
Curriculum Learning for Motor Skills

Andrej Karpathy and Michiel van de Panne

University of British Columbia

Abstract. Humans and animals acquire their wide repertoire of mo-
tor skills through an incremental learning process, during which pro-
gressively more complex skills are acquired and subsequently integrated
with prior abilities. The order in which the skills are learned and the
progressive manner in which they are developed play an important role
in developing a final skill set. Inspired by this general idea, we develop
an approach for learning motor skills based on a two-level curriculum. At
the high level, the curriculum specifies an order in which different skills
should be learned. At the low level, the curriculum defines a process for
learning within a skill. The method is used to develop an ensemble of
highly dynamic integrated motor skills for a planar articulated figure ca-
pable of doing parameterized hops, flips, rolls, and acrobatic sequences.
Importantly, we demonstrate that the same curriculum can be success-
fully applied to significant variations of the articulated figure to yield
appropriately individualized motor skill sets.

1 Introduction

“You have to learn to crawl before you walk” is a common maxim that sum-
marizes the approach that humans and animals adopt when faced with the task
of learning a complex motor skill. Instead of attacking a difficult learning prob-
lem in a monolithic fashion, it is nearly always beneficial to break the problem
down to a sequence of manageable stages and sub-goals that are of progressively
greater complexity. Humans make extensive use of this heuristic to learn many
motor skills, including crawling, walking, running etc [11]. The sequenced acqui-
sition of skills is not only a valuable heuristic in nature, but it is also an active
area in machine learning and robotics, e.g., [1, 4, 6]. The defined order for learn-
ing skills and then integrating them can be thought of in terms of a curriculum,
not unlike the training program provided an athletics coach.

In this paper we investigate a curriculum-based learning methodology for the
progressive and largely autonomous development of motor skills. We propose the
decomposition of skill acquisition into high-level and low-level curricula. A high-
level curriculum defines an order for the acquisition of skills, while the low-level
curriculum defines an Achieve-Explore-Generalize process for the acquisition of a
given skill. A low-level curriculum allows for the exploration-based acquisition of
parameterized skills, such as performing a flip of a desired height and distance
at various initial speeds. In our framework, the curriculum serves as a high
level learning script that our physically-simulated agents can execute to acquire



Fig. 1. Left: Acrobot structure. Right: Acrobots with different morphologies: default
(C1), shortened leg (C2), movable ankle (C3), double-mass body (C4), small foot (C5)

skill-sets that are customized to their body morphology. The learning of the
curriculum itself is left as an important open problem for future work.

Our curriculum learning approach is demonstrated on a planar, physically-
simulated articulated figure that consists of two rigid bodies (links) connected
by one actuated joint and an attached, fixed foot. Figure 1 (left) illustrates its
canonical form. This is a generalization of the Acrobot mechanism that is com-
monly used as a testbed for underactuated control [3, 5, 13]. Unlike the original
Acrobot, our mechanism has its lower link unconstrained and is therefore free
to hop, flip, and roll. Figure 1 (right) shows a number of variations that have a
diverse range of proportions and mass distributions.

Our contributions are twofold. First, our low-level curriculum structure pro-
vides a specific three-part strategy (achieve, explore, generalize) for the exploration-
based development of parameterized motion skills. These shape the development
of parameterized skills in a progressive and purposeful fashion. Our high-level
curriculum sits on top of this and is based on human insight, not unlike that re-
quired by a coach when designing a training program. Second, our work serves as
an important proof-of-concept for the application of curriculum-based learning
to the control of highly dynamic unstable articulated figure motion. The high di-
mensional state space (8D-10D) and the highly-sensitive nature of the motions
make these particularly challenging to control. To the best of our knowledge,
there is little comparable prior work for developmental approaches to this class
of problem. Our work thus begins to build a bridge between curriculum learning
ideas and methods for controlling agile locomotion.

2 Related Work

Aspects of progressive learning strategies can be found in a variety of previous
work. It is related to reward shaping [12, 8], macro actions [9, 10], hierarchical
reinforcement learning, and continuation methods for walking skills [15]. In the
context of deep learning, it has been shown that multi-stage curriculum learning
strategies give rise to improved generalization and faster convergence of neural
networks on vision and language tasks [2].

The sequenced acquisition of skills is an ongoing active area of research in
machine learning and robotics. Asada et al. [1] develop vision-driven behaviors
for a mobile robot by using a ‘learning from easy missions’ (LEM) strategy to



Fig. 2. Top: The high-level curriculum. Arrows indicate dependencies of one skill on
another. Bottom: Each skill is learned using a three stage learning process: Achieve,
Explore, and Generalize. The region bounded by the black contour contains actions
that successfully accomplish the desired motion without falling.

provide fast-bootstrapping for reinforcement learning applied to mobile robot
steering control. A developmental approach to hierarchical knowledge regarding
sensorimotor movement is proposed by Hart in [4], along with providing an excel-
lent overview of this area. A discrete event dynamical systems (DEDS) structure
is used in combination with a language of typed control expressions in order to
generate reaching, touching, and tracking behaviors for a robot arm. Konidaris
and Barto [6] introduce a skill discovery method for reinforcement learning in
continuous domains that constructs chains of skills leading to an end-of-task re-
ward. This is applied to a 2D simulated pinball domain. Relatedly, the work of
Neumann et al. [7] also propose the use of temporally-extended motion templates
in a reinforcement learning framework. These are applied to one-link and two-
link pendulum tasks. Stout and Barto [14] explore the use of a competence-based
intrinsic motivation as a developmental model for skill acquisition. A grid-world
proof-of-concept example is provided as an initial demonstration of these ideas.

3 Control Overview

The Acrobot will be trained to perform multiple skills, culminating in an acro-
batics skill, as summarized by the high-level curriculum shown in Figure 2 (top).
Examples of these skills are illustrated in Figure 4. The skills are structured in
a high-level curriculum in order of increasing difficulty. Although some of these
skills would be hard to acquire individually, the curriculum is structured in such
a way that each skill is relatively easy to learn, given prior knowledge of the pre-
requisite skills. The curriculum thus acts to turn a challenging learning problem
into a continuation problem. As we shall see, the Acrobot will first learn to hop,
then to flip from rest, followed by flipping from a hop, rolling from a hop, and
finally performing a flip, roll, and a flip in a fast, continuous acrobatic maneuver.



The learning of each individual skill progresses through three learning phases:
Achieve, Explore, and Generalize. A schematic depiction of these phases is given
in Figure 2 (bottom). Given an initial attempted action, the first phase builds
on this attempt by searching for a refined action that successfully accomplishes
the desired motion without falling. The second phase, Exploration, then uses
this action as a seed point for exploring the outcome of many similar actions,
thereby yielding many motions that may typically vary in style and distance
traveled. The purpose of the third phase, Generalization, is to produce a com-
pact model of the observations acquired during the exploration. This builds on
the intuition that there is often a smooth relationship between variations in the
applied actions and the resulting motion variations. It also allows for explicit
parameterizations of the motions, such as a hop that is parameterized by its
hopping speed, or a flip whose height can be controlled. For several of our mo-
tions, an effective parameterization can be easily created by interpolating and
extrapolating between example actions.

3.1 Control System

Figure 3 (left) shows a block diagram of the control system for the Acrobot. It
moves by sequencing short, open-loop motions that we refer to as Motor Actions,
or simply actions. The active skill initiates a new action every time the foot hits
the ground based on skill-specific task parameters that are provided by the user,
or a planner. For example, if the Hop skill is active, then a new hop action is
initiated every time the foot hits the ground. Once an action is initialized, it
outputs two quantities over time: the desired angle between the body and leg
links (θd) and the stiffness of the motion (kp). A PD controller then calculates the
torque that is to be applied on the joint to meet the desired angle. Finally, the
torque is provided as input to the simulator at each time step. The simulator
computes the accelerations using the equations of motion and these are then
numerically integrated to update the state.

A Motor Action is a piecewise constant function of time A : t → (θd, kp).
The number of pieces in every action is left as a design parameter, which we
usually fix to be between 3 and 6 for convenience. In general, fixing the number
of pieces to beN allows us to think of every motor action as a (3×N)-dimensional
vector, because for every piece we need to specify its duration and (θd, kp) over
that time period. The PD controller computes the torque on the actuated joint
using τ = kp(θd − θ) − kdθ̇, where θ is the current angle of the joint, θ̇ is its
instantaneous rate of change, θd is the desired angle, kp is the spring coefficient,
and kd is the damping coefficient. We fix kd =

√
2kp for convenience, which

ensures that the system is approximately critically damped.

3.2 Skills

We think of a skill as a mapping I× T→ A, where I is a set of skill-specific pa-
rameters that parameterizes the initial conditions, T is a set of skill-specific task
parameters, and A is the Motor Action space. The mapping specifies the action



Skill I T
Hop {} {αv}
Flip {} {αl}
Hop-Flip {αv} {αl, αh}
Hop-Roll {αv} {αl, αh}
Acrobatics {} {}

Fig. 3. Left: System block diagram . Right: Initial Conditions and Task Parameters
sets for all skills. αv, αl and αh are labels for the speed, length, and height parameters,
respectively.

that should be initialized by the controller in order to accomplish the goals given
by the task parameters from the given initial conditions. The table in Figure 3
shows the initial condition parameterization and the task parameterization for
every skill. I is empty for Flip, Hop, and Acrobatics skills. This indicates that
these skills are initialized from a single, specific state. In our case, they all begin
from the rest state, in which the Acrobot is in an upright position and at rest.
As an exception to this rule, the actions generated by the Hop skill do not only
work from the rest state, but the same actions can also be initialized repeatedly
to generate a continuous hopping motion. Ideally, one could imagine learning
a distinct hop-from-rest skill that transitions to a separate continuous-hopping
skill, but we do not consider this extension here. Finally, the Hop-Flip and Hop-
Roll skills begin from a hopping gait of some speed, αv, which can be reached
by repeatedly executing the Hop skill. Note that we do not make explicit use of
the state of the Acrobot when specifying the initial conditions. Instead, we take
an embodied approach in which I summarizes the state. In our case, the speed
parameter αv used for a hop already highly constrains the set of states that the
Acrobot could be in.

Once the Acrobot lands from a flip or a roll, the Hop skill is automatically
initialized to revert back to a hopping motion. However, to fully specify a Hop
action it is necessary to provide the speed parameter αv. Since not all settings
may lead to a successful recovery, we will learn an additional hop recovery map-
ping, R : s → αv, that predicts the value of αv that will most likely lead to a
successful recovery from state s.

3.3 Composite skills: Acrobatics

It is possible to naturally extend the idea of skills into a higher level of abstrac-
tion to explore more complicated, composite skills. Every skill discussed in the
previous section is of the form I × T → A, where the output is a vector that
describes a Motor Action. The output of a composite skill is also a vector, but
the numbers are instead interpreted as the initial condition and task parameters
of other skills, which then get translated into Motor Actions accordingly.



Fig. 4. Visualization of all skills. The Acrobot starts on the left and moves to the right.

As shown in Figure 3 (right) that the flip skill is defined as αl → A, and that
Hop-Roll and Hop-Flip are both defined as (αv, αl, αh)→ A. The acrobatics skill
consists of one composite action (α1

l , α
2
v, α

2
l , α

2
h, α

3
v, α

3
l , α

3
h) where α1

l is used to
execute the Flip, α2

v, α
2
l , α

2
h are used for the subsequent Hop-Roll, and α3

v, α
3
l , α

3
h

are used for the Hop-Flip that immediately follows.
Note that both Hop-Roll and Hop-Flip are meant to work from a hopping gait

of some speed and are therefore not generally expected to work from the initial
conditions that come up during the Acrobatics sequence. Specifically, the Hop-
Roll must be executed right after landing from a Flip, and the Hop-Flip right
after landing from the Hop-Roll. Nonetheless, we shall show that by choosing
the parameters of both skills appropriately, it is almost always possible to suc-
cessfully string these skills together. In addition, making use of already existing
skills will allow us to be significantly more efficient during the learning, because
the learned skills effectively constrain the search to well-behaved manifolds in
the Motor Action space.

4 High-level Curriculum

As shown in Figure 2, we designed a high-level curriculum for learning the Acro-
batics skill by reasoning about the difficulty of each skill given knowledge of the
skills before it. Our curriculum begins with the Hop skill, which is easy to learn
from scratch due to relatively low complexity of the required motion, and the
passive feedback from the interaction of the foot with the ground. In addition,
the Hop skill provides a recovery mechanism that the Acrobot can use to regain
balance from a wide range of landing states. Flipping from a hopping motion is
not an easy task to master, especially when we expect the motion to be robust
to errors in the initial conditions. A natural way to make the task easier is to
first learn how to flip from a single state, which is the goal of the Flip skill. With
the intuition that the action that generates a flip from the rest state should not



Skill Training sequence

Hop Hop 20 times
Flip Flip, 5 recovery hops
Hop-Flip Hop 5 times, Hop-Flip, 5 recovery hops
Hop-Roll Hop 5 times, Hop-Roll, 5 recovery hops
Acrobatics Flip,Hop-Roll,Hop-Flip, 5 recovery hops

Table 1. Training sequences for all skills.

be much different from the action that is required when hopping very slowly,
the curriculum proceeds in learning the Hop-Flip. While learning the Hop-Flip
skill, the Acrobot will learn to flip from progressively higher velocities in the
exploration phase of the low-level curriculum. Next, we learn Hop-Roll directly.
We did not consider learning an intermediate Roll skill first because the rolling
motion is harder to accomplish from the rest state due to lack of forward momen-
tum. Finally, the Acrobatics combines Flip, Hop-Roll and Hop-Flip into a single
sequence with no hops in between. Since Hop-Roll and Hop-Flip are trained to
work from a hopping motion, this builds on the intuition that the state after
landing from a Flip should be approximately similar to the states encountered
while hopping continuously, and that the same is true after a Hop-Roll.

5 Low-level Curriculum

Every skill is learned by measuring outcomes of actions through repeated trials.
A trial is labeled as being successful if the Acrobot completes a skill-specific
training sequence without falling. Each training sequence describes the order
of skills that should be executed during every trial. All training sequences are
shown in Table 1. For example, as shown in the table, the training sequence
for Hop-Flip is to Hop 5 times at some speed, attempt a Hop-Flip, and then
attempt 5 recovery hops on landing. If the Acrobot completes the trial, then
that indicates that the particular Hop-Flip action can be successfully executed
from a Hop of that speed.

More precisely, a result of a successful trial is a tuple E = (I, A, T ) that we
refer to as an Experience. It encodes the observation that starting from a state
summarized by initial condition parameters I ∈ I and applying Motor Action
A ∈ A results in task parameter outcome T ∈ T. Trials can thus be thought of
as a function I×A→ T. An example of an Experience while learning Hop-Flip is
the tuple (0.3, A, (1.2, 1.5)), where A is some Motor Action. It states that when
we hop with speed αv = 0.3 and then execute A the next time we land on the
ground, it will cause us to successfully flip 1.2 meters forward, and at the highest
point of the motion we will be 1.5 meters off the ground.

During the execution of the learning algorithm, the Acrobot will accumulate a
large database of Experiences E = {Ei} by conducting many trials. Collectively,
the experiences form a tuple-based dynamics model, which is a common strategy
for modeling dynamical systems. The collected experiences can later be inverted



to produce a model of the form I×T→ A, which allows the Acrobot to perform
actions with specific desired effects, from given initial conditions. As discussed
later, this inversion is computed using either a global linear model or via a lookup
table.

Phase 1: Achieve The goal of phase 1 is to achieve the first successful
trial. We accomplish this by running a stochastic greedy local search to find the
first successful Experience (I0, A0, T0), starting from a user-specified seed Motor
Action Ainit and Initial Condition parameters I0. Ideally, I0 should contain
parameters that result in the easiest initial conditions. In the case of hopping,
the easiest initial conditions are to hop as slowly as possible (i.e. I0 = {αv = 0}).
The seed action Ainit is only designed manually for Hop, Flip, and Hop-Roll.
When learning Hop-Flip, the Acrobot will already have learned the Flip skill,
and we thus use a flip action to set the Ainit in this case. Similarily for the
Acrobatics skill, we use the already existing Flip, Hop-Flip and Hop-Roll skills
to generate the seed action. In Figure 2, (Ainit, I0) is drawn inside a rectangle,
and (A0, I0) is drawn inside a triangle.

A skill-specific phase 1 reward function is also assumed to be provided to
help guide the search toward the first successful trial. For Hop, the function
returns the number of hops that were successfuly executed before the fall. For
Flip, Hop-Flip and Hop-Roll, the function returns the difference of net rotation
undergone by the Acrobot from a full circle. Finally, for Acrobatics the function
returns the number of skills that were successfully executed before a fall. While
the existence of this function is not strictly necessary, it can help improve the
performance of the search in this phase.

Phase 2: Explore Having acquired the first successful Experience, phase
2 of the learning algorithm incrementally grows the set E = {Ei} through a pro-
cess of online, active exploration. This is done by repeatedly selecting a promising
Experience from E and attempting a slight variation of it in a new trial. The
variations are obtained by slightly perturbing both the initial conditions and
the action that is attempted. If the trial is successful, the resulting experience is
added to E. Otherwise, results of the trial are discarded.

A crucial element of our approach is that we explicitly maintain an estimate
of the reliability of every experience. We define the reliability of an experience
(I, A, T ) to be Reliability(A, I) := 1

N

∑N
i=1 Successful(A+∆A, I+∆I), where

N is large, ∆A, and ∆I, are drawn from an appropriate noise distribution, and
Successful(A, I) returns 1 if action A leads to a successful trial from initial
conditions I, and 0 otherwise. Given an Experience (I, A, T ), we could com-
pute an estimate of its reliability according to the above definition by running
many Trials with slightly different actions and initial conditions. However, in
order to improve the efficiency of our algorithm, we will instead approximate
the reliability of every action online using Ntried and Nsuccessful in Algorithm 1.

A good definition of a promising Experience is crucial to the success of the
algorithm. The algorithm must ensure a proper balance of exploration and ex-
ploitation with hopes of discovering many reliable Experiences from all initial
conditions that result in a wide variety of outcomes. We use simple heuristics



Algorithm 1 Phase 2: Exploration

Input:
(I0, A0, T0)← Initial successful Experience from phase 1
N ← Number of trials to be executed

Output:
Successful Experience set E

1: E = {(I0, A0, T0)}
2: for i = 1toN do
3: (Ik, Ak, Tk)← pick promising Experience from E
4: Ntriedk ← Ntriedk + 1
5: Inew ← Ik +∆I
6: Anew ← Ak +∆A
7: (Tnew, success)← Trial(Inew, Anew)
8: if success then
9: E← E ∪ {(Inew, Anew, Tnew)}

10: Nsuccessfulk ← Nsuccessfulk + 1
11: end if
12: end for
13: return E

to guide the exploration with the aforementioned goals in mind. For brevity, we
omit the details of these heuristics.

Phase 3: Generalize The goal of this last phase is to compute a compact
model I × T → A from Experiences collected in phase 2. We consider a linear
model for Hop and Flip, and a non-parametric model for Hop-Flip and Hop-Roll.
In either case, the Experiences E that were collected in phase 2 can be discarded
afterwards.

We generate linear models for the Hop and Flip skill by interpolating and
extrapolating actions that were found in phase 2, as shown in Figure 2 (bottom).
This approach has the advantage of being robust to outliers, which is important
in this case because the output of phase 2 often contains a mix of many types of
motions. We construct several candidate models by sampling two actions from
the dataset, and then evaluate them all according to certain desirable criteria.
The model that best meets these criteria is returned in the end.

The desirable criteria for each skill are that a model should, first, cover a
large range of task parameters and second, integrate well with existing skills.
For the Flip, the second requirement amounts to being able to easily transition
to the Hop skill after landing. As a good quantitative correlate of this property,
we record the variance in the speed of the 5 recovery hops that follow the flip.
If the variance is small, it is likely that the transition was successful and the
action receives a large score. For the Hop skill, it is only necessary that the skill
integrates well with itself, in the sense that it should be possible to change the
hopping speed without falling. This robustness toward change in speed is evalu-
ated for each candidate model by generating a continuous hop while changing the
speed parameter αv randomly every hop. The model that falls the least number



of times obtains the highest score. In addition, we compute the variance in the
speed of each hop while the character hops at a steady speed, as it is desirable
that this variance be low. In the end, the scores of these criteria are combined
in a weighted sum to compute the final score for each candidate model.

For every skill other than Hop and Flip, we construct a non-parametric table
look-up model. This is done by first partitioning the volume of space I× T into
hypercubes of some small size, and then mapping each hypercube to the most
reliable Motor Action that was found in that part of I× T space.

Unlike other skills, we also learn a recovery model for the Hop skill, which
allows us to recover from arbitrary landings. The recovery model is a mapping
R : s→ αv, that predicts the αv of the Hop action that most likely leads toward
a stable hopping motion from some state s. To learn the recovery model for
the Hop skill we proceed as follows: while the Acrobot is hopping using the
learned Hop skill, we periodically change the speed of every hop according to
αv ← min(1,max(0, αv +N(0, 0.25))) with a 50% probability. On every landing,
we store the Acrobot’s state together with the parameter αv that will be used for
the next hop. If the Acrobot happens to fall during this procedure, we discard
the latest 3 measurements and reset the Acrobot to rest state. The resulting
database of (s, αv) forms the non-parametric recovery model for the Hop skill,
which can be used to predict αv through a nearest neighbor search in the state
space.

6 Results

The simulation is implemented using Open Dynamics Engine (ODE) as a physics
engine, with a time step of 0.0005s. This allows for simulation of the Acrobot 30x
faster than real time and the evaluation of 10-20 trials per second. The canonical
Acrobot has 0.6 m body and leg links and a 0.3 m foot, with masses of 5, 5, and
1 kg, respectively. We refer the reader to the online video1 to view many of the
results discussed in this section.

The seed Motor Actions Ainit that must be provided for Hop, Flip and Hop-
Roll took less than a few minutes to create in each case. The entire curriculum
was allowed to run for 300,000 trials (about 8 hours), but we found that it is
possible to learn all skills in as little as 20,000 trials (about 30 minutes). As is
often the case with online algorithms, the results progressively deteriorate for
all skills when the algorithm is allowed to run for shorter periods of time. In our
case this manifests as skills being generally less reliable, and covering smaller
range of task parameters. The number of trials is usually split as 10% for Hop,
10% for Flip, 40% for Hop-Flip, 30% for Hop-Roll, and 10% for Acrobatics.
These ratios roughly correspond to the difficulty of learning each skill. For the
individual skills, Phase 1 of the algorithm almost always finishes in few seconds.
The vast majority of the computation time is thus spent in the exploration phase.
Phase 3 of the algorithm for Hop-Flip, Hop-Roll and Acrobatics does not require

1 Associated video, submitted anonymously: http://vimeo.com/24446828



Fig. 5. Hop-Flip and Hop-Roll for traversing terrain, from left to right.

evaluation of trials. However, for Hop and Flip, we allocate 66% of the trials to
phase 2, and 33% of the trials to phase 3.

Running the curriculum-based learning algorithm results in the following skill
capabilities. The Acrobot can use the Hop skill to move at speeds between 0.5m/s
and 1.9m/s. The Flip skill allows it to flip between 1.6m and 2.6m. The Hop-
Flip skill allows it to flip with lengths and heights between 1.2 to 2.3m and 1.5m
to 1.7m respectively from any hop speed. The Hop-Roll skill allows it roll with
lengths and heights between 0.5m to 2m and 1.2m to 1.5m respectively. Chaining
the Flip, Hop-Roll and Hop-Flip skills into Acrobatics was found to be relatively
easy. Since each skill returns actions that already lie on reliable manifolds in the
action space, we can afford to randomly sample parameters for the Flip, Hop-Flip
and Hop-Roll skills to obtain successful Acrobatics trials with a high probability.
To investigate this further, we randomly sampled 500 parameters for these skills
and found that 10% of them lead to a successful Acrobatics trial. Therefore,
only 10 trials are on average required until a successful action is found. For
comparison, we tried to learn the Acrobatics skill from scratch without relying
on the existing Flip, Hop-Roll and Hop-Flip skills by hand-coding an initial guess
and using a greedy local search to find a successful action. Even after considering
several search heuristics, the best performing ones still took on average 150 trials
to find the first successful Acrobatics action.

Since our framework is largely independent of the exact proportions of the
Acrobot, we successfully learn all skills for several variations (shown in Figure 1)
with no parameter tuning. The single exception to this was the Hop-Roll skill of
Acrobot C2, for which we had to manually adjust the initial action.

Since the skills are parameterized with respect to task parameters, they can
be used by a planner for high-level tasks. In our experiments, we considered the
task of jumping over gaps in the terrain (Figure 5). The planner monitors dis-
continuities in the ground ahead, and if a gap of some length is found, it queries
the Hop-Flip or Hop-Roll skills for an action that can achieve the appropriate
displacement.

7 Conclusions

We have presented a curriculum learning approach that progressively builds on
prior abilities when learning more complex skills. We demonstrate that challeng-
ing skills, such as acrobatic sequences, can be learned efficiently in this frame-



work. Furthermore, we show that the same curriculum can be applied to varying
morphologies to produce skill sets adapted to the individual body types. How-
ever, many challenges remain. Currently, the high-level curriculum itself needs
to be manually specified. We do not yet address the problem of learning active
feedback strategies for our skills, despite this being an important element of
control. More work is needed to make more efficient use of trials and to be able
to transfer skills from simulation to physical robots. Lastly, we need to develop
a better understanding of which types of motion skills can benefit most from a
developmental approach.

References

1. M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda. Purposive behavior acqui-
sition for a real robot by vision-based reinforcement learning. Machine Learning,
23(2):279–303, 1996.

2. Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In
Proc. Intl Conf on Machine Learning, pages 41–48. ACM, 2009.

3. G. Boone. Minimum-time control of the acrobot. In IEEE Intl Conf on Robotics
and Automation, 1997, pages 3281 –3287, 1997.

4. S.W. Hart. The development of hierarchical knowledge in robot systems. PhD
thesis, University of Massachusetts Amherst, 2009.

5. John Hauser and Richard M. Murray. Nonlinear controllers for non-integrable
systems: the acrobot example. In American Control Conf, pages 669 –671, 1990.

6. G. Konidaris and A.G. Barto. Skill discovery in continuous reinforcement learning
domains using skill chaining. Advances in Neural Information Processing Systems,
22:1015–1023, 2009.

7. G. Neumann, W. Maass, and J. Peters. Learning complex motions by sequenc-
ing simpler motion templates. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 753–760. ACM, 2009.

8. A.Y. Ng. Shaping and policy search in reinforcement learning. PhD thesis, Uni-
versity of California, Berkeley, 2003.

9. M. Pickett and A.G. Barto. Policyblocks: An algorithm for creating useful macro-
actions in reinforcement learning. In International Conference on Machine Learn-
ing, pages 506–513, 2002.

10. M. Ponsen, M. Taylor, and K. Tuyls. Abstraction and generalization in reinforce-
ment learning: A summary and framework. Adaptive and Learning Agents, pages
1–32, 2010.

11. R.A. Schmidt and T.D. Lee. Motor control and learning: A behavioral emphasis.
Human Kinetics Publishers, 2005.

12. BF Skinner. Reinforcement today. American Psychologist, 13(3):94, 1958.
13. M.W. Spong. The swing up control problem for the acrobot. Control Systems,

IEEE, 15(1):49 –55, feb 1995.
14. A. Stout and A.G. Barto. Competence progress intrinsic motivation. In IEEE Intl

Conf on Development and Learning, pages 257–262. IEEE, 2010.
15. K.K. Yin, S. Coros, P. Beaudoin, and M. van de Panne. Continuation methods

for adapting simulated skills. In ACM SIGGRAPH 2008 papers, pages 1–7. ACM,
2008.


