Planar graph Planar drawing

Planar graph Planar (straight-line) drawing

Planar drawing

Planar Embedding

2,14,10
1,3,7
2,11,4
3,5,6
4,3,13,7,6
4,5

2,5
5,9,12
3,11,10
10: 1,9,11
11: 3,10,9
12: 8,14,13
13: 5,12,14
14: 1,13,12

Outer face: 1,14,13,5,7,2

LN R WME

(Clockwise order of neighbors.)

Planar graph

DFS orientation & numbering

— tree edge
~— =~ back edge

LR partition [Brandes 11]

DFS orientation & numbering

How to order and orient cycles?

Two (related) mechanisms:
Nesting (tree edges)

(6,8) cycle must be nested inside
(6,7) cycle (bend same way) Why?

\é J)/' Left / Right Partitioning (back edges)
14 both (7,2) and (11,3) can't
“bend” the same way Why?

How to order and orient cycles? ¥
)

Two (related) mechanisms: !

Nesting (tree edges) i

(6,8) cycle must be nested inside
(6,7) cycle (bend same way) Why?

I ¢ 1 1
\é J;/ Left / Right Partitioning (back edges)
)1 both (7,2) and (11,3) can't
A:L “bend” the same way Why?
A A
: :

|

14 (11 The return point of a back edge (v, w) is w.
1(> The return points of a tree edge (v, w) are

—+ %
u such that u = v = w — < wu.

N

A

=

return point of (6,4) is

) is
) is 2.
return points of (4,5) are 3,2,1.

return point of (5,7

—_— N — W ——

=

OC1—00

N

—_— N — W ——

AN

The return point of a back edge (v, w) is w.
The return points of a tree edge (v, w) are

—+ *
u such that u = v = w — < wu.

The lowpt of an edge (v, w) is its lowest
return point (or w if none exists).

lowpt of (6,4) is 4.
lowpt of (5,7) is 2.
lowpt of (4,5) is 1.

=

OC1—00

N

—_— N — W ——

AN

The return point of a back edge (v, w) is w.
The return points of a tree edge (v, w) are

+ %
u such that u = v = w — < wu.

The lowpt of an edge (v, w) is its lowest
return point (or w if none exists).

Back edge (x,u) is the return edge for itself
and every tree edge (v, w) with

S o w s e

14 (11 An LR partition is a partition of the
1T back edges into Left and Right so
O that for every fork el\v/eg

9 b e

6 e all return edges of e; ending strictly
higher than lowpt(es) belong to one
partition, and

e all return edges of es ending strictly

higher than lowpt(e;) belong to the
other.

N

=

—_— N — W ——

An LR partition is a partition of the
back edges into Left and Right so

10 that for every fork el\v/eg
te
e all return edges of e; ending strictly
higher than lowpt(es) belong to one

partition, and
e all return edges of es ending strictly

higher than lowpt(e;) belong to the
other.

|—x—>|\>—>oo—>-|>

Fork at v = 13 implies
(14,12) and (13,5) must be in different LR partitions

e all return edges of e; ending strictly

higher than lowpt(es) belong to one
partition

Iowpt(eg)

lowpt(eq)

e all return edges of e5 ending strictly
higher than lowpt(e;) belong to the

other. |OWpt(62)

same constraint = “all...belong”

different constraint = “belong to the other” lowpt(e1)

Theorem. A graph is planar if and only if it has an
LR partition (based on an arbitrary DFS orientation).

Proof. Use LR-partition to create a nesting order <
on outgoing edges at each vertex.

(Assign tree edge to same LR-partition as its return
edge with the

lowpt(e;) lowpt(es)

nighest return point.)

e1 = €9

eo 1S chordal

lowpt(eq)

Let e < -+ < ey be the left outgoing edges and
er’ < --- < el be the right outgoing edges at v then
the (edge) embedding at v is:

(u,),
L(ey). ey, Rley), ..., Lier), er, R(ey),
L(et)), et', R(er), ..., L(er), e, R(ey’)

where L(e) and R(e) denote the left and
right back edges to v whose cycles share
e. Within R(e) (and L(e)), back edges
are ordered using < (and) applied to
the fork of their cycles.

Algorithm

1) For every pair of back edges b; and bz, determine if
they should be in the same or different LR-partitions.

different iff lowpt(es) < lowpt(b;)
and lowpt(e;) < lowpt(bs)

Algorithm

1) For every pair of back edges b; and bz, determine if
they should be in the same or different LR-partitions.

different iff lowpt(es) < lowpt(b;)
and lowpt(e;) < lowpt(bs)

same if lowpt((x,w)) < min{lowpt(by),
lowpt(bs)} for some (x,w) where x is
shared by C(b1) and C(bs2) but w is not.

Algorithm

2) Create a constraint graph on back edges: constraint
edge (b1, b2) is red if by and by are different, or blue if
the same.

3) Find a balanced bipartition of the constraint graph:
red edges connect vertices (i.e., back edges) in
different partitions, blue edges connect vertices in the
same partition.

