
CPSC 516 Computational Geometry Fall 2022

Lecture 5: September 22
Instructor: William Evans Scribe: Aryan Tajmir Riahi

Disclaimer: Texts written in blue are not official material of this course. They just consist of some after-
class thoughts and searchs.

5.1 Efficient Convex Hull Algorithm

In the last lecture, convex hull problem as well as two convex hull algorithms were introduced e.g., Graham’s
Scan (with complexity O(n log n)) and Jarvis March (with complexity O(nh), where n denotes the total
number of points and h denotes the number of points on convex hull’s border. In this lecture the instructor
will introduce Chan’s algorithm which combines both algorithms and solves the convex hull problem with
time complexity O(n log h), then takes the first step to prove it’s the ultimate convex hull algorithm.

5.1.1 Outline of Algorithm

In this section the outline of Chan’s algorithm will be described. For this, they set a new input parameter
m, and design an algorithm which returns the convex hull if h ≤ m and FAIL otherwise. In the following
sections we will describe search methods for m. This outline is detailed in Algorithm 1.

Algorithm 1 Chan’s Algorithm (outline)

Input a set of points P = {p1, p2, . . . , pn} ⊂ R2, maximum number of points on the hull m ∈ N
1: Partition P into [nm] subsets of at most m points (arbitrarily), P1, P2, . . . , P[n

m]

2: Use Graham’s Scan algorithm to compute the convex hull of Pi (denoted by Hi), for each 1 ≤ i ≤ [nm]
3: Use a generalisation of Jarvis March to wrap His and compute H as the convex hull of all points

After running Graham’s Scan on each subset we also will delete the point in Pi −Hi. Clearly a point that
is not on the convex hull of its own subset is not on the convex hull of all points. Figure 5.1 show an exaple
of the situation after running Graham’s Scan. The key idea of this algorithm is to generalise Jarvis March
to wrap His efficiently. This step will be described in the following section.

5.1.2 Wrapping Convex Polygons

To construct the convex hull assuming our current vertex p, we should find the minimum point with the Left
Turn Check regarding p. To do it efficiently we use binary search on Hi (for each 1 ≤ i ≤ [nm]) to find the
minimum point in Pi. The steps for an example point and polygon are illustrated in Figure 5.2.

5.1.3 Time Complexity Based on m

To analyze the time complexity of Algorithm 1 note that:

5-1

Lecture 5: September 22 5-2

Figure 5.1: An example of the situation after running Graham’s Scan algorithm .

Figure 5.2: An example of the steps of binary search performed to wrap convex hulls (Blue vertices show
the current nodes algorithm is taking minimum between, while the cyan points indicates ignored area).

Lecture 5: September 22 5-3

• Step 1: This step clearly takes O(1).

• Step 2: This step consists of [nm] instances of Graham’s Scan algortihm each has time complexity
O(n logm) which is of O([nm]m logm) = O(n logm) in total.

• Step 3: In this step each binary search takes O(logm) and there are [nm] convex polygons so each step
of Jarvis March algorithm has time complexity O([nm] logm). Note that Jarvis March stops after either
it reaches a repetitive node (SUCCESS case) or after m steps (FAIL case). So the total time complexity
of this step is O(min(h,m)[nm] logm).

5.1.4 Search for m

To complete Chan’s Algorithm we should introduce a method to search for m bigger than h but close to
it (while we don’t know h). Note that we can’t afford to use a binary search on the whole interval of
1 ≤ m ≤ n as it would give us a factor of O(log n) which is not desired in the case of tiny h (we were
looking for something of O(n log h)). So our search method would consist of an increasing guessing sequence
of m1 = 1 < m2 < m3

5.1.4.1 Try Doubling Search

We try mi = 2×mi−1, i.e. mi = 2i. With this system we will have mlog h > h and the time complexity is:

log h∑
i=1

O(n log 2i +mi[
n

mi
] log 2i) =

log h∑
i=1

O(n log 2i) = O(n

log h∑
i=1

i) = O(n log2 h)

Unfortunately this method gives us slightly worse time complexity than what we desired.

5.1.4.2 Grow Faster

To guess more efficiently we try mi = m2
i−1, i.e. mi = 22

i

. In this method mlog log h > h so the time
complexity is:

log log h∑
i=1

O(n log 22
i

+mi[
n

mi
] log 22

i

) =

log log h∑
i=1

O(n log 22
i

) = O(n

log log h∑
i=1

2i) = O(n2log log h) = O(n log h)

So this method gives us exactly what we want. In fact any guessing sequence where mi is a polynomial with
degree > 1 of mi−1 gives us the same time complexity.

5.1.4.3 What If ...?

But what if we grow way faster, like trying mi = 2mi−1? To think of it, for the last guess of m in the
worst case we have m = 2h−1, so even just considering Step 2 of Algorithm 1 it leaves us Ω(n logm) =
Ω(n log 2h−1) = Ω(nh). So in the worst case this method fails drastically.

Lecture 5: September 22 5-4

5.2 The Lower Bound for a Convex Hull Algorithm

5.2.1 Algebraic Decision Tree

This computation is used to give a lower bound on time complexity of 2D convex hull algorithms. This model
is defined on the Euclidean space, i.e. real values shown by v ∈ Rn. This computation model consists of a
tree just like the comparison based model used for sorting, but in each vertex instead of simple comparison,
we compare two algebraic functions of degree d of v and based on the result of the comparison we will move
to one the children vertices.

Theorem 5.1. [Ben-Or 1983] Let W subsetRn be any subset and let T be any d-th order algebraic decision
tree that decides membership in W . If W has m disjoint connected components then T has height atleast
Ω((logm)− n).

5.2.1.1 Connected Components

Definition 5.2. For a W ⊂ Rn, points a, b ∈ W are connected if and only if there is a continuous function
f : [0, 1] → W with f(0) = a, f(1) = b. It is easy to see this notion of connectivity defines an equivalence
relation on W . The equivalence classes of this relation are called connected components of W .

5.2.2 Multiset Size Verification Problem

In the miultiset size verification problem, a multiset (a set where repetition is allowed) Z = {z1, . . . , zn} ∈ Rn

is given and the algorithm should return true if and only if |Z| = k.

Claim 5.3. Define Zk = {Z ∈ Rn| |Z| = k}. Define X = {X = (x1, . . . xn) ∈ Rn|xi ∈ {1, . . . , k}(1 ≤
i ≤ n) and x1, . . . , xk form a permutation of {1, 2, . . . , k}}. Then elements of X are in Zk and pairwise
disconnected within Zk.

Corollary 5.4. X has k!×kn−k elements. Using Theorem 5.1. on it the height of an algebraic decision tree
that decides Zk is at least Ω(log k!× kn−k −n) = Ω(k log k+(n− k) log k−n) = Ω(n log k). So an algorithm
that solves this problem has time complexity of Ω(n log k).

Proof of Claim 5.3. We say u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Rn have the same pattern (an equivalence
relation) if and only if we have

ui = uj ⇐⇒ vi = vj

ui < uj ⇐⇒ vi < vj

ui > uj ⇐⇒ vi > vj

for all 1 ≤ i, j ≤ n. Clearly elements of X have pairwise different patterns. Assume there is a, b ∈ X ⊂ Zk

where they are connected within Zk, i.e. there is a continuous f : [0, 1] → Zk with f(0) = a, f(1) = b. Define
P = {0 ≤ p ≤ 1|f(p)has not the same pattern as b}. By the assumption we have a ∈ P, b /∈ P . So we can
define p∗ = supP . Now assuming f(p∗) = (f(p∗)1, . . . , f(p

∗)n) we can set

δ = min
1≤i,j≤n,f(p∗)i ̸=f(p∗)j

|f(p∗)i − f(p∗)j |/2.

Lecture 5: September 22 5-5

As f is continuous there is an ϵ > 0 such that

∀p : |p− p∗| < ϵ ⇒ |f(p)− f(p∗)| < δ ⇒
{ f(p∗)i < f(p∗)j ⇒ f(p)i < f(p)j

f(p∗)i > f(p∗)j ⇒ f(p)i > f(p)j
.

The last deduction is based on the definition of δ. Using the fact that f(p) and f(p∗) should have exactly
k distinct elements we conclude that f(p∗)i = f(p∗)j ⇒ f(p)i = f(p)j. Taking it all together f(p) has the
same pattern as f(p∗) for all |p− p∗| < ϵ. Now there are two cases:

1. f(p∗) has the same pattern as b. Then for any p∗ − ϵ < p < p∗, based on the aforementioned equation
we conclude f(p) has the same pattern as f(p∗) which is the same as b. So this case is in contradiction
with the definition of p∗ (p∗ − ϵ is an smaller lower bound for P).

2. f(p∗) does not have the same pattern as b. Then let p = p∗ + ϵ/2 we conclude that p ∈ P so this case
is in contradiction with definition of p∗.

So Claim 5.3. is proved.

