
CPSC 516 Computational Geometry Name: Seyed Ali Tabatabaee
Homework 1
September 29, 2022

1. Vertices are numbered from 1 to n. If vertex i has ei chords connected to it, then the vertex
appears in ei + 1 pieces. Hence, the sum of the number of vertices in all of the pieces is
equal to

�n
i=1 (ei + 1) = n+

�n
i=1 ei. Each chord is counted for 2 vertices; therefore, ifm

shows the total number of chords, then
�n

i=1 ei = 2 ·m. Hence, the sum of the number of
vertices in all of the pieces is equal to n+2 ·m. Since we partitioned a simple polygon into
pieces by these chords, the number of chords ism ≤ n− 3 (this was discussed in the class,
but the proof is also very easy by induction). Hence, the sum of the number of vertices in
all of the pieces is great than or equal to n and less than or equal to 3 · n− 6; therefore, it
is O(n).

2. Without loss of generality, we assume no two points are on the same vertical line (We can
always rotate all points so that this happens).
We use a sweep line algorithm. Our sweep line is vertical and from le� to right. It starts with
line x = xmin (xmin is the minimum x-coordinate among all points and triangle vertices)
and ends with x = xmax (xmax is the maximum x-coordinate among all points and triangle
vertices). Our events are:

• when a triangle starts
• when a triangle ends
• when we see a point

Hence, the total number of events is O(n).
We keep a red-black tree structure, containing triangles that have started, but not ended
yet and are not any other triangle (we call those triangles alive). �e intersection of a
triangle with a vertical line is either null (the triangle is not alive at that point), a point
(start or end of the triangle), or an interval. For alive triangles, their intersections with the
current position of the sweep line do not intersect (otherwise, it means that the triangles
intersect which is impossible). Moreover, for the duration that any two triangles are alive
together, the intersection of one of those triangles with the sweep line is always higher than
the intersection of the other triangle with the sweep line and this order does not change
(otherwise, it means that the two triangles intersect). �erefore, the order of alive triangles
does not change and we have a consistent order for keeping them in the red-black tree
structure. When our sweep line is at x = cur, for any alive triangle in the red-black tree
we can compare in O(1) if a point (cur, y) is inside, below, or higher than the interval of
the alive triangle on the line x = cur.
Now we see how to handle events:

• When a triangle starts (it always starts with a point - let’s call that point p), we check
p with the alive triangles in the red-black tree. If p falls in the interval of any alive
triangle, then the new triangle is inside an alive triangle and hence we don’t need to
care about the new triangle because if a point falls in it, it also falls in the alive triangle
that we already have in the red-black tree. Hence, the new triangle will never become
alive and won’t be added to the red-black tree. If p is not inside the interval of any
alive triangle, the new triangle will also become alive and we �nd its position in the
red-black tree by comparing p with alive triangles (is it higher or lower), and then
update the red-black tree by adding the new alive triangle. If we have k elements in
the red-black tree, this operation is done in O(log k) (because k ≤ n, we can say this
operation is done in at most O(log n).

• When a triangle ends, (it always ends with a point - let’s call that point p), we just need
to �nd the triangle in the red-black tree that has point p in the intersection with the
current vertical sweep line and remove that triangle because it will no longer be alive.
Comparisons of point pwith the triangles in the red-black tree and then removing the
dead triangle from the red-black tree can be done in O(log k) if there are k triangles
in the red-black tree (because k ≤ n, we can say this operation is done in at most
O(log n).

• When we see a point p, we can check p with the alive triangles in the red-black tree
to see if p falls in the vertical intervals that those triangles have in intersection with
the current sweep line. If so, we know that p is inside a triangle. If not, we report p as
a point that lies outside all triangles. �is operation can be done in O(log k) if there
are k triangles in the red-black tree (because k ≤ n, we can say this operation is done
in at most O(log n).

�is way we handle all the points and check if they fall inside any triangle or not. We have
O(n) events and handle each of them in at most O(log n). Hence, the total running time of
the algorithm is O(n log n).

S
ey

ed
 A

li 
Ta

ba
ta

ba
ee

D
yl

a n
 B

ro
w

n
Solutions Homework 1 CPSC 516 2022



• When we see a point p, we can check p with the alive triangles in the red-black tree
to see if p falls in the vertical intervals that those triangles have in intersection with
the current sweep line. If so, we know that p is inside a triangle. If not, we report p as
a point that lies outside all triangles. �is operation can be done in O(log k) if there
are k triangles in the red-black tree (because k ≤ n, we can say this operation is done
in at most O(log n).

�is way we handle all the points and check if they fall inside any triangle or not. We have
O(n) events and handle each of them in at most O(log n). Hence, the total running time of
the algorithm is O(n log n).

Problem 3.
Note: my proof and algorithm technically assume points on opposing staircases do not share the

same y-coordinate, except for the top two points (i.e. steps on the two staircases are not at the
same height). This is not too hard to fix, but is a little subtle and I did not want to introduce any
technical errors.
(a)

Some notation before we begin. Consider an orthogonal pyramid P . Let Ph be the horizontal
edge whose length is the sum of all other horizontal edges. Without loss of generality we will say
Ph is on the bottom of P . The “staircases” of P are two y-monotone chains (i.e. with respect to
the vertical). The two monotone chains are connected by a topmost edge, which is horizontal. Let
Pl,1 and Pr,1 be the left and right vertices on this edge. More generally we let Pl,i and Pr,i be the
i-th vertices in the respective chains, starting from the top.

Note additionally that the two chains are also x-monotone (if one doubled-back horizontally, then
Ph would not be long enough to meet the definition). This is clear from the “staircase” structure,
but is worth stating explicitly.

We prove the desired result by induction on n, the number of vertices. In fact we prove a slightly
stronger result: there is a partitioning into convex quadrilaterals such that neither of the top two
vertices Pl,1 nor Pr,1 is incident with a chord. The smallest orthogonal pyramid has n = 4, in
which case the result trivially holds. So assume n ≥ 5, and suppose the result holds for all smaller
orthogonal pyramids.

Consider the line segment e = Pl,2Pr,2.

First, we claim that e is a (legal) chord. The segment e does not intersect Ph, since h is a
horizontal line that is no higher vertically than either of the ends of e. Similarly, the segment e
avoids the topmost edge Pl,1Pr,1. Furthermore, all edges of the left chain are to the left of Pl,2 (by
x-monotonicity), and the segment e leaves Pl,2 to the right, so none of the edges of the left chain
can intersect with e. A similar argument shows that e avoids all edges of the right chain. So it is a
chord.

After adding this chord, the pieces obtained are the quadrilateral Pl,1, Pl,2, Pr,2, Pr,1, and another
polygon Q. Note that the quadrilateral is convex since it contains two right angles (which, with a
total of 360 degrees between all of its angles, makes it impossible to have a reflex angle.) It therefore
suffices to show that Q has a partitioning into convex quadrilaterals. The polygon Q is almost an
orthogonal pyramid, except it has one edge (namely our chord Pl,2, Pr,2) that is diagonal in place of
one of the edges that should be vertical.

J
o

s
e

p
h
 P

o
re

m
b

a



Without loss of generality, say Pl,2 is lower vertically than Pr,2. Note that the top two vertices
of Q are Pr,2 and its horizontal neighbour Pr,3. Let z be the point with the same y-coordinate as
Pr,2 and the same x-coordinate as Pl,2. Consider the polygon Q� obtained from Q by replacing Pr,2

with z (connected to both Pl,2 and Pr,3). Note that Q� is an orthogonal pyramid, and has fewer
vertices than P . By induction, it has a partitioning into convex quadrilaterals, and furthermore that
partitioning has no chords incident with z or Pr,3. By partitioning Q using the exact same chords
as those for Q�, we obtain a partitioning of Q into convex quadrilaterals. (Note that since no chord
is incident with z or Pr,3, it must be the case that one of the quadrilaterals is zPl,2Pr,4Pr,3. This
quadrilateral stays convex when shifting z back to Pr,2.)

(Aside: Another way I can see doing this proof: rather than imposing the additional restriction
prohibiting a chord incident with the top two vertices, we define an almost orthogonal pyramid to
be like an orthogonal pyramid but allow the edge Pl,1Pl,2 or the edge Pr,1Pr,2 to be diagonal, and
show the result holds for almost orthogonal pyramids.)
(b)

We essentially convert the above proof into an algorithm. Our algorithm takes as input the
orthogonal pyramid and its top two vertices Pl,1, Pr,1.

Partition(P, Pl,1, Pr,1):

1. C ←
�
Pl,2Pr,2

�
(the set of chords).

2. If Pl,2 has lower y-coordinate than Pr,2, let i = l and ī = r. Otherwise let i = r and ī = l.

3. Let z be the point with the same y-coordinate as Pī,2 and same x-coordinate as Pi,2.

4. Define polygon Q� by taking P , removing the vertices Pl,1, Pr,1, and Pī,2 (and all incident

edges), adding the point z, and adding the edges Pi,2z and zPī,3.

5. C ← C ∪ Partition(Q�, z, Pī,3).

6. Output C.

Through a linear scan, it would take O(n) time to find the initial Pl,1, Pr,1 to feed into Partition.
Each recursive call operates on a polygon with two fewer points, and (assuming a reasonable data
structure like a linked list) all the traversals and manipulations in one recursive step are constant
time, so the runtime recurrence is T (n) = T (n− 2) +O(1). The runtime is thus O(n).

Question 4

For this problem we modify the Graham’s Scan algorithm just a little bit. First we take point p with
the smallest x-coord. Then sort all other points with the left turn check with increasing slope from
p (p1, . . . , pn−1). Now p, p1, . . . , pn−1 is our simple polygon. The time complexity of this method is
O(n log n) as it just contains a sort. To briefly check the simplicity of the polygon we can check these
steps:

• p1 is the left most point seen from p so pp1 does not intersect anything.

• same goes for ppn−1

• if pipi+1 intersects pjpj+1 we have either pi < pj < pi+1 or pj < pi < pj+1 (regarding the left
turn check from p), but the array was sorted so it’s proven by contradiction.

To check if there is a better algorithm consider the case where all points are on the boundary of a
circle. Clearly the only possible answer in this case is the convex hull of these points. But as pointed
out in the class there is no algorithm better than O(n log h) (that is O(n log n) in this case) for 2D
convex hull.

A
ry

a
n

 T
a
jm

i r
 R

ia
h
i

Yibo Jiao


	Page 1
	Page 2
	Page 3

