Kassian Kock

Yibo Jiao

Solutions Homework 2 CPSC 516 2022

o

2. Statement 1

The sum of all points of P to an arbitrary L that has all points of P on one side is equal to the
centroid of all points to L multiplied by n

proof:

Denote an arbitrary point p;: p; = (24, 1), centroid of all points of P is:c = (En‘”., %y’) With the

fact that all points on the same side of L, the distance from ¢ to L : ax + by + ¢ = 0O:

|%+@Tyl+( 7 Z|(u + by; +
Va2 + 1 Va2 + b

which is the sum of distances of all points of P to L. QED.

Statement 2

Such L must not intersect with interior Hull(P), and must pass through at least one vertex of
Hull(P)

proof:

Firstly, if L intersects with interior of Hull(P), then there must at least two points that are
on different sides of L, proved intuitively. Secondly, if L does not intersects with interior of
Hull(P) and does not pass through any vertex of Hull(P), the sum of distances is not minimized.
Translating L in parallel until L intersects at least 1 vertex decreases the sum of distances. Denote
the initial sum of distances as d, and translation distance as ¢, the decreased distance is d — nt

L

H wh lP ) ,f \ H wl "P ) / L



Dylan Brown

Statement 3

Such L must intersects with at least 2 vertices of Hull(P), i.e., L contains at least one edge of
Hull(P).

proof:

We prove that any L that intersect only 1 vertex a, has larger sum of distances than at least one
of the lines that passes a and another adjacent point (b) on the hull.

- L— L-
. a
The centroid c¢ lies inside Hull(P) because convex hulls of points contains all possible linear
combination of all points, ¢ is one of the linear combination of points of P. Since Hull(P) is
convex, denote the two adjacent vertices of a as b, ¢, Zbac < 180°, therefore, the distance from c
to L' is smaller than to L because L’ passes through a, and L’ is not a tangent line of the circle
centered at ¢ passes a. QED.
By Statement 1,23, such L must not intersects any interior of Hull(P) and passes at least 2
vertices of Hull(P), therefore, the minimum supporting line contains one of the edge of Hull(P).
Pseudo-code:

¢ < centroid of all points in P
H + convex hull of P
for each edge h in H do

d < dist(c, h)

if d < output then

output < d

end if
end for
return output

3. (from Zurich Exercise 4.31) Consider k convex polygons Py, ... , Py, for some constant k € N,
where each polygon is given as a list of its vertices in counterclockwise orientation. Show how
to construct the convex hull of P; U...U Py in O(n) time, where n is the sum of the number
of vertices in P; over all 1 <3 < k.

Note that the following algorithm is more or less Graham’s Scan, but we can cleverly avoid
sorting the points.

Algorithm. We will use a modified Graham’s Scan to connect the points. Normally Graham’s
Scan takes O(nlogn) time to sort the points, then O(n) time to scan through the sorted
points. I will show that I can return the next point to scan in O(1) time without sorting the
array, so all we need is the O(n) scan time and our algorithm is O(n). At the first step, we
still find the minimum point across all polygons p; in O(n) time. Next, we will use binary
search to find the most clockwise point of each polygon P;. This requires O(logn) work across
k polygons, for a total setup time of O(logn).

Now, at each stage, the next vertex to visit with be the most clockwise of these k points
(assume the point comes from F;), which we can workout in O(k) = O(1) time. Now we need
only workout what the new most clockwise unvisited point is for P;, and we’ll be ready for
the next step.

Since P; is convex, the vertices which we’ve already visited / have angle less than some
particular angle will be consecutive. Therefore, so long as we track which one’s we’ve already
visited, there are at most 2 possible candidates for the new most clockwise unvisited point:
the two vertices on either end of this consecutive sequence of visited vertices. We can workout
which one it is in O(1) time, which is what we needed.

So to recap: At each stage, we track the most clockwise unvisited point for each polygon,
we grab the most clockwise unvisited point across all polygons, then we find a new unvisited
point for the polygon we grabbed from, all in O(1) time. This means that we can simply run
the O(n) Graham Scan without pre-sorting by replacing accessing our sorted array with this
procedure, and so we have an O(n) algorithm for the convex hull of & convex polygons.



Aryan Tajmir Riahi

Dylan Brown

Question 4

The problem of deciding evenly spaced arrays has two variants:
(a) Returns YES if and only if the array is evenly-spaced even if z1 =29 = -+ = z,.
(b) Returns YES if the array is evenly-spaced but returns NO in the case that 1 = 29 = -+ = zp,.

Notice that the only difference between the output of these two variants is in one case (7 = z9 =
-+« = x,) which can be checked in O(n). Hence, these two variants can be reduced two each other in
O(n). So it only suffices to prove the problem for variant (b).

Claim 4.1. Assume 7, C R" is the set of all permutations of 1,2,...,n. Also assume W is
the set of all points in R™ the the variant (b) returns YES for them. Then points in 7, are pairwise
disconnected within W.

Proof. Assume a = (ay,...,a,),b = (b1,...,b,) € m, are connected within W. It means there
exist a continuous function f : [0,1] — W where f(0) = a, f(1) = b. As a # b the exist an inversion
between them ie. 31 < i # j < n where a; < a;,b; > b;. Now define a new continuous function
g:W = Rby g(z1,...,2,) =2; — x;. As f, g are both continuous so is g o f and we have

go f(0) =g(f(0)) =g(a) =a; —a; <0,

go f(1) =g(f(1)) = g(b) = bi —b; > 0.
By the Intermediate value theorem we conclude that there is some 0 < ¢ < 1 such that g o f(c¢) =0,
ie. f(c); = f(c);. Now, as f(c) is evenly-spaced (it should be a path in W) we should have
fle)1 = f(e)2 = -+ = f(¢)n. Thus, f(c) ¢ W by definition. Hence our claim is proved by con-
tradiction.

Now using Ben-Or Theorem we conclude that any algebraic decision tree that decides W (or solves
the variant (b)) should have Q(log(|m,|) — n) = Q(log(n!) —n) = Q(nlogn) depth.

5. Given n real numbers S = (1, x9,... ,x,) and a real number g, we would like to determin

the algebraic decision tree model requires €2(nlogn) time to solve this problem. [Hint: Use

reduction.]

e

if the maximum space between these numbers is g, that is, the maximum difference between
the ¢th and (i + 1)st smallest in S over all 1 < i < n —1 is g. Show that any algorithm in

el

Proof. We will show this by reducing trom the evenly-spaced problem given in (4). Let

S = {(xr1.29,... .xy) be n real numbers, then we want to determine if they are evenly spacec

i

In ©(n) time we can find the minimum eclement ' and the maximum element x*. If S is
indeed the permutation of an arithmetic series, then we must have that for some d > 0, x* =

'+ (n—1)d, so define d = (2* — 2')/(n — 1), and determine if the maximum spacing of S
d.

If it is, then since we have that * = 2’ + (n — 1)d, and there are only n elements. it must b

18

e

that each of the difference constraints is tight: that is that it must be that each consecutive

element is exactly d greater than the previous, otherwise the largest element could not b

e

(n — 1)d greater than the smallest. This then means that our set S is evenly spaced, and we

can return true.

It cannot be that the maximum spacing is less than d. because we have that 2% = 2/ +(n—1)d,

so for some of the n — 1 differences to be less than d some of the others must be greater.

If the maximum spacing is greater than . then similarly because a* = 2/ + (n — 1)d it must

be that there is some spacing which is smaller than d, so the spacings are not all the sam
our set is not evenly spaced, and we can return false.

€,

We have given a reduction from evenly-spaced to maximum spacing with O(n) overhead. so
& ¥ i=1

since evenly-spaced is Q(nlogn) under the algebraic decision tree model, maximum spacit
is also Q(nlogn) under the algebraic decision tree model, and we are done.

12
]



	Page 1
	Page 2
	Page 3

