect of wrapping. Indeed, the most complex code
in the DDD [35] GUI-wrapper for legacy debuggers can be
found in the part that parses responses from the debuggers;
this code is large, intricate, and difficult to understand and
maintain. Our goal is to provide a response-parsing facility
in CAWOM that is both simple and powerful. As discussed
earlier, a “vanilla” context-free grammar cannot in general
always manage the arbitrary strings that can be generated by
a command-line program. So we use a definite-clause gram-
mar (DCG) system, built around PrologCafe [2], a Prolog-
to-Java translator.

DCGs are powerful enough to express arbitrary gram-
mars. Despite their expressive power, DCGs offer a simple,
intuitive style for writing many types of context-sensitive
grammars, and have a proven track-record with complicated
grammars, for example in natural-language processing. An-
other reason to use Prolog comes from the fact that parsing
may depend on context information provided in the state of
command objects. A particular parse may fail because of
some disambiguating information stored in the object. It
is then convenient to be able to backtrack and find a new
parse that matches the intended response behavior. Addi-
tionally, the context provided by some information in the
parse string may alert the system that the current command
object being scrutinzed does not apply in this context. This
time a new object will have to be found to match this parse.
The complexities of such interactions lend themselves natu-
rally to a logic programming setting. The Prolog-Cafe sys-
tem accepts a DCG-style grammar describing the responses
from the LS and produces a parser in Java that incorporates
the needed Prolog mechanisms. The presence of the Pro-
log run-time increases the footprint of our wrapper; how-
ever, our wrappers demonstrate acceptable run-time per-

246

formance in the examples we describe below. The use of
DCG grammars trades off greater usability for better per-
formance. However, a wrapper-builder has the option of
building a custom response-parser if so desired; she can still
exploit the rest of the CAWOM infra-structure.

The infra-structure we have described above constitute
the run-time environment of the generated wrappers in CA-
WOM. We now turn to the specification language that users
would use to write the wrappers.

3.3 Wrapper Specification Language

There are two parts to a wrapper specification: the
command-line interface specification and the command-line
response grammar. The interface specification is written
in cIDL4, while the response grammar is written in cRGL5.
The interface specification primarily describes the interface
between the wrapper and the standards-compliant systems
(again, the dotted line in figure 1). An example cIDL spec-
ification can be found in figure 3. It’s also used to define
the unparsing, or pretty-printing, to be performed by the
Mediator component of the wrapper (figure 2). The cRGL

specification (Figure 4) defines the response grammar LS
for parsing responses from the LS. We now describe these
languages in more detail.

From figure 3, one can see that most of cIDL’s syntax
and semantics are the same those of CORBA IDL; we clarify
only the differences below (more information on CORBA

IDL can be found [26]).
The first notable difference is the key word command

preceding the otherwise typical interface definition on line
1. This indicates that the interface that is being defined is
a wrapper for a command-line interface. Next, we move
to the pairs of curly braces and the expressions they en-
close (lines 5-10, 15, 19, 26 and 32). These specify the
syntax of the command to be issued to the wrapped applica-
tion when the corresponding operation is invoked. Finally,
we note the deferred keyword on line 24 that qualifies
the gracefulRestart operation. This qualifier specifies
that gracefulRestart is a “deferred synchronous” call.
In this type of CORBA call, a client invoking graceful-

Restart does not wait for the server to finish and returns
before continuing. The client may later poll to see if the
server has completed the request, and can retrieve any re-
sults if the server has completed.

The example does not show a push operation qualifier.
A push operation is essentially a call back the server can
use to post information that the client did not request, but
may be interested in. Such operations are typically used for

4cIDL is CAWOM’s IDL, and is an extension of CORBA’s IDL. More
details will be presented shortly.

5cRGL (CAWOM response grammar) is CAWOM’s definite-clause
grammar language based on PrologCafe [2].

1 command interface Server {
2 void start(in string serverRoot,
3. in int maxServers)
4. in int minServers)
5 {
6 "apachectl start " +
7 "-c \"MaxSpareServers " + maxServers + "\" " +
8 "-c \"MinSpareServers " + minServers + "\" " +
9 "-c \"ServerRoot " + serverRoot + "\"\n";
10 }
11 raises(CouldNotStartException,
12 ConfigurationSyntaxException) ;
13
14 void stop()
15 { "apachectl stop\n"; }
15 raises(CouldNotStopException) ;
17
18 void restart()
19 { "apachectl restart\n"; }
20 raises(CouldNotRestartException,
21 CouldNotStartException,
22 ConfigurationSyntaxException) ;
23
24 deferred
25 void gracefulRestart()
26 { "apachectl graceful\n"; }
27 raises(CouldNotRestartException,
28 CouldNotStartException,
29 ConfigurationSyntaxException) ;
30
31 boolean configTest()
32 { "apachectl configtest\n"; }
33 raises(ConfigurationSyntaxException) ;
. . . Details (e.g., Exception Definitions) omitted . . .
38};

Figure 3. A sample specification written in the CAWOM language
(“cIDL”). Note the similarity to CORBA IDL, except for the added key-
words such as command, and the additional syntax describing how to gen-
erate commands to the legacy system. The rest of the CAWOM language, for
specifying how to parse the responses from the LS is shown in figure 4

servers to asynchronously notify a client when an interest-
ing or unusual event has occurred.

Now we turn to figure 4, which shows an example of the
cRGL response grammar specification which characterizes
the response strings from the apachectl utility. Specifi-
cations in cRGL contain a grammar that prescribes how to
parse the responses from the LS, and also how to relate the
responses to pending interactions with the CORBA world.
For brevity, we only describe here the cRGL specification for
ordinary (synchronous) CORBA calls that go in the wrapper
which result in a command being executed synchronously
by the LS.

In response to an incoming synchronous request, the
wrapper creates a “command” object encapsulating the state
of the request. The wrapper then prepares a pending “com-
mand” object with the information required to process the
expected response, and then unparses the request to gener-
ate a command to the LS. The information in the pend-
ing command objects is then used by the parser thread to
identify the matching response from the LS. The cRGL

grammar-based parsing is allied with a command object;
when certain non-terminals in this grammar are recognized,

247

1 start → response,start.

2 response → "apachectl start: ", startRule.
3 response → "apachectl stop: ", stopRule.
4 response → "apachectl restart: ", restartRule.
5 response → any, response.

6 startRule [command start] →
7 startedResponse.
8 startRule [command start] →
9 raise = notStartedResponse,
10

11 startedResponse →
12 "httpd started".
13 startedResponse →
14 "httpd (pid ",integer,") already running".

15 notStartedResponse [exception CouldNotStartServer] →
16 msg = couldNotStartServerMsg.
17 couldNotStartServerMsg [string] →
18 "httpd could not be started".

19 stopRule [command stop] → stoppedResponse.
20 stopRule [command stop] →
21 raise = notStoppedResponse.

22 stoppedResponse → "httpd stopped".
23 stoppedResponse →
24 "httpd (no pid file) not running".
25 stoppedResponse →

"httpd (pid ",integer,"?) not running".

26 notStoppedResponse [exception CouldNotStopServer] →
27 msg = couldNotStopServerMsg.
28 couldNotStopServerMsg [string] →
29 "httpd could not be stopped".

30 restartRule [command restart] → restartedResponse.
31 restartRule [command restart] → startedResponse.
32 restartRule [command restart] →
33 raise = notRestartedResponse.
34 restartRule [command restart] →
35 raise = notStartedResponse.

Figure 4. Example of a CAWOM response-parsing specification. The
specification relates the grammar for the responses expected from the legacy
system to the returned values and exceptions in the methods of the inter-
face defined for the wrapper; an example interface specification is given in
figure 3

a corresponding command-object gets return values and ex-
ceptions filled in from the elements of the recognized re-
sponse. The parser thread then notifies the mediator and
then the server thread, which then initiate the appropriate
CORBA response. For example, on line 6 and 8, we have we
have two possible rules for command objects relating to the
start method. The rule on line 8 generates an exception,
whereas the other one does not. These should be compared
with the start method defined (lines 2-11) in figure 3.

The (simplified) grammar of a cRGL rule is as follows:

rule :- nonterminal object-decl “→” body
object-decl :- “[” type identifier “]”
type :- “command” or “exception” or

‘struct”or “sequence” or primitive-types
primitive-types :- long or boolean or string

double or octet or etc
body :- RHS body

RHS :- nonterminal or Assignment
Assignment :- field “=” value

The head of a rule identifies a non-terminal, and an af-
fected object. The affected object may be a command
(as on lines 6 and 8 in figure 4). The body has a list
of non-terminals that have to be recognized for this rule,
or some assignments that assign the recognized values of
non-terminals to the fields in the affected object. For ex-
ample, on line 9, the body of the rule for the startRule

non-terminal attempts to recognize the non-terminal non-
StartedResponse (see rule on line 15), and assigns the
recognized nonterminal to the field raise on the start

command object. This is a special reserved field name that
indicates that an exception has been raised. The exception
object is associated with the rule on line 15: the nonterminal
notStartedResponse creates the exception object, which
has a defined msg field (see line 34 in figure 4 for the defi-
nition of this exception in the interface specification) that is
recognized by rule 17 as a string.

Methods can have out parameters specified in the in-
terface, or have returned values. In such cases, the corre-
sponding command object would be specified at the head of
a rule; the body would assign values to the out parameters.
If a returned value is being recognized in a response, then
the reserved field name returns would be used to assign
that value from the response. CORBA IDL also allows struc-
tures. In this case, the structure name would be associated
with the struct keyword in the head of a corresponding
rule, and the fields of the structures could be assigned in the
body.

The description of cIDL and cRGL given above has been
abbreviated, due to space constraints. From the cIDL and
cRGL specifications, the CAWOM compiler generates the
code for the components of the wrapper.

4. EVALUATION

In this section, we describe the application of the CA-
WOM framework to generating wrappers for the Apache
server, and also for JDB. We also place our work in the
context of the existing literature.

4.1 WRAPPING APACHE

In one experiment, we specified and generated a wrap-
per for Apache [33] that enables certain administrative func-
tions of the Apache server to be accessed programmatically
from a CORBA client. In addition to the normal benefits
of CORBA componentization (remote access, type safety,
leverage of other CORBA assets) it is also important to note
that the full power of the CORBA security framework can be

248

used for fine-grained access-control over these administra-
tive functions.

apachectl is a UNIX shell script used to administer
the Apache Web Server. Using apachectl, an administra-
tor can start, stop, and restart the server as well as check the
server’s status and perform a syntax check on the server’s
configuration files. In addition, our wrapper supports a
“graceful” restart ,which (as opposed to a normal restart)
allows web servers to complete outstanding requests before
restarting. The graceful restart is a deferred synchronous
call. We describe here the implementation of a CAWOM

wrapper for apachectl.

First, we define the apachectl’s command-line inter-
face in cIDL. This specification is shown in figure 3. From
this interface description, CAWOM will be able to derive a
CORBA IDL and the part of the wrapper that maps incoming
CORBA requests into commands for the shell.

The string expression in quotations following an oper-
ation’s signature is the command issued to the shell when
the operation is invoked. Thus, when the start() method
is invoked, the command “apachectl start\n” will be
issued to the shell (see lines 2 through 11). The erroneous
responses than can occur with apachectl are shown with
exceptions. Second, we write a grammar for the command-
line responses in cRGL; this is shown in figure 4. Using the
grammar, CAWOM will produce the part of the wrapper that
interprets the command-line results and maps these results
into the output parameters of the CORBA request.

Once defined, the interface description and response
grammar are fed to CAWOM, which produces the CORBA

wrapper. The wrapper consists of CORBA stubs for clients
and a fully implemented CORBA server. The server can
be started and ready to serve immediately. Clients can
then be implemented using the stubs to issue commands to
apachectl via CORBA. It’s interesting to note that the en-
tire wrapper specification is only about 80 lines long. CA-
WOM generates about 1,000 lines of Java code that imple-
ments all the details of the wrapper. The performance was
satisfactory. We measured the end-to-end performance of
the wrapper: this includes the time from when the wrapper
receives a CORBA invocation to the time the corresponding
command-line string is sent to the LS, and the time from
when the corresponding response is received from the LS
and the response is initiated back to the CORBA environ-
ment. In all cases, for all methods, we found the end-to-
end times to be less than 4 milliseconds. However, since
the resolution of the clock itself is only a millisecond, we
can only say that the wrapper provides an acceptable over-
head in most situations where distributed objects are used,
and network delays are involved. Measurements were per-
formed on a 366 MHz Sun Solaris Ultra-10 machine, with
256MB of main memory and 1 MB cache.

4.2 WRAPPING JDB

We have also implemented a CAWOM wrapper for JDB.
This was a more complex wrapper than apachectl exam-
ple discussed above, and used more of the features in the
specification languages. In this section, we describe some
of the highlights of this wrapper specification, and evaluate
its effectiveness. We assume some basic familiarity with the
Java language and run-time.

The JDB debugger supports a useful set of commands,
some of which are of straightforward synchronous nature,
such as the print command which prints values of vari-
ables. Other commands, such as stop at which sets
break-points at prescribed lines in a Java class source file,
are not so straighforward. If the class named in the stop
at command is loaded, JDB returns promptly confirming
the break-point set. If the class is not yet loaded, the JDB
returns promptly, but with a message confirming that the
break-point will be set when the class is loaded. When the
class is finally loaded, JDB pipes up with a message say-
ing it has complied with the earlier stop at request. This
command is handled in our wrapper with a pair of meth-
ods in the cIDL interface specification. We show a relevant
excerpt below:

1 boolean stopat(in string cls, in long line)
2 {
3 "stop at "+cls+":"+line+"\n";
4 } raises(StopUsageException);

5 push void setStopAt(in string where);

The first method (line 1 above) sets the breakpoint. The
two in arguments supply the class name and the line num-
ber; the unparsing instructions on line 3 specify how to gen-
erate the LS command. An exception is possible, in case
the class name is improper; in this case, the StopUsage-

Exception might be raised. The second method uses the
push keyword which we have not yet discussed. This key-
word marks a method which is outbound, and signifies an
asynchronous event that is sent out from the wrapper to
a designated event channel (using the CORBA Event Ser-
vice [17]) that can be monitored by a CORBA client.

The description of the response-parsing associated with
the synchronous stopat method is handled in the cRGL
specification in a way similar to the methods described in
apachectl wrapper specification. The cRGL rule for the
push method (setStopat) is given below:

7 setStopAt [command setStopAt]
8 → "Set deferred breakpoint ",

where=atTail.
9 atTail [string]
10 → qualified,":",integer.

When a class targeted by a stopat command is finally
loaded, the JDB sets the break-point and generates a mes-
sage of the form,

249

Set deferred breakoint late.coming.-
class:23. This response is parsed by the rule at
line 7 above, and the asynchronous event push is generated.

Other interesting methods in the cIDL specification (not
shown) include locals, corresponding to the locals
command in JDB that prints out a list of values of local
variables, and a list of values of arguments. These lists get
parsed by the parser thread and returned as two separate
CORBA sequences (CORBA IDL supports a sequence
abstract datatype) of type Var, which is defined in the cIDL
specification as a struct consisting of 2 elements, repre-
senting the name, and value of each variable (both CORBA
strings). The cIDL specification handles these in similar
way to normal CORBA IDL. The cRGL specification has
features to parse lists and fill them into CORBA sequences;
it also includes ways of recognizing fields of structs and
filling them in during parsing.

localStruct[struct Locals] →
’’Method arguments:", args=varList,
’’Local variables:",localVars=varList.

varList [sequence<struct Var>] → var,
++varList.

var [struct Var] → name=id,sep,value=data.

For most simple commands such as setting breakpoints,
the wrapper end-to-end overhead was on the order of 20 ms;
more complex commands, like print which require more
extensive parsing, are on the order of 40 ms. We expect
these times to be considerably faster with better-tuned com-
mercial implementations such as BinProlog 6.

It is reasonable to compare our wrapper implementation
to that of DDD [35], which wraps JDB to provide a more
pleasant user experience via a GUI. The code in DDD per-
taining to wrapping JDB is about an order of magnitude
larger that the cIDL and cRGL specifications for the CA-
WOM wrapper. The ad-hoc response-parsing code in DDD

is also much more complex, intricate and difficult to under-
stand. The performance of this wrapper is also quite rea-
sonable. Of course, a CORBA-compliant wrapper, which
can inter-operate with other CORBA components and ser-
vices, is arguably a far better vehicle for adding value to
JDB than a custom wrapper for a specific purpose (i.e., a
user interface). The JPDA API [16] enables programmatic
control of the Java debugger; however, it only allows access
to JDB functionality from other Java programs; a CAWOM

wrapper, enables access via the open CORBA standard to
any command-line system7.

6Please see http://www.binnet.com
7We are currently working on wrapping GDB using CAWOM.

4.3 RELATED WORK

In this section, we survey related work in the area of
wrappers8. The fundamental goal of a wrapper is to inter-
vene between two different systems, hiding the details of
one from the other. The structural role a wrapper plays is
in the same spirit as the ADAPTER or FACADE patterns
in object-oriented programming [11]. Although the imple-
mentation details vary: our work can be described as gen-
erating wrappers for command-line systems from a speci-
fication in a high-level language (based on enhanced IDL).
We describe work that relates to ours, first in terms of the
work’s goals (adaptation) and then in terms of the imple-
mentation technique used (generation from specifications,
specially based on enhanced IDLs).

Of most immediate relevance, Javamatic [20] is a wrap-
per that makes the services of command-line LS systems
available via a Java applet. No details of the architecture or
the specification language are available in [20], and the au-
thors have stated that the work has been abandoned. Rather
than providing GUI access, CAWOM wrappers allow inter-
operation with the LS. Previous work in software engi-
neering has attacked the problem of adaptation. Purtilo and
Atlee [21], described a technique to adapt interfaces into a
more suitable form. Yellin and Strom [34] describe a tech-
nique for mediating between two subsystems that conform
to different protocols of interaction. Deline [7] separates the
concerns in standards-compliant components by breaking
them into wares which are the functional software units and
packagers which “talk” the standards (e.g., CORBA). CA-
WOM can potentially complement Deline’s work by simpli-
fying the task of turning command-line systems into wares;
CAWOM also provides support for handling the pragmatics
of the interactions (e.g., synchronous, asynchronous etc).
Gannod and his colleagues [12] support generation of Jini
wrappers for legacy systems. In this work, the legacy inter-
face is described using an ADL [25], and the task of wrap-
ping command-line programs is given as an example. While
our focus on command-line systems is narrower, we do pro-
vide some specialized language support for command-line
systems: such as flexible, powerful parsing, and mapping
parsed values into data structures.

Wrapper technology has frequently been employed in
the domain of security. Wrappers in the security domain
are used to either monitor or restrict the behavior of appli-
cations. Naccio [9] uses wrappers to enforce security poli-
cies on a particular platform, while [10] defines an architec-
ture for constructing and managing wrappers that can either
enforce or monitor applications on a given platform. Ma-
coridis [27] describes wrappers that mediate between dif-
ferent security architectures (e.g., Unix and CORBA).

8Due to space considerations, our survey of related work is representa-
tive, rather than comprehensive.

250

There has also been considerable work in the database
community on wrapper generation. Garlic [22] and TSIM-
MIS [6] are systems that integrate heterogeneous data
sources using a mediator based approach. Wrappers (called
translators here) are used to provide a common query inter-
face on top of the existing source interfaces. In this way,
sources are adapted to a global query environment. Gruser
et. al. [13] similarly describe a toolkit for refitting, via
wrappers, web-based data sources with JDBC compliant in-
terfaces. Sahuguet and Azavant [23] developed W4F, a GUI
for semi-automated creation of wrappers for web-based data
sources. PrismTech in their OpenSynergy software suite of-
fer OpenMigrator [30], a wrapper based technology for sup-
porting data migration. The goal there, however, has been
translating data between different data models, query inter-
faces, or views. CAWOM-generated wrappers actually me-
diate between different execution environments—one based
on CORBA, and the other on ASCII command streams.

There has been quite a bit of work on enhancing IDLs
to introduce additional functionality. Flick [8] is a modular
IDL compiler supporting multiple IDLs and language map-
pings. Flick’s modular design lends it for use in custom
IDL languages and code generation; thus allowing wrap-
per code to be generated as part of the product of an IDL
compiler. Sterne et al [28] embed DTEL++ (domain type
enforcement language for the object oriented model) into
CORBA IDL, thusly providing access control for CORBA ob-
jects. Brose [5] describes how access control for CORBA

objects can be achieved by introducing the notion of views
into CORBA IDL. Hence, Koch and Kramer [14] demon-
strate how concurrency controls for CORBA objects can be
achieved by making synchronization assertions in an IDL.
Our work adopts the same general approach but with the
specific goal of wrapping command-line systems.

4.4 Limitations

CAWOM has several limitations. Some of these are the
subject of ongoing work; however, others are inherent to
the problem setting and/or our design approach.

Currently, CAWOM assumes that the LS reads com-
mands from and writes responses to the same stream chan-
nel. It’s fairly straighforward to generalize this so that the
wrapper can feed commands to one of several streams and
also read responses from several channels. CAWOM wrap-
pers can now handle all three types of interactions (syn-
chronous, asynchronous, and deferred synchronous) going
into the wrapper; however, CAWOM wrappers can only gen-
erate asynchronous events, and only to fixed event chan-
nel, going outward. Again, extending CAWOM to handle all
three types of interactions into and out from the wrapper
would be fairly straightforward within our general frame-
work. The above two limitations are being addressed in

current work.
Other limitations of CAWOM are problems inherent to the

particular legacy setting (command-line systems) and also
the design choices we have made. Thus, some command-
line systems may have response languages that are too com-
plex to parse even with DCGs. Still other languages may
be parseable, but may require much expensive backtracking
before a successful parse can be found. In such cases, the
most viable choice may be to hand-craft a custom, heuristic
(but perhaps incomplete) parser that works efficiently most
of the time.

Finally, there are many legacy systems that are not
command-line programs. We would like to provide
wrapper-generators that help in more settings.

5. CONCLUSION

Legacy systems continue to provide critical business
functions in many contexts, but do not inter-operate well
with more modern and standards-compliant systems. The
difficulty of re-engineering these systems has encouraged
developers to wrap them for inter-operability. Our goal is
to simplify the construction of wrappers. We focus specifi-
cally on command-line oriented legacy systems, which are
very common, and hypothesize that some of the drudgery of
building wrappers for such systems can be automated away.
CAWOM is a tool that generates wrappers for command-line
systems from a high-level specification. We describe its de-
sign and implementation, and evaluate it with two exam-
ples, JDB and Apache.

We continue to refine CAWOM’s features, and are test-
ing it on other legacy applications. Our long term goal is
to build a modular suite of wrapping tools for a variety of
legacy systems and inter-operability standards.

6 ACKNOWLEDGEMENTS

We gratefully acknowledge support from the National
Science Foundation (SGER Grant #9985560), without
whose generosity this work would not have been possible.

References

[1] G. Andrews and R. Olsson. The SR Programming
Language—Concurrency in Practice. Benjamin-Cummings,
1993.

[2] M. Banbara and N. Tamura. Translating a linear logic pro-
gramming language into Java. In Proceedings of ICLP’99
Workshop, 1999.

[3] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for
implementing domain-specific languages. In Proceedings,
5th International Conference on Software Reuse, June 1998.

251

[4] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Mak-
ing the future safe for the past: Adding genericity to the Java
programming language. In OOPSLA, 1998.

[5] G. Brose. Towards an access control policy specification
language for CORBA. In ECOOP EWDOS, 1998.

[6] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,
Y. Papakonstantinou, J. Ullman, and J. Widom. The TSIM-
MIS project: Integration of Heterogeneous Information
sources. In IPSJ Conference, 1994.

[7] R. Deline. Avoiding packaging mismatch with flexible pack-
aging. In Proceedings, ICSE ’99 International Conference
on Software Engineering, 1999.

[8] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom.
Flick: A flexible, optimizing IDL compiler. In ACM SIG-
PLAN PLDI, 1997.

[9] D. Evans and A. Twyman. Flexible policy-directed code
safety. In IEEE Symposium on Security and Privacy, 1999.

[10] T. Fraser, L. Badger, and M. Feldman. Hardening cots soft-
ware with generic software wrappers. In IEEE Symposium
on Security and Privacy, 1999.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1994.

[12] G. C. Gannod, S. V. Mudiam, and T. E. Lindquist. An
architectural-based approach for synthesizing and integrat-
ing adapters for legacy software. In Proceedings, 7th Work-
ing Conference on Reverse Engineering, 2000.

[13] J. Gruser, L. Raschid, M. Vidal, and L. Bright. Wrapper
generation for web accessible data sources. In CoopIS, 1998.

[14] G. Henze, T. Koch, and B. Kramer. Annotations for syn-
chronization constraints in corba idl. In IEEE SDNE, 1996.

[15] J. Hughes. The Design of a pretty-printer Library. In J. Jeur-
ing and E. Meijer, editors, Advanced Functional Program-
ming, volume 925 of LNCS. Springer-Verlag, 1995.

[16] Javasoft Inc. JPDA API for Java debugging, 2000.
http://java.sun.com/products/jpda/-
faq.html.

[17] OMG. The SECURITY service http://www.omg.-
org/technology/documentsformal/event-
service.htm, 1995.

[18] T. Parr and R. Quong. Antlr: A predicated-ll(k) parser gen-
erator. Software Practice and Experience, July 1995.

[19] F. Pereira. Definite-Clause Grammars. Artificial Intelli-
gence, 1980.

[20] C. Phanouriou and M. Abrams. Transforming command-
line driven programs into web applications. In Proceedings,
Sixth WWW Conference, 1997.

[21] J. M. Purtilo and J. M. Atlee. Module reuse by interface
adaptation. Software Practice and Experience, 21(6), 1991.

[22] M. T. Roth, M. Arya, L. M. Haas, M. J. Carey, W. Cody,
R. Fagin, P. M. Schwarz, J. Thomas, and E. L. Wimmers.
The Garlic Project. ACM SIGMOD Record, 1996.

[23] A. Sahuguet and F. Azavant. WysiWyg Web Wrapper Fac-
tory (w4f). In WWW Conference, 1999.

[24] G. L. Schaps. Compiler construction with antlr and java. Dr.
Dobb’s Journal, March 1999.

[25] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice-Hall, 1996.

[26] J. Siegel. CORBA-3 Fundamentals and Programming. John
Wiley and Sons, 2000.

[27] T. S. Souder and S. Mancoridis. A tool for securely inte-
grating legacy systems into a distributed environment. In
Working Conference on Reverse Engineering (WCRE), At-
lanta, GA, October 1999.

[28] D. F. Sterne, G. W. Tally, C. D. McDonell, D. L. Sherman,
D. L. Sames, P. X. Pasturel, and E. J. Sebes. Scalable access
control for distributed object systems. In USENIX Security
Symposium, 1999.

[29] K. J. Sullivan, I. Kalet, and D. Notkin. Evaluating the me-
diator method: Prism as a case study. IEEE Transactions on
Software Engineering, 22(8), August 1996.

[30] S. Trythall. Solving the data migration prob-
lem: Openmigrator, September 1999. PrismTech:
www.prisimtechnologies.com.

[31] V. Varadharajan and T. Hardjono. Security model for dis-
tributed object framework and its applicability to CORBA.
In Proceedings of the 12th International Information Secu-
rity Conference IFIP SEC’96, May 1996.

[32] P. Wadler. A Prettier Printer. Journal of Functional Pro-
gramming, 1999.

[33] The. APACHE. website. http://www.apache.org.
[34] D. M. Yellin and R. E. Storm. Protocol specifications and

component adaptors. ACM TOPLAS, 19(2), 1997.
[35] A. Zeller and D. Luetkehaus. DDD - a Free Graphical Front-

End for UNIX Debuggers. ACM SIGPLAN Notices, January
1996.

252

