
Planar graph Planar drawing



Planar graph Planar (straight-line) drawing



Planar Embedding

1

2

3

4

5

6

7

8 9
10

11

12

13

14

Planar drawing

1: 2,14,10
2: 1,3,7
3: 2,11,4
4: 3,5,6
5: 4,8,13,7,6
6: 4,5
7: 2,5
8: 5,9,12
9: 8,11,10
10: 1,9,11
11: 3,10,9
12: 8,14,13
13: 5,12,14
14: 1,13,12

Outer face: 1,14,13,5,7,2

(Clockwise order of neighbors.)



DFS orientation & numberingPlanar graph

1

2

3

4

5

6

7

8 9
10

11

12

13

14

back edge
tree edge



DFS orientation & numbering

1

2

3

4

5

6

7

8 9
10

11

12

13

14 1

2

3

4

5

7 68

912

13

14

10

11

LR partition [Brandes 11]



How to order and orient cycles?

2
3
4
5

6
7

8

9
10

11

1

Nesting (tree edges)

Left / Right Partitioning (back edges)

Two (related) mechanisms:

both (7,2) and (11,3) can’t
“bend” the same way Why?

(6,8) cycle must be nested inside
(6,7) cycle (bend same way) Why?



How to order and orient cycles?

2
3
4
5

6
7

8

9
10

11

1

Nesting (tree edges)

Left / Right Partitioning (back edges)

Two (related) mechanisms:

both (7,2) and (11,3) can’t
“bend” the same way Why?

(6,8) cycle must be nested inside
(6,7) cycle (bend same way) Why?

2
3
4
5

9
10

1

6
7

11

2
3
4
5

6
7

8

9
10

1



The return point of a back edge (v, w) is w.
The return points of a tree edge (v, w) are

u such that u
+→ v → w

∗→ x ↪→ u.

1

2

3

4

5

7 68

912

13

14

10

11

return point of (6, 4) is 4.

return point of (5, 7) is 2.

return points of (4, 5) are 3,2,1.



The return point of a back edge (v, w) is w.
The return points of a tree edge (v, w) are

u such that u
+→ v → w

∗→ x ↪→ u.

1

2

3

4

5

7 68

912

13

14

10

11

The lowpt of an edge (v, w) is its lowest
return point (or w if none exists).

lowpt of (6, 4) is 4.

lowpt of (5, 7) is 2.

lowpt of (4, 5) is 1.



The return point of a back edge (v, w) is w.
The return points of a tree edge (v, w) are

u such that u
+→ v → w

∗→ x ↪→ u.

1

2

3

4

5

7 68

912

13

14

10

11

The lowpt of an edge (v, w) is its lowest
return point (or w if none exists).

Back edge (x, u) is the return edge for itself
and every tree edge (v, w) with

u
+→ v → w

∗→ x ↪→ u.



1

2

3

4

5

7 68

912

13

14

10

11 An LR partition is a partition of the
back edges into Left and Right so
that for every fork

v
e1 e2

e
� all return edges of e1 ending strictly

higher than lowpt(e2) belong to one
partition, and

� all return edges of e2 ending strictly
higher than lowpt(e1) belong to the
other.



1

2

3

4

5

7 68

912

13

14

10

11 An LR partition is a partition of the
back edges into Left and Right so
that for every fork

v
e1 e2

e
� all return edges of e1 ending strictly

higher than lowpt(e2) belong to one
partition, and

� all return edges of e2 ending strictly
higher than lowpt(e1) belong to the
other.

(14, 12) and (13, 5) must be in different LR partitions
Fork at v = 13 implies



v
e2e1

e

lowpt(e2)

lowpt(e1)

v
e2e1

e

lowpt(e2)

lowpt(e1)

� all return edges of e2 ending strictly
higher than lowpt(e1) belong to the
other.

� all return edges of e1 ending strictly
higher than lowpt(e2) belong to one
partition

same constraint = “all...belong”
different constraint = “belong to the other”



Theorem. A graph is planar if and only if it has an
LR partition (based on an arbitrary DFS orientation).

Proof. Use LR-partition to create a nesting order ≺
on outgoing edges at each vertex.

(Assign tree edge to same LR-partition as its return
edge with the highest return point.)

v
e2e1

e

lowpt(e2)

lowpt(e1)

v
e2e1

e

lowpt(e2) lowpt(e1)

e1 ≺ e2

e2 is chordal



eL`

eL1 eR1

eRr

Let eL1 ≺ · · · ≺ eL` be the left outgoing edges and
eR1 ≺ · · · ≺ eRr be the right outgoing edges at v then
the (edge) embedding at v is:

(u, v),
L(eL` ), e

L
` , R(eL` ), . . . , L(e

L
1 ), e

L
1 , R(eL1 ),

L(eR1 ), e
R
1 , R(eR1 ), . . . , L(e

R
r ), e

R
r , R(eRr )

u

where L(e) and R(e) denote the left and
right back edges to v whose cycles share
e. Within R(e) (and L(e)), back edges
are ordered using ≺ (and �) applied to
the fork of their cycles.

v

L(eL` )

R(eL` )



Algorithm

For every pair of back edges b1 and b2, determine if
they should be in the same or different LR-partitions.

different iff lowpt(e2) < lowpt(b1)
and lowpt(e1) < lowpt(b2)

1)

e2e1

b2

b1



Algorithm

For every pair of back edges b1 and b2, determine if
they should be in the same or different LR-partitions.

different iff lowpt(e2) < lowpt(b1)
and lowpt(e1) < lowpt(b2)

1)

e2e1

b2

b1

same if lowpt((x,w)) < min{lowpt(b1),
lowpt(b2)} for some (x,w) where x is
shared by C(b1) and C(b2) but w is not.

x
w



Algorithm

2) Create a constraint graph on back edges: constraint
edge (b1, b2) is red if b1 and b2 are different, or blue if
the same.

3) Find a balanced bipartition of the constraint graph:
red edges connect vertices (i.e., back edges) in
different partitions, blue edges connect vertices in the
same partition.


