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1 Delaunay Triangulation of Convex Polygons

• Assume no 4 circular points, find Delaunay triangulation of a convex polygon.

• Let S = ccw list of n vertices of convex hulls, DT (S) be the Delaunay triangulation of S.

To implement a linear time complexity algorithm, we randomly select one point from S and form a
triangle with the selected point and reduce the set S. However, the formed triangle is not always
guaranteed to be a Delaunay triangle.

1.1 Algorithm of DT(S)

DT(S)

1. if |S| = 3, return △ with vertices of S

2. pick q from S, let p, r be its neighbours.

3. T=DT(S\{q})+△pqr

4. Flip(T, q, rp)

Flip(T, q, rp)

1. if rp is bad i.e. not a Delaunay edge of T (which is equivalent to x ∈ #pqr (see Figure below))

• remove r̄p from T

• add q̄x to T

• Flip(T, q, rx)

• Flip(T, q, xp)

2. if r̄p is good, do nothing and return
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1.2 Time Complexity of DT(S)

To compute the run time of the randomized algorithm DT(S), use backward analysis.

• For Flip(T, q, rp), the number of runs is deg(q) in DT(S)

– average degree of a vertex q in DT(S), where |S| = n is
∑

deg(q)
n

= 2(# of edges in DT(S))
n

– deg(q) = 2(2n−3)
n

= 4− 6
n
, Flip(T,q,rp) is takes expected constant time.

• Each recursive call takes expected O(1) time in addition to the time for one more call on a smaller
problem. Thus the total runtime is expected O(n).

• DT(S) is O(n)

2 Incremental Delaunay Triangulation of point set S

2.1 Algorithm for General Point Sets

With the same algorithm for convex polygons, in each iteration,

• add a point p ∈ S randomly

• add edges from p to three vertices of the triangle that p falls inside of.

• flip the edges if the added edges are bad
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2.2 Time Complexity of General Point Sets

For the rest of the algorithm, we proved for linear complexity. We only need to figure out: how to know
which triangle does the selected point q falls inside?

• option1: maintain search structure for DT (S\{q})

• option2: re-bucketing remaining points to be added into newly created triangles.

For option 2, in ith iteration, what is the probability that a point x is re-bucketed when |S| = i?

• x is re-bucketed when the triangle containing x in DT(S) is created by adding q, thus the proba-
bility is 3

i

• E[#re-buckets of x] ≤
∑n

i=1
3
i
= O(log n)

• in total, for n points, option 2 have complexity of O(n log n)

3 Relatives of Delaunay Triangulation

1. Nearest neighbour graph of S: NN(S)

• draw edge x → y if y is closest to x, x, y ∈ S

• claim: NN(S)⊆DT(S)

• proof: if there is a point z other than x, y in circle with diameter x̄y, x, y are not the nearest
neighbour of each other.

2. Euclidean minimum spanning tree of S: MST(S)

• claim MST(S)⊆DT(S)
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• proof: let z be a point inside circle with diameter x̄y, z must be in one of the connected
components with root x or y if disconnect x̄y. Suppose z is in the connected component of
y, connect x, z will generate a new spanning tree but smaller.

3. Relative neighbourhood graph: RNG(S)

• connect x, y if the intersection area of circles centred at x, y and radius of |xy| is empty.

• claim RNG(S)⊆DT(S)

4. Gabriel graph: GG(S)

• connect x, y iff circle of diameter x̄y is empty.

• claim GG(S)⊆DT(S)

5. NN(S)⊆MST(S)⊆RNG(S)⊆GG(S)⊆DT(S)
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