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Point labels



Given n distinct points in the plane each with an
associated rectangle, is it possible to place every
rectangle (axis-aligned) with a corner on its point so that
no rectangles overlap?

NP-complete Solvable using 2SAT

[Formann & Wagner 91]



Approximately optimal number of labels

1. Let x be the median x-coordinate of R.

Find a large∗ independent set in a set R of n rect’s.

2. Partition R into R<x, Rx, and R>x.

3. Compute Ix, the max indep. set of Rx.

4. Recursively compute I<x and I>x,
the approx. max indep. sets of R<x and R>x.

5. If |Ix| ≥ |I<x|+ |I>x| return Ix
else return I<x ∪ I>x.

[Agarwal, van Kreveld, Suri 98]

∗ at least OPT/ log n



x



x



x







3. Compute Ix, the max indep. set of Rx.

4. Recursively compute I<x and I>x,
the approx. max indep. sets of R<x and R>x.

5. If |Ix| ≥ |I<x|+ |I>x| return Ix
else return I<x ∪ I>x.

Approximation factor

|Ix| ≥ |I∗ ∩Rx| |I<x| ≥
|I∗<x|

log(n/2)
≥ |I

∗ ∩R<x|
log n− 1

|I| = max{|Ix|, |I<x|+ |I>x|}

≥ max

{
|I∗ ∩Rx|,

|I∗ ∩R<x|+ |I∗ ∩R>x|
log n− 1

}



|I| = max{|Ix|, |I<x|+ |I>x|}

≥ max

{
|I∗ ∩Rx|,

|I∗ ∩R<x|+ |I∗ ∩R>x|
log n− 1

}
≥ max

{
|I∗ ∩Rx|,

|I∗| − |I∗ ∩Rx|
log n− 1

}

If |I∗ ∩Rx| ≥ |I∗|/ log n then done.

Otherwise
|I∗| − |I∗ ∩Rx|

log n− 1
≥ |I

∗| − |I∗|/ log n

log n− 1
=
|I∗|
log n



Approx. optimal number of labels - unit height
[Agarwal, van Kreveld, Suri 98]

2-approximation

1. Let `0, `1, . . . , `m−1 be horizontal lines
spaced > 1 apart that intersect all R.

2. Let Ri be rects that intersect `i.



Approx. optimal number of labels - unit height
[Agarwal, van Kreveld, Suri 98]

2-approximation

1. Let `0, `1, . . . , `m−1 be horizontal lines
spaced > 1 apart that intersect all R.

2. Let Ri be rects that intersect `i.

3. Let Ii be max indep. set in Ri.

4. Return the larger of I0 ∪ I2 ∪ · · · ∪ Im−1 and
I1 ∪ I3 ∪ · · · ∪ Im (assuming m odd).



Approx. optimal number of labels - unit height
[Agarwal, van Kreveld, Suri 98]

(1 + 1/k)-approximation

Idea: Use dynamic programming to optimally solve
subproblems Ri ∪Ri+1 ∪ · · · ∪ Ri+k−1.

k = 2
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Dynamic programming subroutine [Chan 04]

Theorem: If R is stabbed by k horizontal lines, we can
find a max indep. set in O(n log n+ n∆k−1) time, where
∆ is the max number of rects a point can be in.
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Dynamic Programming (works for general rects)
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Sort rectangles by left coordinate.
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Let next [j] = smallest i with ai > bj .

next [9] = 15



Let A[i, S] be the maximum number of disjoint rectangles
from Ri . . . Rn that do not intersect the rectangles in S.

S = any set of ≤ k− 1 disjoint rects that intersect x = ai.

ai

R9

R10

R11

S ∈ {∅, {9}, {10}, {11}, {9, 10}, {9, 11}, {10, 11}}

A[n+ 1, ∅] = 0



For i = n to 1
For all sets S of ≤ k− 1 disjoint rects intersecting x = ai

If Ri intersects some rect in S then
A[i, S] = A[i+ 1, S|i+1].

Ri cannot be used for this subproblem.

ai ai+1



Ri cannot be used for this subproblem.

else if |S| < k − 1 then
A[i, S] = max{A[i+ 1, S|i+1],

1 +A[i+ 1, (S ∪ {Ri})|i+1]}.

ai ai+1ai ai+1



else (|S| = k − 1) Let t = minRj∈S∪{Ri} next [j]
A[i, S] = max{A[i+ 1, S|i+1],

1 +A[t, (S ∪ {Ri})|t]}.

either Ri is not used or it is and other rects in solution
must be to the right of some rect in S ∪ {Ri}.

ai ai+1 at



Running time:

Number of subproblems is O(n∆k−1).

Size of array A is Θ(nk) but can be reduced to
O(n∆k−1).

Running time O(n∆k−1)



C(0) for k = 2

0
1
2
3
4
5
6
7
8
9

10
11
12

For i = 0, . . . , k, let C(i) be the subset of rects
that do not intersect line y ≡ i mod (k + 1).



(1 + 1/k)-approximation in unit-height case

Find the optimal solution S(i) for each C(i).

Return the largest solution S from S(0), . . . ,S(k).

Each unit-height rectangle belongs to exactly k of the
k + 1 subsets C(i).

k|S∗| =
∑k

i=0 |S∗ ∩ C(i)| ≤
∑k

i=0 |S(i)| ≤ (k + 1)|S|

so |S∗| ≤ (1 + 1/k)|S|.



What if we want to label all points?

How big can we make the labels without overlap?
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Approximate optimal label size [Formann & Wagner 91]

2-approximation for square labels:
p3p4

p1 p2

p

Call pi σ-dead if 2σpi contains a point q 6= p,

σpi is pi scaled by σ.

else σ-pending if σpi intersects σqj and qj is not σ-dead,
else σ-alive.



Lemma: A point may have at most two σ-pending squares.

σp1

2σp1

q must lie here or here

Thus p2 or p4 is σ-dead.

q cannot lie here (p1 is not σ-dead)

q cannot lie here

If p has three σ-pending squares, at least two of
{p1, p2, p3, p4} are σ-dead. ⇒⇐

Suppose p1 is σ-pending and σp1 ∩ σqj 6= ∅
σp4 σp3

σp2



Approximate largest label size

σ = 0

Eliminate σ-dead squares

Use 2SAT for the remaining set of points.

Assign a σ-alive square to every point with one.

If some point has no square or 2SAT fails then

Repeat

Increase σ to next interesting value.

return previous σ.


