

Matchmaker: Constructing Constrained Texture Maps
Vladislav Kraevoy Alla Sheffer Craig Gotsman

vlady@cs.technion.ac.il sheffa@cs.technion.ac.il gotsman@cs.technion.ac.il
Computer Science Department, Technion-Israel Institute of Technology

+

=

Figure 1: Constrained texture mapping. Dots indicate constrained vertices and their positions.

Abstract

Texture mapping enhances the visual realism of 3D models by
adding fine details. To achieve the best results, it is often nec-
essary to force a correspondence between some of the details
of the texture and the features of the model.

The most common method for mapping texture onto 3D
meshes is to use a planar parameterization of the mesh. This,
however, does not reflect any special correspondence between
the mesh geometry and the texture. The Matchmaker algorithm
presented here forces user-defined feature correspondence for
planar parameterization of meshes. This is achieved by adding
positional constraints to the planar parameterization. Match-
maker allows users to introduce scores of constraints while
maintaining a valid one-to-one mapping between the embed-
ding and the 3D surface. Matchmaker’s constraint mechanism
can be used for other applications requiring parameterization
besides texture mapping, such as morphing and remeshing.

Matchmaker begins with an unconstrained planar embedding
of the 3D mesh generated by conventional methods. It moves
the constrained vertices to the required positions by matching a
triangulation of these positions to a triangulation of the planar
mesh formed by paths between constrained vertices. The
matching triangulations are used to generate a new parameteri-
zation that satisfies the constraints while minimizing the devia-
tion from the original 3D geometry.

Keywords: Triangle meshes, Texture Mapping, Parameteriza-
tion

1. Introduction

Texture mapping is a ubiquitous tool in computer graphics that
easily adds the appearance of detail to otherwise bland object
surfaces. The most common way to define texture on 3D sur-
face meshes is by parameterizing the mesh over a planar do-
main, providing a one-to-one mapping between the parameter
domain and the surface. To obtain visually pleasing results, the
metric distortion introduced by the mapping should be kept to
minimum. An additional requirement, often necessary, is the
enforcement of feature correspondence between the texture
and the 3D surface. For example, when applying face texture
to a head model, the eyes must be placed in the sockets, the
mouth should correspond to the model’s mouth, and so on.
Constraints also help hide texture seams resulting from param-
eterization discontinuities [Gu et al. 2002; Sheffer and Hart
2002].

A similar need may arise when pasting parts of one geometry
onto another [Biermann 2002], or building a correspondence
between two 3D surfaces by aligning the features on their
parameterizations [Alexa 2000].

1.1 Previous Work

The problem of generating a planar parameterization for a 3D
mesh surface has received a lot of attention over the past sev-
eral years [Floater 1997; Lévy and Mallet 1998; Hurdal et al.
1999; Hormann and Greiner 1999; Sheffer and de Sturler
2000; Haker et al. 2000; Sander et al. 2001; Lévy et al. 2002;
Desbrun et al. 2002]. All the methods provide a parameteriza-
tion by embedding the 3D mesh in the plane and using the
embedding function together with barycentric coordinates
within each mesh triangle to define a piecewise-affine map-
ping. Some of the methods guarantee the validity of the result-
ing parameterization (i.e. that it is one-to-one) [Floater 1997;
Hurdal et al. 1999; Hormann and Greiner 1999; Sheffer and de
Sturler 2000; Sander et al. 2001] by ensuring that the embed-
ding does not contain overlapping triangles. All the methods
strive to minimize the distortion of the metric structures occur-
ring during the mapping, using different distortion metrics.
Many authors [Eck et al. 1995; Hurdal et al. 1999; Sheffer and
de Sturler 2000; Haker et al. 2000; Lévy et al. 2002; Desbrun
et al. 2002] minimize different variants of a conformality met-

ric. Sander et al. [2001] minimize a stretch metric, solving a
highly non-linear minimization problem. One property which
affects the level of the distortion is the shape of the parameter
domain’s boundary. Some methods [Floater 1997; Sander et al.
2001; Eck et al. 1995; Lévy and Maillot 1998] require the do-
main boundary to be a convex polygon, thereby increasing the
resulting distortion. More recent works [Hormann and Greiner
1999; Sheffer and de Sturler 2000; Lévy et al. 2002; Desbrun
et al. 2002; Sander et al. 2002] eliminate this constraint, com-
puting the boundary as part of the minimization procedure. In
this way they are able to achieve significantly lower levels of
distortion. None of the methods provides a straightforward
solution to enforcing positional constraints on the vertices of
the planar embedding.

Several researchers introduced methods which satisfy posi-
tional constraints approximately or “softly”. Guenter et al.
[1998] used a learning theory approach to build the position
correspondence, satisfying a set of soft constraints. His method
is not guaranteed to find a solution. Lévy and Mallet [1998]
allowed user-defined matching of iso-parametric curves. In a
later work Lévy [2001] suggested a method to incorporate soft
positional constraints into the formulation of the parameteriza-
tion problem. His algorithm satisfies the constraints in the
least-squares sense. The method works well for a small num-
ber of constraints, but can fail for large sets of constraints,
resulting in an invalid parameterization. Soft constraints may
give acceptable results for feature matching. However, for
other applications such as hiding texture discontinuities along
seams in the parameterization, hard constraints must be used to
achieve perfect alignment of the texture along the seams.

Desbrun et al. [2002] use Lagrange multipliers to add “hard”
constraints to the parameterization formulation. Similarly to
Lévy [2001], the method works well for a small number of
constraints, but can generate foldovers when the number in-
creases.

Alexa [2000] addressed a related problem of embedding a
closed genus-0 3D mesh on a sphere with constraints. The
motivation for this work was morphing of 3D meshes and the
constraints were used to align features between two meshes.
However, the heuristic solution he suggested does not guaran-
tee a solution, even if one exists.

Providing a valid mesh embedding that exactly satisfies a set
of positional constraints is extremely difficult. Indeed, it is
easy to show that for a given mesh connectivity not every set
of constraints can be satisfied (see Figure 2 (a)). At the same
time, an embedding can always be found if the mesh is en-
riched by adding a number of additional Steiner vertices [Pach
and Wenger 1998] (Figures 2 (b) and (c)). Regrettably, find-
ing the minimal number of vertices that have to be added is
NP-Hard [Pach and Wenger 1998]. Eckstein et al. [2001]
introduced a method that enforces “hard” (exact) positional
constraints by deforming an existing embedding while adding
a number of Steiner vertices. This method theoretically can
handle large sets of constraints but is extremely complicated.
Relying on a multiresolution construction, it is difficult to im-
plement and not very robust. The examples presented in that
paper are rather simple, so it is not obvious how the method
scales to more complicated inputs.

(a) (b) (c)

Figure 2: A mesh and a set of constraints which cannot be
satisfied without Steiner vertices. (a) Original connectivity.
Arrows indicate constrained locations. (b) Connectivity with
extra Steiner vertices (white circles) and connecting edges
(orange). (c) Mesh satisfying the constraints.

1.2 Matchmaker overview

In this paper we introduce a new method, called Matchmaker,
which enforces positional constraints in a parameterization.
The method satisfies the constraints exactly while preserving
as much as possible the metrics (angles, distances) of the
original 3D geometry.

The input to Matchmaker is an existing planar embedding of
the 3D mesh. The boundary of the planar domain can have any
shape. Therefore free-boundary methods such as [Sheffer and
de Sturler 2000; Lévy et al. 2002] can be used to generate the
initial embedding, resulting in significantly lower parameteri-
zation distortion. To parameterize closed surfaces or surfaces
with high genus we cut the surface into a single patch using the
method of Sheffer and Hart [2002]. Matchmaker maps the
fixed vertices to the user-defined positions as follows. First it
matches a triangulation of the positions to a triangulation of
the planar mesh formed by paths between constrained vertices.
Then, the matching triangulations are used to generate a new
parameterization that satisfies the constraints while minimizing
the metric distortion. Similarly to Eckstein et al. [2001], when
necessary, we add a small number of Steiner vertices.

Matchmaker can handle a large number of constraints, includ-
ing those that require large deformation of the planar input
mesh. The algorithm enforces these constraints while adding
only a small number of Steiner vertices to the 3D mesh. It also
minimizes the distortion, introduced by adding the constraints,
to an acceptable level. (The effect of large distortion on a
parameterization can be seen in Figure 3 (h), which shows an
intermediate, unsmoothed mapping.) Last but not least,
Matchmaker is very efficient and simple to implement. It does
not require any additional user interaction beyond specification
of the constraints.

The rest of the paper is organized as follows. Section 2 defines
the terminology used throughout the paper. Section 3 provides
an overview of the algorithm. Section 4 describes in detail the
main step of the algorithm – the construction of the matching
positions and mesh triangulations. Section 5 demonstrates the
application of the method on several examples and discusses
some implementation details. The last section (Section 6)
summarizes the work and described areas of future research.

2. Definitions

To define the matching procedure that is at the heart of the
Matchmaker algorithm, we introduce the following notations.
A triangulation T(P) of a set P of points in 2D is a partition of

the plane by a maximal number of non-intersecting segments
between points in P. It is easy to see that all the bounded re-
gions in the partition must be triangles [de Berg et al. 2000].

A mesh triangulation TM(W) of a planar mesh M induced by a
set of vertices W is a partition of M into patches where the
boundary of each patch is defined by three edge paths in M
between vertices in W. A mesh triangulation is valid iff
• The paths are distinct and do not intersect except at the

shared end vertices in W.
• The patches do not overlap.
• Each patch is a single, manifold connected component.

Consider a set of vertices W in a mesh and a corresponding set
of positions P in the plane, s.t. |W|=|P|. A triangulation T(P) of
P and a mesh triangulation TM(W) induced by W are said to
match iff
• TM(W) is valid.
• Each edge (pi,pj) in T(P) corresponds to a path (wi,wj) in

TM(W) and vice-versa.

3. The Matchmaker Algorithm

The input to Matchmaker consists of a planar mesh M, a set of
constrained mesh vertices VC, and a matching set PC of the
user-defined 2D positions of those vertices. The main use of
the planar mesh is to generate the optimal virtual boundary to
minimize the anticipated parameterization distortion.

The stages of the algorithm are listed below. They are de-
scribed in more detail in the following sections. Figure 3 dem-
onstrates the implementation of the algorithm on a small ex-
ample.

1. Virtual Boundary: First, the mesh is embedded in a

bounding rectangle and the region between the mesh
boundary and the rectangle is triangulated. This generates a
new mesh M* which consists of the triangles of M and the
new triangles (Section 3.1). We fix the vertices of the vir-
tual boundary in their current locations, adding them to VC
and PC, respectively.

2. Matching: This is the heart of the algorithm. The matching
procedure finds a triangulation T(PC) of the fixed points PC
and a matching triangulation TM*(VC) of the mesh M* (Sec-
tion 4). The matching adds Steiner vertices to the mesh if it
fails to compute the matching triangulations without them.

3. Embedding: Given the matching triangulations, each mesh
triangle in TM*(VF) is mapped to the corresponding triangle
in T(PF) (Section 3.2). After the mapping we obtain a
provably valid embedding of the original mesh which satis-
fies the constraints (Figure 3 (g)).

4. Smoothing: The resulting embedding is smoothed, keeping
the fixed vertices in place, in order to reflect the geometry
of the 3D model as much as possible (Section 3.3).

5. Post-Processing: To reduce the number of redundant
Steiner vertices, those that can be removed without violat-
ing the validity of the mapping are removed from the mesh
(Section 3.4)

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 3: Mapping a tiger face onto a human. (a) 3D model with VC vertices. (b) Unconstrained parameterization. (c) Parameteriza-
tion with virtual boundary. (d) Texture with PC points. (e) Triangulation of PC points. (f) Matching triangulation TM*(VC) of M*. No
Steiner vertices are required. (g) Triangle embedding. (h) Textured model after embedding. (i) Mesh after constrained smoothing.
(j) Resulting textured model.

The result of the algorithm is a valid embedding that satisfies
the constraints while closely preserving the metrics of the un-
constrained parameterization.

We now describe each step in more detail.

3.1 Virtual Boundary Construction

The boundary of the planar input mesh M can have any shape.
If they are not user-fixed, the boundary vertices should move
freely following the constraints, reducing the mapping distor-
tion. However, we need a fixed boundary surrounding the en-
tire parametric domain in order to perform the embedding
(Section 3.2). Therefore, Matchmaker adds a rectangular vir-
tual boundary to the mesh. The region between the true and
virtual boundaries is triangulated using a constrained Delaunay
triangulation [Shewchuk]. The boundary construction can han-
dle input meshes with several connected components (e.g.
Figure 9). This enables Matchmaker to apply constraints to
entire parameterization atlases, not only to individual pieces.
No previous method has been able to do this. From here on the
algorithm operates on the mesh M* which contains both the
triangles of M and the newly generated ones. The number of
virtual boundary vertices is roughly proportional to the number
of vertices on the boundary of the unconstrained mesh. The
vertices of the rectangular boundary together with their current
positions are added to the constrained vertex set VC. Figure 3
(b) and (c) show a planar mesh before and after the virtual
boundary was added.

3.2 Embedding

Once the matching, to be described in Section 4, is complete,
we obtain a triangulation T(PC) of the fixed points PC and a
matching mesh triangulation TM*(VC) of M*. Each triangle Ti
in T(PC) corresponds to a triangular patch Si of TM*(VC). The
vertices of each triangle Ti are three positions (pk,pl,pm) of
three constrained vertices (vk,vl,vm). The patch Si is bounded by
the paths between these three vertices (vk,vl),(vl,vm), and
(vm.vk). The mesh is embedded into the triangulation as fol-
lows.

1. Place the vertices vi in VC at the corresponding positions pi.
2. For each path (vi,vj) in the mesh triangulation, place the

path vertices at equal distances along the space triangula-
tion edge (pi,pj).

3. For each patch Si, use barycentric parametrization [Tutte
1963] to place its interior vertices inside the triangle Ti. The
barycentric mapping of a mesh into a convex domain is
known to produce a valid embedding.

The result of the procedure is a valid embedding of the mesh
M* which satisfies the positional constraints (Figure 3 (g)).
The new mesh is referred to as Mnew throughout the rest of the
paper.

3.3 Constrained Smoothing

The embedding generated in the previous step is provably
valid. However, the shape of the mesh Mnew is very different
from that of M*. As a result, using Mnew as a parameter domain
for the original 3D surface will introduce very high metric
distortion (Figure 3 (h)). The smoothing procedure is aimed at
restoring the metrics of the original mesh by re-parameterizing
Mnew using a variant of the conformal (harmonic) mapping

[Eck et al. 1995]. The weights for the mapping are derived
either from the unconstrained mesh M* or the original 3D
surface.

The mapping algorithm is modified to maintain the constrained
vertices in place and to prevent foldovers. We use an iterative
procedure, in which we repeatedly compute the new positions
pnew of the unconstrained mesh vertices v in V \ VC from the
positions of their neighboring vertices. After a position is
computed, we test whether the triangles incident on the vertex
v remain correctly oriented. If any triangle folds over, the ver-
tex position is left unchanged. A quite similar constrained
procedure was used by Sander et al. [2001]. This test guaran-
tees that the resulting mesh remains valid, namely has no fold-
overs. After smoothing is complete, the resulting mesh (Figure
3 (i)) is very similar in shape to the unconstrained input mesh
(Figure 3 (c)).

3.4 Post-Processing

In the post-processing step we finalize the parameterization of
the original 3D surface using Mnew. In order to use the
smoothed mesh Mnew as the parameter domain for the 3D sur-
face it needs to have the same connectivity as the 3D mesh.
The first step towards this is to discard the virtual boundary
triangles that are no longer needed. If the matching procedure
did not add Steiner vertices to the planar mesh, the connec-
tivity of M* and the 3D mesh will now be identical and the
goal will have been achieved. If Steiner vertices were added,
they need to be added to the 3D mesh as well. To minimize the
number of changes in the 3D mesh connectivity, the algorithm
removes all unnecessary Steiner vertices from Mnew. Thus, only
a fraction of the vertices added by the matching process actu-
ally remains in the 3D mesh. The algorithm scans the Steiner
vertices, testing if they can be removed. A vertex can be re-
moved iff the mesh does not fold over after the removal and
the original connectivity is preserved. Figure 6 shows a part of
the head model (Figure 9) embedding before and after the
removal of Steiner vertices.

After post-processing, Matchmaker has achieved the goal of
generating a valid, low-distortion parameterization of the 3D
surface which satisfies the user-defined constraints.

4. Matching

The matching procedure is the heart of Matchmaker. This pro-
cedure generates a triangulation T(PC) of the positions PC and
a matching triangulation TM*(VC) of the mesh M*. Once a valid
match is found, the algorithm can proceed with the embedding
stage (Section 3.2). Therefore, finding a valid match is equiva-
lent to finding an embedding of the mesh that satisfies the
constraints. There are combinations of mesh connectivity and
constraints for which a match does not exist (Figure 2). How-
ever, these combinations can always be resolved by adding
Steiner vertices to the mesh (Figure 5). Determining if a match
exists (with no additional vertices) is equivalent to finding an
embedding. Hence, it is an NP-hard problem, as is the question
of how many Steiner vertices must be added to generate a
match [Pach and Wenger 1998]. Therefore, to compute a
match in reasonable time, we developed a greedy algorithm
that introduces Steiner vertices when it fails to find a match
without them. Using Steiner vertices the algorithm is guaran-

teed to find a match. Examples of matching triangulations are
shown in Figure 3 (e) and (f), above and Figure 9 (d) and (e),
below.

A related problem of finding a mesh triangulation for a given
triangulation of the fixed points was addressed by Praun et al.
[2001]. While the paper does not explicitly mention the use of
Steiner vertices, it seems the method might need a huge num-
ber of those to succeed and can generate extremely long paths.

4.1 Path Matching

In the first stage of the algorithm we search for matching
paths/edges which can partition both the mesh and the 2D
space into valid sub-regions. Matchmaker adds paths one by
one, testing that the following conditions are satisfied after
each path is added:
• Neither paths nor edges intersect, except at their end-

vertices.
• The new path does not block necessary future paths. This

problem can arise if the path partitions the mesh/space and
generates one or two new sub-regions. The problem is
shown in Figure 4, where a fixed vertex vi and the corre-
sponding position pi are placed in different regions of the
partition. The test must check that the vertices and positions
are not separated into different sub-regions by the path.

(a) (b)

Figure 4: Illegal path (blue): (a) path in TM*(VC); (b) matching
edge in T(PC). This path places the red constrained vertex and
its position in different sub-regions.

• The sub-regions in the mesh and the space have the same

(correct) orientation. Since both boundaries are planar
polygons, this requires a simple polygon orientation test.

Paths are introduced until no more can be added. If at this
stage we have a triangulation of the fixed positions, we are
done. If not, the procedure described in Section 4.2 is applied.

Algorithm PathMatch

M’=M*
Compute S=set of shortest paths for each pair of vertices in
VC
while S ≠ ∅
begin
 s =S.RemoveShortest()
 if Legal(s)
 begin
 Add s to TM*(VC), add corresponding edge to T(PC)
 Remove all the interior vertices of s from M’

Update S – remove all paths (vi,vj) containing interior
vertices of s and recompute them in M’\{s}

 end
end

end

The function Legal(s) tests if the path s can be added to the
mesh triangulation, namely whether it satisfies the conditions
described above. Note that the paths in S are modified after
each path insertion. Paths that intersect s are deleted and com-

puted again inside M’\{s}. Hence, Legal does not need to
check path intersections.

When PathMatch terminates, no more paths can be added to
T(PC) and TM*(VC) without violating some requirement. At this
stage T(PC) defines a partition into polygons and TM*(VC)
defines a matching partition of the mesh M*. If all the poly-
gons in T(PC) are triangles, we are done. Otherwise, a process
that adds Steiner vertices to generate the missing paths is ap-
plied. In fact, if all the polygons are convex, further processing
is not required since the embedding procedure (Section 3.2) is
guaranteed to generate a valid mapping for any set of convex
polygons, not just triangles.

4.2 Paths with Steiner vertices

At this stage T(PC) defines a partition of the domain into poly-
gons. To use the partition for embedding, each polygon N in
T(PC) needs to be triangulated. Even with Steiner vertices, not
every triangulation of N has a matching mesh triangulation.
The main problem that can arise is blocking of paths (Figure
4). The two stage procedure described below guarantees that a
match is found.

Blocking can happen only when the polygon N is not simply-
connected, namely it has “holes”. Hence, in the first stage
Matchmaker converts each such polygon into a simply-
connected one, by cutting along diagonals to form a single
boundary loop.

Algorithm MakeSimple(N)
while NumBoundaryLoop(N) > 1
 /* basic connectivity test */
begin
 e = ComponentDiagonal(N)
 s = CreatePath(N,e)
end

end

MakeSimple generates a simple polygon with a single bound-
ary loop. Any polygon with multiple loops can be transformed
into a simple polygon by adding diagonals which connect the
loops and do not intersect the edges of the polygon [de Berg et
al. 2000]. ComponentDiagonal finds such diagonal edges.
CreatePath finds a matching path inside the matching mesh
patch NM. Since the edges do not split N into several polygons,
such a path cannot introduce blocking. After MakeSimple ter-
minates, the polygon can be triangulated using any standard
algorithm such as TriangulatePolygon. By introducing triangu-
lation edges and matching paths using the following recursive
procedure, we guarantee that paths will not intersect (Figure
5).

Algorithm TriangulatePolygon(N)
if size(N) == 3 /* triangle*/
 return
e = TriangulationEdge(N, T(PC))
s = CreatePath(N,e)
Add s to TM*(VC)
split N into polygons N1, N2 using e
TriangulatePolygon(N1)
TriangulatePolygon(N2)

end

CreatePath(N,(pi,pj)) generates a path inside NM from vi to vj.
The sub-mesh NM is connected; hence a path between any two
vertices exists. Consider N’M, which is the edge graph of NM

(a) (b) (c)

Figure 5: Match construction for the example in Figure 2.
(a) T(PC) before (black) and after (orange) triangulation. (b)
TM*(VC) before TriangulatePolygon. CreatePath generates the
orange paths (c) by splitting the green edges (b).

without boundary vertices. N’M will have several components
only if NM had edges whose two end vertices were on the
boundary. If each such edge is split into two by adding a
Steiner vertex, then N’M will remain a single connected com-
ponent. Hence, a path inside it, between vi and vj, will exist.

In practice we split only those edges which are needed by the
path. An example of adding Steiner vertices is shown in Figure
6. Note for example the constrained vertex (purple) at the right
eye corner. The number of paths emanating from the vertex
exceeds its valence, hence Steiner vertices must be added to
increase the latter.

(a) (b) (c)

Figure 6: Zoom in on the left eye area of Figure 9. (a) Mesh
triangulation with Steiner vertices (blue). (b) Smoothed em-
bedding. (c) Final embedding after removing redundant Steiner
vertices.

Figure 7: Matchmaker GUI.

5. Experimental Results

Matchmaker has been implemented in an interactive system,
where the user can add and edit the constraints interactively. A
GUI snapshot is shown in Figure 7. The session time per
model varies, based on the number of constraints the user
needs to add. It ranges from 10 minutes to half an hour for
typical models. The Matchmaker algorithm runs in interactive
time.

The use of Matchmaker for texture mapping is demonstrated
on several examples of varying complexity. The first (Figure

3) is of about the same complexity as the examples in previ-
ously constrained mapping publications [Eckstein et al. 2001;
Lévy 2001; Guenter et al. 1998]. Most of the other examples
are an order of magnitude more difficult in terms of model
complexity and number of constraints.

Figure 8 shows an example where constraints are used to hide
a texture seam, which was added to reduce the mapping distor-
tion [Sheffer and Hart 2002]. Texture discontinuities are re-
moved by placing several constrained vertices along the seam.
Note that constraining the seam vertices eliminates only the C0

discontinuities. Additional constraints are needed to make the
texture appear C1 continuous (Figure 8 (d)). In order to stitch
seams, the mapping must satisfy exact constraints; hence
methods such as [Guenter et al 1998] or [Lévy 2001] cannot be
used.

(a) (b) (c) (d)
Figure 8: Constraining vertices to eliminate (c) C0 and (d) C1
discontinuities along a texture seam.

Figure 9 shows the stages of texturing a head model (1,242
faces). The input parameterization atlas contains two charts of
head halves. The image includes two mirrored profiles, defin-
ing the texture for the entire head. The constraints were used
both to align features and to stitch textures along the boundary
between the halves. To the best of our knowledge, Match-
maker is the first method capable of satisfying the constraints
necessary to seamlessly texture an entire head from a single
image. Note the huge difference between the initial embedding
(b) and the final mesh (g) imposed by the constraints.

The Igea model (Figures 1 and 10) is another example of map-
ping two profiles to a model of a whole head (4,443 faces).
The number of constraints (80) and the large displacement of
the constrained vertices compared to the unconstrained map,
make the matching a challenging problem. The matching pro-
cedure added 111 Steiner vertices to the mesh. After post-
processing this number was reduced to 20.

The last and most complex example shows the texturing of a
full body scan (7996 faces). The input includes a full body
model [Cyberware], which was cut as a single chart (Figure 11
(b)) and two photographs of a standing person (front and
back). The photos were aligned with the input mesh. There is a
large discrepancy between the mesh and the image silhouettes,
as indicated by the markers (Figure 11 (b)). Most of the 160
constraints were used to align the mesh and the silhouette and
stitch the seams on the sides of the model. The matching added
1447 Steiner vertices. After post-processing, the number of
vertices decreased to 110.

6. Conclusions

Matchmaker is a new and effective tool for adding positional
constraints to texture maps. It provides a valid one-to-one
mapping which satisfies user-defined constraints exactly,
while closely preserving the metric structures of the original
mesh. As demonstrated by the examples, it is able to success-
fully handle combinations of models and constraints which are
an order of magnitude more difficult than those addressed by
previous methods.

The triangle matching procedure which is at the heart of the
algorithm does not rely on the planarity of the embedding.
Therefore, we expect that Matchmaker, with some minor
modifications, will work successfully for parameterizations on
the sphere and other domains. Constrained embedding on the
sphere is useful for morphing [Alexa 2000] or model recogni-
tion.

Currently, the user must add the constraints interactively, one
by one. This can be quite tedious, especially for seam stitching
where a large number of constraints must be added to achieve
perfect alignment. An interesting problem for future research
is the automatic placement of such constraints. Pattern map-
ping ideas [Soler 2001] could provide the optimal positions for
the constrained vertices to be used by Matchmaker.

Acknowledgements

Thanks to Vitaly Surazhsky for the use of some of his software
and helpful comments throughout this work. This research was
partially funded by European grant HPRN-CT-1999-00117
(MINGLE), German-Israel Fund grant I-627-45.6/1999 and
Israel Ministry of Science grant 01-01-01509.

References

ALEXA, M. 2000 Merging Polyhedral Shapes with Scattered Features,

The Visual Computer 16, 26-37.

DE BERG, M., VAN KREVELD, M., OVERMARS, M., AND SCHWARZ-
KOPF, O., Eds. 2000. Computational Geometry, 2nd ed. Springer.

BIERMANN, H., MARTIN, I., BERNARDINI, F., AND ZORIN, D. 2002.
Cut-and-paste Editing of Multiresolution Surfaces. ACM Transac-
tions on Graphics, 21, 3, 312-321.

CYBERWARE INC., http://www.cyberware.com

DESBRUN, M., MEYER, M., AND ALLIEZ, P. 2002. Intrinsic Parametri-
zations of Surface Meshes. In Proceedings of Eurographics 2002,
Blackwell Publishing, Saarbrucken, G. Drettakis and H.-P. Seidel,
Eds., Computer Graphics forum, 21, 3, 210-218.

ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M., AND
STUETZLE, W. 1995. Multiresolution Analysis of Arbitrary
Meshes. In Proceedings of ACM SIGGRAPH 1995, Computer
Graphics Proceedings, Annual Conference Proceedings, 173-182.

ECKSTEIN, I., SURAZHSKY, V., AND, GOTSMAN, C. 2001. Texture
Mapping with Hard Constraints, Computer Graphics Forum 20, 3,
95-104.

FLOATER, M. S. 1997. Parameterization and Smooth Approximation of
Surface Triangulation, Computer Aided Geometric Design, 14,
231-250.

GU, X., GORTLER, S., AND HOPPE, H. 2002. Geometry Images. ACM
Transactions on Graphics, 21, 3, 355-361.

GUENTER, B., GRIM, C., WOOD, D., MALVAR, H., AND PIGHIN, F.
1998. Making Faces. In Proceedings of ACM SIGGRAPH 1998,

Computer Graphics Proceedings, Annual Conference Proceedings,
55-66.

HAKER, S., ANGENENT, S., TANNENBAUM, A., KIKINIS, R., SAPIRO, G.,
AND HALLE, M. 2000. Conformal Surface Parameterization for
Texture Mapping. IEEE Transactions on Visualization and Com-
puter Graphics, 6, 2, 181-189.

HORMANN, K., AND GREINER, G. 1999. MIPS - An Efficient Global
Parametrization Method. In Curve and Surface Design Conference
Proceedings 1999, 153-162.

HURDAL, M., BOWERS, P., STEPHENSON, K., SUMNERS, D., REHMS, I.
K., SCHAPER, K., AND ROTTENBERG, D. 1999. Quasi-conformally
Flat Mapping the Human Cerebellum. In Proceedings of MIC-
CAI’99, volume 1679 of Lecture Notes in Computer Science, 279-
286, Springer-Verlag.

LÉVY, B. Constrained Texture Mapping for Polygonal Meshes. In
Proceedings of ACM SIGGRAPH 2001, Computer Graphics Pro-
ceedings, Annual Conference Proceedings, 417-424.

LÉVY, B., AND MALLET, J. L. 1998. Non-distorted Texture Mapping
for Sheared Triangulated Meshes. In Proceedings of ACM SIG-
GRAPH 1998, Computer Graphics Proceedings, Annual Confer-
ence Proceedings, 343-352.

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least
Squares Conformal Maps for Automatic Texture Atlas Generation.
ACM Transactions on Graphics, 21, 3, 362-371.

MAILLOT, J., YAHIA, H., AND VERROUST, A. 1993. Interactive Texture
Mapping. In Proceedings of ACM SIGGRAPH 1993, Computer
Graphics Proceedings, Annual Conference Proceedings, 27-34.

PACH, J., AND WENGER, R. 1998. Embedding Planar Graphs with
Fixed Vertex Locations. In Proceedings of Graph Drawing '98.
Lecture Notes in Computer Science 1547, Springer-Verlag, 263-
274.

PRAUN, E., SWELDENS, W., AND SCHRÖDER, P. 2001. Consistent Mesh
Parameterizations. In Proceedings of ACM SIGGRAPH 2001, E.
Fiume, Ed.., Computer Graphics Proceedings, Annual Conference
Proceedings, 179-184.

SANDER, P., GORTLER, S., SNYDER, J., AND HOPPE, H. 2002. Signal-
specialized Parametrization. In Proceedings of Eurographics
Workshop on Rendering 2002.

SANDER, P. V., SNYDER, J., GORTLER, S., AND HOPPE, H. 2001. Tex-
ture Mapping Progressive Meshes. In Proceedings of ACM SIG-
GRAPH 2001, Computer Graphics Proceedings, Annual Confer-
ence Proceedings, 409-416.

SHEFFER, A., AND DE STURLER, E. 2000. Surface Parameterization for
Meshing by Triangulation Flattening. In Proceedings of the 9th In-
ternational Meshing Roundtable, 161-172.

SHEFFER, A., AND HART, J. 2002. Seamster: Inconspicuous Low-
Distortion Texture Seam Layout, Proceedings of IEEE Visualiza-
tion, 291-298.

SHEWCHUK, J. R. Triangle: A Two-Dimensional Quality Mesh Genera-
tor and Delaunay Triangulator.
http://www.cs.cmu.edu/~quake/triangle.html

SOLER, C., CANI, M. P., AND ANGELIDIS, A. 2002. Hierarchical Pattern
Mapping. ACM Transactions on Graphics, 21, 3, 673-680.

TUTTE, W. T. How to Draw a Graph, 1963, Proceedings of the London
Mathematical Society, 13, 743-768.

Figure 9: Texturing a head model: (a) 3D Model; (b) input texture atlas (two head halves); (c) texture with positions PC; (d) space triangulation T(PC) ;
(e) matching mesh triangulation TM*(VC), Steiner vertices shown in blue; (f) triangulation embedding; (g) final mesh Mnew; (h) textured model.

(a) (b) (c) (d)

Figure 10: Texturing the Igea data set (4,443 faces). Close to a hundred constrained vertices (red dots) were added to place features and stitch
the central seam. The green lines in (b) indicate the constraints displacement compared to the input parameterization.

(a) (b) (c) (d)

Figure 11: Texturing a full body scan (7,996 faces and 160 constraints).

(a) (b) (c) (d)

(e) (f) (g) (h)

