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Abstract. We consider contact representations of graphs where vertices are rep-
resented by cuboids, i.e. interior-disjoint axis-aligned boxes in 3D space. Edges
are represented by a proper contact between the cuboids representing their end-
vertices. Two cuboids make a proper contact if they intersect and their intersection
is a non-zero area rectangle contained in the boundary of both. We study repre-
sentations where all cuboids are unit cubes, where they are cubes of different
sizes, and where they are axis-aligned 3D boxes. We prove that it is NP-complete
to decide whether a graph admits a proper contact representation by unit cubes.
We also describe algorithms that compute proper contact representations of vary-
ing size cubes for relevant graph families. Finally, we give two new simple proofs
of a theorem by Thomassen stating that all planar graphs have a proper contact
representation by touching cuboids.

1 Introduction
There is a large body of research about representing planar graphs as contact graphs, i.e.
vertices are represented by geometrical objects and edges correspond to pairs of objects
touching in some specified fashion (see, e.g., [1, 3, 5, 8, 9, 11, 15, 16]). Typical classes
of objects might be curves, line segments, or polygons. An early result is Koebe’s 1936
theorem [17] stating that all planar graphs can be represented by touching disks.

Here we consider contact representations of graphs with vertices represented by
cuboids, i.e., interior-disjoint axis-aligned boxes in 3D space. Graph edges are repre-
sented by contacts between cuboids, i.e., there is an edge if and only if two cuboids
touch, where two cuboids touch if they intersect and their intersection is contained in
the boundary of both. In particular, we are interested in the class of planar graphs that
can be represented by proper contact of cuboids, where proper contacts must have non-
zero area. Cubes are cuboids such that all sides have the same length.

1.1 Related Work

Cuboids become rectangles in the 2D version of this problem, and such a represen-
tation is known as a rectangular layout of the input planar graph. There are several



(independent) characterizations of the class of planar graphs that allows such rectan-
gular layouts [18, 19, 23]. A historical overview and a summary of the state of the art
in the rectangle contact graphs literature can be found in Buchsbaum et al. [6] and
Felsner [13].

For 3D, Thomassen [22] shows that any planar graph has a proper contact represen-
tation by cuboids. Felsner and Francis [14] prove that any planar graph has a non-proper
contact representation by cubes, where a valid contact between cubes that represent ad-
jacent vertices may have zero area. This raises the question of whether a proper contact
representation by cubes is possible for all planar graphs.

1.2 Our Contributions
– We show that any graph with n vertices that admits a proper contact representation

by unit cubes has at most 7n − Ω(n
2
3 ) edges, and this bound is tight. We give

families of planar graphs that do and do not admit proper contact representation by
unit cubes (Section 2).

– We prove that the problem of deciding whether a graph admits a proper contact
representation by unit cubes is NP-complete (Section 3).

– We give classes of (non-planar) graphs that have no proper contact representation
even if cubes are of varying sizes. We show that varying size cubes can represent
larger graph classes, such as partial planar 3-trees, than unit cubes (Section 4).

– We describe two new proofs of Thomassen’s result [22]. The first one uses the
canonical ordering of de Fraysseix, Pach and Pollack [10]; the second one uses
Schnyder’s realizers [21] (Section 5).

2 Properties of Unit Cube Representations
Here we establish basic combinatorial properties of graphs with proper contact repre-
sentations by unit cubes. First we study the classical Turán-type problem of finding an
upper bound on the number of edges as a function of the number of vertices. We then
give graphs that do and do not have a proper contact representation by unit cubes.

We say two cubes make a vertex contact if each cube has a vertex v lying in the
interior of a face of the other cube; then v participates in a vertex contact. Two cubes
make an edge contact if each cube has an edge e lying in the face of the other cube;
then the endpoints of e participate in an edge contact. Two cubes make a face contact
if each cube has a face f coincident with a face of the other cube; then the vertices of f
participate in a face contact.

Theorem 1. The maximum possible vertex degree of a graph that admits a proper con-
tact representation by unit cubes is 14.

Proof: Consider any proper contact representation by unit cubes of a graph G contain-
ing a vertex of degree 14. Let C be the cube representing a degree-14 vertex in the
representation of G. We label each vertex v of C with the multi-set of contact types
it participates in: v, e, and f for vertex, edge, and face contact, respectively. If v par-
ticipates in a vertex contact, it cannot participate in another vertex contact, and it can
participate in at most one edge contact and one face contact, or in two face contacts. If v
does not participate in a vertex contact and it does participate in an edge contact, it can
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participate in at most one more edge contact and one face contact, or in two face con-
tacts. If v only participates in face contacts, it can participate in at most three of them.
Thus a valid label of v is a subset of {v, e, f}, {v, f, f}, {e, e, f}, {e, f, f}, or {f, f, f}.
Every e label at a vertex v of C implies another e label at a vertex of C adjacent to v,
caused by the same cube touching C. Thus, the total number of e labels at vertices of
C is twice the number of adjacent cubes contributing to those labels, i.e. each e label
contributes 1

2 to the number of cubes adjacent to C. Every f label at a vertex v of C
implies three other f labels at different vertices of C caused by the same cube touching
C, so each f label contributes 1

4 to the degree of C. Every v label contributes 1 to the
degree of C. The total contribution to the degree of C given by a valid vertex label is at
most 1.75, as provided by {v, e, f}. As C has 8 vertices, its degree is at most 14.

We are now ready to establish an upper bound on the number of edges in a graph
that admits a proper contact representation by unit cubes.

Theorem 2. If a graph G with n vertices has a proper contact representation by unit
cubes then it has at most 7n−Ω(n2/3) edges, which is asymptotically tight.

Proof: Let Γ be any unit cube representation of G. From the proof of Theorem 1, a
cube achieves proper contact with the maximum of 14 other cubes only if every vertex
of the cube is of type {v, e, f} (i.e. involved a vertex, an edge, and a face contact). No
{v, e, f} cube vertex is visible from infinity, so to establish the bound it suffices to show
Ω(n2/3) cubes in Γ have vertices visible from infinity. The maximum area axis parallel
view of Γ has area at least n2/3. Since no face of the corresponding planar map has
more than unit area, there are Ω(n2/3) cube vertices visible from infinity. Since each
cube contributes at most 4 such vertices, the bound follows.

To prove that this upper bound is tight, we pack n = k3 (k odd) unit cubes in an
axis-aligned bounding box B of volume n and side length k. For i = 1, . . . , k, let Li be
the set of k2 cubes with z-coordinate in [i, i+ 1]. For every even i, shift Li by (ε, ε, 0)
(with 0 < ε < 1) so that each cube of Li, except for those originally on the border of
B, touches 4 cubes of Li−1 and Li+1. For j = 1, . . . , k, let Rij be the row of k cubes
in Li with y-coordinate in [j, j+1]. For every even i and j, shiftRi,j by (ε, 0, 0) so that
each cube of Ri,j , except for those originally on the border of B, touches two cubes
of Ri,j−1 and Ri,j+1. Now every cube, except for the O(n2/3) cubes originally on the
border of B, has degree 14.

As the next lemma shows, volume constraints prevent some graphs with maximum
vertex degree less than 14 from having a proper contact representation by unit cubes.

Lemma 1. Every complete binary tree whose height is larger than or equal to 14 does
not admit a proper contact representation by unit cubes.

Proof: Let T be a complete binary tree with n = 2h+1 − 1 vertices and height h. The
diameter of T is 2h. Since T is connected, a proper contact representation of T by unit
cubes has a bounding box with side lengths at most 2h + 1 and thus volume at most
(2h+ 1)3. As the volume must be at least n, a contradiction results for h ≥ 14.

By the argument above, any graph containing a vertex v such that the number of
vertices with graph-theoretic distance at most d from v is greater than (2d + 1)3 does
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Fig. 1. Regular tiling patterns with unit cubes.

not have a proper contact representation by unit cubes. The next theorem gives classes
of planar graphs that do have a proper contact representation by unit cubes.

Theorem 3. Triangular grid, square grid, hexagonal grid, and parabolic grid graphs
have a proper contact representation by unit cubes.

Proof Sketch: See Fig. 1, which gives regular tiling patterns (infinitely extendable) for
the claimed grid graphs.

3 Complexity of the Unit Cube Representability Problem
The hardness part of our proof10 that it is NP-complete to determine whether a graph has
a proper contact representation by unit cubes goes by polynomial-time reduction from
NAE 3-SAT, defined as follows: Given a formula F with m clauses and n variables, is
there a truth assignment for the variables in F such that each clause contains at least
one satisfied literal and at least one unsatisfied literal?

Section 3.1 gives a design for a “logic engine” (see [12]), which is essentially a
graph constructed from a formula F , such that if F is satisfiable, then the graph admits
a proper contact representation by unit cubes. In particular, the graph is to be the proper
contact graph of a certain assembly of unit cubes. We define the graph implicitly by
describing the logic engine as this assembly of cubes. There are options for the place-
ment of some of the subassemblies that result in the same underlying contact graph. If
F is satisfiable, then combinations of these options can be chosen so that there are no
collisions between subassemblies, and so that the assembly is a proper contact represen-
tation of the graph. Section 3.2 uses the results of Section 2 to give tools for proving that
the graph admits a proper contact representation by unit cubes only if F is satisfiable.
Section 3.3 completes the proof sketch.

10 An alternate proof based on techniques from Breu’s PhD thesis [5] also seems possible.
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3.1 Logic engine design

The logic engine assembly of unit cubes is comprised of subassemblies called blocks,
where a block is an a×a×a cube of unit cubes. A schematic cross-section of the logic
engine for anm = n = 3 instance is shown in Fig. 2. Depending on its placement in the
assembly, we say a block is a pole block, a spacer block, a link block, or a flag block.
The entire assembly is contained by a shell, which is an assembly of unit cubes in the
form of a hollow rectangular box with walls that are 2 unit cubes thick. Inside the shell
is the shaft, which is a subassembly consisting of a sequence of pole and spacer blocks,
adjoined by unit cubes and attached to the side walls of the shell. The pole blocks sup-
port pole assemblies, which consist of link blocks adjoined to unit cubes. Each pole is
associated with a variable; half the pole is associated with the uncomplemented variable
and the other with its complement. The positions of the halves can be interchanged by
rotating the pole block 180deg with respect to its adjoining unit cubes on the shaft, thus
turning the pole about the shaft. Flag blocks may be attached to link blocks along the
poles, forming a rectanguloid double block of dimensions 2a× a× a. A double block
may be rotated relative to its adjacent unit cubes, thus turning it about the pole.

For an instance of NAE 3-SAT with m clauses and n variables, there are n poles,
each containing m link blocks in each half-pole. A flag block is attached to the ith link
block from the jth pole block, on the uncomplemented side, if and only if the ith clause
fails to contain the jth variable (uncomplemented); similarly, a flag block is attached to
the ith link block on the complemented side of the jth pole if and only if the ith clause
does not contain the jth variable in complemented form. Along the poles and the shaft,
spacer blocks separate link and pole blocks.

The value of a is chosen odd so that each block face has a unit cube face at its center.
Each unit cube depicted in Fig. 2 makes face contact on two sides with a unit cube in
the center of the face of a neighboring block (or shell); this allows poles and flagged
link blocks to “turn” independently. Unit cubes are shown larger than scale.

A variable is regarded as “true” if the uncomplemented part of the pole is positioned
above the shaft. The flags can be positioned so that they do not intersect other flags or
the shell if there is at least one unflagged block in each row of blocks above and below
the shaft, in which case all the remaining flags in the row can be rotated to point to the
unflagged block. This corresponds to having at least one true literal and at least one
false literal in each clause. Fig. 2 encodes a “yes” instance of (x1 ∨ x2 ∨ x̄3) ∧ (x1 ∨
x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x3), where x1 = T , x2 = F , and x3 = T .

3.2 Making the blocks and shell rigid

In order to establish the equivalence between a NAE 3-SAT instance and an instance
of the graph realizability by touching unit cubes, we need to ensure the “rigidity” of the
shell and of the blocks. This is accomplished by the introduction of additional graph
structure, which is described in the following.

A cube graph is the skeleton of a cube, i.e. a matched pair of chordless 4-cycles.
The contact graphs corresponding to the shell and to the blocks are composed of a set of
cube graphs. The rigidity of such parts of the contact graph will ensure that the walls of
the shell and the blocks have thickness 2. It is not hard to show that if the 8 vertices in
any cube subgraph in a block or shell must be realized tightly, i.e. by unit cubes within a
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Fig. 2. Schematic cross-section of the logic engine (shaft and shell are darkly shaded).

2×2×2 bounding box, then the entire block or shell must be represented in the desired
aligned and rigid way. Our proof defines and uses crystal lattice graphs, inspired by
crystallography (see, e.g., [4]). In order to force the representation of a cube graph to be
tight (hence forcing the rigidity of the shell or block to which the cube graph belongs),
we attach the cube graph to a crystallizer graph, which in turn contains a seed graph.
These graphs are described below.

It follows from the proof of Theorem 1 that the only way a cube C can represent
a vertex of degree 14 in a unit cube representation of a graph is if every vertex of C
has label {v, e, f}. That implies that two opposite faces of C have face contact. Label
the vertices of C from 0 to 7 so that vertex i and vertex j lie on the same cube edge
if and only if their binary representations differ in a single bit and the two faces of C
making face contacts are {0, 1, 2, 3} and {4, 5, 6, 7} (see Fig. 3 (c)). None of the edges
connecting these two faces can be part of an edge contact, as otherwise the endpoints of
the edge could not be part of a vertex contact. Since no vertex participates in two edge
contacts, the four edges of C that make edge contact cannot share a common vertex.
Assume without loss that two of the four edge contacts touch {4, 6} and {5, 7}. The
other two edge contacts might touch {0, 2} and {1, 3} (see Fig. 3 (a)) or they might
touch {0, 1} and {2, 3} (see Fig. 3 (b)). In the first case, we say that the realization is
of type (a); in such a realization, four of the eight cubes making vertex contact with C
touch face {2, 3, 6, 7} (the top face of C) and four touch face {0, 1, 4, 5} (the bottom
face). In the second case, we say that the realization is of type (b); in such a realization,
each pair of the eight cubes making vertex contact with C touches a different face of C.
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Fig. 3. (a)–(b) The two types of realizations of a degree-14 cube C. (c) The labels on the vertices
of cube C.
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Fig. 4. Graph G0 − {c} used in the proof of Lemma 2.

Let G0 be a graph with 15 vertices, one of which has degree 14 (denote by c such a
vertex), such that the neighbors of c induce the graph in Fig. 4. The next lemma shows
that G0 can be realized by touching unit cubes only if the realization of c is of type (a).
We say that a set of cubes is extremal in a representation if they all have a face lying on
the same plane, which separates them from the rest of the cubes in the representation.
We say that 4 cubes form a tight 4-cycle if their union is a box of size 2× 2× 1.

Lemma 2. Any realization of G0 by touching unit cubes is of type (a). Moreover, G0

can be realized by touching unit cubes only if the four vertices v2, v3, v6, and v7 are
extremal in the representation of G0.

Proof: Consider any realization of G0 by touching unit cubes. Let C be the cube that
represents vertex c. Vertices f0 and f1 have degree 6 in G0 − {c} and thus must be
represented by the cubes that make face contact with C since these are the cubes that
properly contact that many cubes. Vertices v0, v1, v4, and v5 have degree 2 in G0−{c}
and thus must be represented by cubes that make vertex contact with C since each cube
that makes an edge contact with C is adjacent to at least three cubes different from C
in any representation of G0 by touching unit cubes. Vertices e0, e1, e2, and e3 must
be represented by the four cubes in edge contact with C since the cubes representing
vertices v0, v1, v4, and v5 must each contact one edge contact cube and one face contact
cube. Since e0 and e2 are adjacent, the representation must be of type (a) (Fig. 3), since
type (b) does not allow cubes in edge contact with C to touch. Finally, since vertices
{v2, v3, v7, v6} form a cycle and are represented by cubes that make vertex contact with
C (the only remaining kind of contacts with C), they must be represented by cubes that
touch the same face of C and are extremal.

We say that the chordless 4-cycle (2, 3, 6, 7) of G0, which by Lemma 2 must be
represented by an extremal 4-cycle of cubes, lies in contact with the top face of C.
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Fig. 5. (a) A portion of the seed graph. C and C′ represent vertices of degree 14, having
(C1, C2, C3, C4) and (C′

1, C
′
2, C

′
3, C

′
4) as “top” cycles of the neighbors. The remaining neigh-

bors of C and C′ are not shown. (b) The crystallizer graph, with a 10 × 10 × 10 box enclosing
all but the tight, extremal 4-cycle of its seed graph. Only a portion of the seed graph is shown.

To create the seed graph, we take the representations of two copies of the graph
G0, as described above, and attach the top 4-cycle of each representation to a tight
representation of a central cube graph, as shown in Fig. 5. The two top 4-cycles must
be represented tightly, with no hole as in Fig. 5 (b), because the face planes of the top
layers align the cubes. Finally, we match an additional chordless 4-cycle, the extremal
4-cycle, to a chordless 4-cycle in the central cube graph, as shown in the upper part of
Fig. 5 (a), to obtain the seed graph G1. The crystallizer graph is a cube graph with the
vertices of one of its chordless 4-cycles matched to the vertices of the tight, extremal
chordless 4-cycle of the seed graph; see Fig. 5 (b). This cube graph is always tight
in any crystallizer graph representation, and hence forces the rigid alignment of the
representations of the crystal lattice graphs, as well as the rigidity of the graphs for the
blocks and the shell when it is identified with one of their cube subgraphs.

3.3 Recognizing proper contact graphs of unit cubes is NP-complete

To prove membership in NP, it suffices to prove that if a representation exists, then one
with a polynomially bounded description exists; this can be done by a technique similar
to that of the proof of Theorem 3.2 of Czyzowicz et al. [7].

Any instance of NAE-3SAT can be transformed in polynomial time to a logic engine
graph made of crystal lattice graphs for the shell, link, flag, pole, and spacer blocks to-
gether with the crystallizer graphs that make these parts rigid, together with the vertices
whose representations allow the poles and links to turn independently (i.e. to be spa-
tially positioned in alternative ways). If the NAE-3SAT instance can be satisfied, then
the logic engine graph can be properly realized in at least one way (see Section 3.1). On
the other hand, if the logic engine graph can be represented, then its crystallizer sub-
graphs force the parts to be drawn rigidly and aligned; the shell forces the poles, links
and flags into a flattened configuration, such that an unflagged position must appear in
each row above and below the shaft to avoid intersection of unit cubes. Thus each clause
has at least one true and one false literal.
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4 Cubes of Varying Size
Motivated by the result of the previous section, we consider graphs that admit a proper
contact representation by cubes of varying size. We start by establishing an upper bound
on the number of edges that such graphs can have. The proof follows from Theorem 1.

Theorem 4. If a graph G with n vertices has a proper contact representation by cubes
then it has at most 14n edges.

We now show that a fairly general family of planar graphs, namely partial planar
3-trees, has a proper contact representation by cubes. A partial planar 3-tree is a pla-
nar graph with tree-width at most 3. Outerplanar graphs and series-parallel graphs are
partial planar 3-trees. Partial planar 3-trees with n vertices can have vertices of degree
Ω(n); hence, by Theorem 1 they do not have a proper contact representation by unit
cubes. The following theorem can be proved by combining the result by Felsner and
Francis [14] with a result by Badent et al. [2]. In the first paper, the authors show that
starting from a representation as a contact graph of equilateral triangles, where no two
triangles touch corner-to-corner, a representation by touching cubes can be constructed.
In the second paper, the authors show that partial planar 3-trees have a representation
as contacts of equilateral triangles, such that no two triangles touch corner-to-corner.

Theorem 5. Every partial planar 3-tree has a proper contact representation by cubes.

5 Proper Contact Representations by Cuboids
In this section we further relax the constraints of the problem and consider proper con-
tact representations of graphs where vertices are represented by cuboids. We present two
new (simple) proofs of the following result that was first established by Thomassen [22].

Theorem 6. Any planar graph has a proper contact representation by cuboids.

The idea behind the first proof is to use the concept of canonical ordering of a
maximal planar graph, introduced by de Fraysseix, Pach, and Pollack in [10]. First,
dummy edges are added to the input graph G so that G is a maximal planar graph. We
draw the cuboids one at a time in the canonical order. We maintain an (x, y)-“staircase”
profile of the active vertices of Gi (that are the vertices on the external face of Gi).
The cuboids representing active vertices of Gi have their top sides lying on the plane
z = i. The neighbors in Gi of vertex vi+1 are a consecutive sequence vl, vl+1, . . . , vr
of the active vertices of Gi. When the cuboid representing vertex vi+1 is drawn, each
cuboid representing a vertex vj such that j ∈ {l, l + 1, . . . , r} and such that (vj , vi+1)
belongs to the input graph is slightly extended in the positive z-direction. The new
vertex vi+1 is represented by a cuboid placed on top of the cuboids representing its
neighbors in vl+1, vl+2, . . . , vr−1. The cuboid representing vi+1 touches each neighbor
in vl+1, vl+2, . . . , vr−1 along a face parallel to the (y, z)-plane, and it touches vl and
vr along faces parallel to the (x, y)-plane and to the (x, z)-plane. The active vertices
of Gi+1 are extended in the positive z-direction so that their top sides lie on the plane
z = i+ 1 and the invariant is maintained. See Fig. 6.

The second proof uses Schnyder’s realizers [21] to construct a proper contact rep-
resentation of the input graph G by cuboids. First, dummy edges are added to G so that
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Fig. 6. Representation of Gi (a) and representation of Gi+1 (b) by touching cuboids.

G is a maximal planar graph. Later, contacts representing dummy edges in G will be
avoided by slightly shrinking the sides of some cuboids. Let a1, a2, and a3 be the ver-
tices incident to the external face of a planar embedding of G. A Schnyder realizer [21]
of G is a partition of the internal edges of G into three sets T1, T2, and T3 such that (1)
for i = 1, 2, 3, Ti is a tree whose vertex set consists of the internal vertices of G plus
ai, and (2) assuming that the edges of Ti are directed towards ai, for i = 1, 2, 3, then
the counterclockwise order of the edges around each internal vertex v of G consists of
the edges: Leaving v in T1, then entering v in T3, then leaving v in T2, then entering v
in T1, then leaving v in T3, and finally entering v in T2. We further add edges (a2, a1),
(a3, a2), and (a1, a3) to T1, T2, and T3, respectively; see Fig. 7.

Let <X , <Y , and <Z be three total orders on the vertices of G such that <X is
consistent with T1, T−1

2 , and T−1
3 , such that <Y is consistent with T−1

1 , T2, and T−1
3 ,

and such that <Z is consistent with T−1
1 , T−1

2 , and T3. Here, partial order T−1
i is the

inverse of partial order Ti, for i = 1, 2, 3. Orders <X , <Y , and <Z exist and define a
3-dimensional representation of G [20].

We use these three total orders to define a proper contact representation of G by
cuboids. For each vertex v of G, the cuboid representing v, called the v-cuboid, is the
region [x(v),X(v)] × [y(v),Y(v)] × [z(v),Z(v)] defined as follows. Let X(v), Y(v),
and Z(v) be the rank of v in the inverse of <X , <Y , and <Z , respectively. (Using the
inverse of <X , <Y , and <Z yields to contact representations similar to the T-contact
systems as constructed in [9].) For each edge (u, v) ∈ T1, let x(u) = X(v). Let x(a1) =
x(a3) = 0. Since every vertex internal vertex of G, as well as vertex a2, has outdegree
one in T1, this defines x(u) for all the vertices in G. If (u, v) is a dummy edge, then
add ε to x(u), where 0 < ε < 1. For each edge (u, v) ∈ T2, let y(u) = Y(v) (let
y(u) = Y(v) + ε if (u, v) is a dummy edge); further, let y(a1) = y(a2) = 0. For each
edge (u, v) ∈ T3, let z(u) = Z(v) (let z(u) = Z(v) + ε if (u, v) is a dummy edge);
further, let z(a2) = z(a3) = 0. Let B(<X , <Y , <Z) be the set of v-cuboids defined by
<X , <Y , and <Z (obtained from the Schnyder realizer (T1, T2, T3) of G); see Fig. 7.

Lemma 3. B(<X , <Y , <Z) is a proper contact representation of G by cuboids.

Proof: By construction the a1-cuboid and the a2-cuboid touch along a face parallel to
the (y, z)-plane, unless edge (a2, a1) is dummy, in which case x(a2) = X(a1) + ε,
thus such cuboids are separated by a plane parallel to the (y, z)-plane and do not touch.
Analogously, edges (a3, a2) and (a1, a3) are correctly represented in the drawing.

Consider an internal directed edge (u, v) in G and assume it belongs to T3. The
argument is similar if it belongs to T1 or to T2. If (u, v) is dummy, then z(u) = Z(v) +
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Fig. 7. A Schnyder realizer with <X : a2a3v3v6v5v1v2v4a1, <Y : a3a1v6v4v5v2v3v1a2, and
<Z : a1a2v1v2v3v4v5v6a3 and the corresponding proper contact representation by cuboids.

ε, thus the u-cuboid and the v-cuboid are separated by a plane parallel to the (x, y)-
plane and do not touch in the constructed representation. Otherwise, we show that the
corner (X(u), Y(u), z(u)) of the u-cuboid lies in the interior of the face ([x(v),X(v)],
[y(v),Y(v)], Z(v)) of the v-cuboid. By construction, z(u) = Z(v). Since (u, v) ∈ T3,
v <X u and v <Y u thus X(u) < X(v) and Y(u) < Y(v). If v is an external vertex
then v = a3 so X(u) > x(v) = 0 and Y(u) > y(v) = 1. Otherwise, to establish
X(u) > x(v), let (v, w) be the edge leaving v in T1. Let u = u0, u1, . . . , uk = w
be the neighbors of v in clockwise order from u to w. By Property (2) of Schnyder
realizers, the edges (ui, v) are entering v in T3, for i = 0, 1, . . . k − 1. Since, for all
i = 0, 1, . . . , k − 1, the three vertices ui, ui+1, v form a cycle, by Property (2) of
Schnyder realizers {ui, ui+1} is either entering ui+1 in T1 or leaving ui+1 in T2. In
either case, ui <X ui+1, thus, by transitivity, X(u) > X(w) = x(v). A similar argument
can be used to show that Y(u) > y(v). Hence, the u-cuboid and the v-cuboid touch
along a face parallel to the (x, y)-plane, thus concluding the proof.

6 Open Problems
Open questions about representating graphs as contact graphs of cuboids in 3D include:
1. Does every planar graph admit a proper contact representation by cubes?
2. Is it possible to characterize/recognize the class of graphs that have a proper contact

representation by cubes (e.g., observe that K5 is not representable while K3,3 is)?
3. Is it possible to characterize/recognize the class of planar graphs that have a proper

contact representation by unit cubes? Similarly for binary trees?
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Sächsischen Akad. der Wissenschaften zu Leipzig. Math.-Phys. Klasse, 88:141–164, 1936.
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