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Figure 1: Constrained walking skills. (a) Offline synthesis is used to generate physically-simulated motions for example problems. The
example motions are used to develop a dynamics model that can make accurate step-to-step predictions. (b) This model can then be used
by an online planner to navigate across constrained terrain. (c) A 3D physics-based character simulation plans steps to avoid stepping in
crevasses. (d) A challenging terrain being navigated by the 3D model.

Abstract

Simulated characters in simulated worlds require simulated skills.
We develop control strategies that enable physically-simulated
characters to dynamically navigate environments with significant
stepping constraints, such as sequences of gaps. We present a
synthesis-analysis-synthesis framework for this type of problem.
First, an offline optimization method is applied in order to compute
example control solutions for randomly-generated example prob-
lems from the given task domain. Second, the example motions
and their underlying control patterns are analyzed to build a low-
dimensional step-to-step model of the dynamics. Third, this model
is exploited by a planner to solve new instances of the task at in-
teractive rates. We demonstrate real-time navigation across con-
strained terrain for physics-based simulations of 2D and 3D char-
acters. Because the framework sythesizes its own example data, it
can be applied to bipedal characters for which no motion data is
available.

1 Introduction

The creation of flexible models of motion, such as the skills needed
by a character to move through a constrained environment, remains
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a challenging problem in computer animation. A common approach
is to resequence example kinematic motion data, as done in motion
graphs and their variants. Another idea is to model the processes
that gives rise to motions, which is the approach adopted in physics-
based animation. This type of model has the potential to be more
flexible in that it can allow for direct interaction with the environ-
ment, as mediated by physics and forces. In character animation,
physical models are commonly used to generate rag-doll effects,
but creating skilled motions using simulations remains problematic
because of the required control. The simulation of skilled walking
needs to address issues of balance and control in high-dimensional
action spaces. Skilled walking further requires planning in order to
cope with constraints in the environment, such as gaps that need to
be stepped over. Because walking is just one of many skills that
we may wish simulated characters to have, it is important to have
methodologies that automate the development of skills.

In this paper we propose automated techniques for developing con-
strained walking skills for bipedal characters. As shown in Fig-
ure 1(b,c,d), the problem is defined as one of walking across a
level terrain with gaps, such that the gaps partially or fully constrain
where the character can step. A stepping stone problem represents a
fully-constrained scenario where the sequence of desired foot-step
locations has been fixed in advance. The problem is particularly
interesting in that there is no obvious parameterization for this task.
Modeling the control required for a given step as a function of the
length of the next desired step is insufficient because the action also
needs to take the starting state into account. For example, when
taking a 90cm step, the character needs to take different actions for
an initial forward velocity v = 0.3 m/s as compared to v = 1 m/s.
The important role of the character state makes planning and con-
trol strongly coupled problems for this task. A planner for walking
across a terrain with gaps needs to know what the controller is capa-
ble of in any given situation, e.g., in a particular state is it possible
to take a large step over an upcoming gap?



Our method is characterized by its synthesis-analysis-synthesis ap-
proach. First, offline synthesis (§3) is used to generate physically
feasible control solutions to a set of sample problems from the given
task domain. The generated solutions consist of the motions, de-
rived from a forward-dynamics simulation, and the control inputs
that created the motions. Figure 1(a) shows an example problem
sequence of target stepping locations and the simulated motion re-
sulting from the offline synthesis. Second, offline analysis (§4) is
used to develop a low-dimensional step-to-step dynamical model
that is based on the family of motions computed in the first step.
Third, this dynamical model is exploited during online synthesis
(§5) to plan and control new task instances from the same task do-
main.

The contributions of the paper can be summarized as follows. First,
a solution is developed for the difficult problem of controlling
physically-simulated characters in real time to walk in environ-
ments having significant stepping constraints. Second, a synthesis-
analysis-synthesis approach is introduced as an effective method for
creating a more general skill from a simple walk cycle controller.
Third, real-time motion planning is demonstrated for physically-
simulated characters with continuous action spaces.

2 Related Work

A variety of previous work touches on aspects of our problem and
serve as inspiration for the method proposed in this paper. Be-
cause of the ubiquitous nature of walking, many data-driven kine-
matic models of walking have been developed to generate flexibly-
parameterized walking gaits [Kwon and Shin 2005; Mukai and
Kuriyama 2005; Wang et al. 2005]. Several methods demon-
strate forms of constrained walking based on resequencing or in-
terpolation of kinematic motion data [Choi et al. 2003; Mukai and
Kuriyama 2005; Reitsma and Pollard 2007; Safonova and Hodgins
2007].

Physics-based models have the advantage of using an explicit
model of the physics and thus have the potential to be more gen-
eral. A variety of feedback-based control strategies have been de-
veloped for walking and running characters [Raibert and Hodgins
1991; Laszlo et al. 1996; Hodgins and Pollard 1997; Sharon and
van de Panne 2005; Sok et al. 2007; Yin et al. 2007; da Silva et al.
2008b; da Silva et al. 2008a]. However, it is not obvious how they
can be adapted to handle constrained locomotion scenarios, espe-
cially since foot placement is often a key element for regulating
balance and speed.

The use of trajectory-based optimization techniques to compute op-
timized motion sequences has a long history in animation. One of
the challenges has been to develop techniques that can cope well
with the high number of degrees of freedom of human motion. This
can be done with simplified physical models [van de Panne 1997;
Popović and Witkin 1999], data-driven dimensionality reduction of
the state [Safonova et al. 2004], or leveraging existing motion data
[Liu et al. 2005]. Our offline optimization step is similar to what
can be accomplished with trajectory optimization methods in that
we desire to modify a default walking gait subject to new stepping
constraints. Our proposed method uses the results of the offline
synthesis as a point of departure. By observing that there is signifi-
cant structure in the example solutions, results can be cheaply esti-
mated using regression instead of using an expensive optimization1.
Unlike the offline optimization problem, solving partly-constrained
walking problems requires exploring discrete alternatives in foot-
step placement, such as whether or not to take an extra step before

1We note, however, that the regression model we use is in fact not a
direct substitute for the offline optimization step because we treat the action
as an input rather than an output. This issue is discussed further in Section 7.

crossing a gap. As a result, this type of optimization falls outside the
scope of gradient-based optimization techniques, even if the step-
ping location and stepping time are also treated as free parameters.
Two last points of distinction of the proposed method are that it can
provide real-time control and that it works with standard black-box
forward dynamics simulators for both the offline optimization and
the online simulation.

Planning physics-based motions across terrain with constraints is
a problem that has been studied in the context of hopping robots
[Hodgins and Raibert 1991; Zeglin and Brown 1998], where it can
be simplified in ways that are specific to the structure of this kind
of robot. A discrete search strategy is applied to a dynamically sim-
ulated hopping lamp character in [Huang and van de Panne 1996].
Recent work has shown very promising results for terrain-specific
policies for planar compass gaits, including terrains with sequences
of gaps [Byl and Tedrake 2008]. Our work is also motivated by
footstep planning for humanoid robotics. Kinematic models of
robot capabilities have been used very effectively to compute op-
timized footfall sequences that avoid obstacles [Kuffner et al. 2003;
Chestnutt and Kuffner 2004]. Kinematic capability models assume
that a fixed range of stepping lengths is always achievable. They do
not model the fact that a successful large step may be impossible
for initial states that are moving too slowly or that a small step may
be impossible or undesirable when moving too quickly.

More recent work has demonstrated footstep planning for the
Honda ASIMO robot that does consider the state-dependent na-
ture of actions [Chestnutt et al. 2005]. The planning strategy treats
the robot’s pre-existing balance control and stepping strategies as
a black box that responds to body displacement commands. The
key insight is that for the given robot and its controller, the cur-
rent state of the robot can be accurately predicted by knowing only
the last two commanded actions. The planner considers a fixed set
of seven possible discrete actions for each step. A sequence of all
7× 7× 7 = 343 command sequences is then used to create a dis-
crete model of the space of all possible motions using a directed
graph. Motion planning then uses A* search.

Also closely related is the work of [Hofmann 2006], which demon-
strates a motion planning algorithm for a 3D humanoid model for a
task involving a prescribed irregular foot placement. The motion is
controlled using a user-developed qualitative state plan which is a
finite state machine abstraction with specified constraints and goals
associated with each state. The center of mass position and veloc-
ity are used as the state of an abstracted virtual model, which allows
for some flexibility when executing the plan.

3 Offline Synthesis

Our approach begins by computing dynamically-simulated solu-
tions to example stepping-stone problems, as shown in Figure 2.
Given a sequence of target foot locations, the goal is to find a con-
trol sequence that results in the character stepping precisely at the
desired locations. Both the synthesis and the subsequent analysis
use individual steps as the basic motion primitive. Steps are de-
fined based on foot-strike events, i.e., one step ends and the next
one begins when the swing foot strikes the ground. The output of
the process is a sequence of example steps where, for each step i, we
know the starting state si, the applied action Ai, the resulting state
s′i, and the resulting step length, li. The sequence of actions are the
unknowns for the example problem sequences. The step length is
measured as the heel-to-heel distance.

Finding solutions to a given stepping-stone problem is cast as an
optimization problem. Given a base controller defined by param-
eters Abase that produces a steady-state walking gait, the goal of
the optimization is to find modified parameters for each step, Ai,



Figure 2: Offline Synthesis and Analysis.

such that the target stepping sequence is achieved. Implementing
these ideas requires defining the example problems, the parameter-
ized base controller, the optimization function, and the optimization
method. We now discuss each of these aspects in turn, focussing on
their application to planar models. The specific extensions to 3D
control are deferred to §3.3.

Example stepping-stone problems are generated using a uniform
step-length distribution l ∈ [0.1m,0.9m] for the humanoid biped and
l ∈ [0.1m,1.0m] for the big-bird character to be introduced later. We
use multiple 100-step sequences instead of a single long sequence
because it is possible for the optimization to fail to find good solu-
tions for difficult or perhaps impossible sequences of steps. While
such failure is rare, it can compromise solutions for the remainder
of the steps in a sequence. The character geometry, control repre-
sentation, joint limits, and torque limits will all impose constraints
on the types of step sequences that are feasible, as will the opti-
mization technique itself.

3.1 Actions

The applied actions, Ai, for our method are defined in terms of the
four-state finite-state machine (FSM) control structure described in
[Yin et al. 2007], which we build on because of its robustness and
simplicity. Two states are used to model each of left-stance and
right-stance. The first state is maintained for a fixed amount of time
Thold , after which there is a transition to the second state. The sec-
ond state terminates upon footstrike, thereby ending the step and
transitioning from left-stance to right-stance or vice-versa. Each
state provides fixed target angles for proportional-derivative (PD)
controllers, which then compute the internal joint torques to be ap-
plied to the forward dynamics simulation. On top of this, a bal-
ancing strategy that adds feedback to the torso and swing-leg hip is
active at all times, as per [Yin et al. 2007]. The biped parameters,
feedback gains, and PD-gains are identical to those used in [Yin
et al. 2007].

Our action vector, A, consists of a set of six parameters of the above
controller which can then be modified as needed for each walking
step, as modeled by two successive states of the FSM. These pa-
rameters are: the trunk target angles (first state, second state), the
swing hip target angles (first state, second state), the stance ankle
target angle (first state), and Thold . The controls for each step are
initialized to Ai ← Abase, where Abase produces a regular walking
gait with 36cm steps for the humanoid biped. The big-bird char-
acter uses the stance knee angle in the optimization instead of the
stance ankle angle, and takes 66cm steps.

3.2 Optimization

Given an example stepping stone problem, the cost function to
be minimized by the offline optimization assigns a cost to both
stepping-location errors and deviations from the original control pa-

rameters:

f (A1...An) =
n

∑
i=1

(||xi− xd
i ||2 + γ(Ai−Abase)T W(Ai−Abase))

where n is the number of steps, xd
i is the desired stepping loca-

tion for step i, xi is the actual stepping location for step i, W
is a diagonal weighting matrix, and γ = 0.1. We currently use
W = diag(1,1,1,1,0.05,4), where these weight the 6 control pa-
rameters in the order described above. Distances are measured in
metres, angles in radians, and time in seconds.

A multitude of optimization methods can now be considered. Si-
multaneous optimization of the many steps in a long sequence of
steps is impractical; a sequence of 100 steps will have 600 free pa-
rameters for a problem where analytical gradients are not readily
available. Sequentially optimizing one step at a time does not pro-
vide sufficient anticipation – the state resulting from a step may
be incompatible with being able to achieve the following step. As
a compromise, we optimize over a three-step sliding window that
thus has a total of 3×6 = 18 free parameters. The sliding window
is moved forward one step at a time, meaning that any given action
Ai for step i will be optimized three times in succession, each time
with a different placement in the sliding window. The action for a
given step is not finalized until the sliding window has completed
all three passes, and only the final resulting action is retained for
later use. After a given window optimization is complete, the final
parameters for the last two steps in the window become the initial
parameters for the first two steps of the next window placement.
The state at the end of the first step of the optimization window be-
comes the new immutable starting state for the next optimization
window.

For each position of the sliding window, gradient-descent optimiza-
tion is used. Although the optimization window spans events that
introduce state discontinuities such as foot strikes, the objective
function generally varies smoothly as a function of the optimiza-
tion parameters for our problem domain. We note that unlike the
problems tackled in [Yin et al. 2008], our terrain is flat, has con-
stant friction, and is obstacle free. The failure cases that do arise
are discarded, as will be discussed shortly. The gradient is numer-
ically computed using centred finite-differences, and thus makes
use of 18×2 simulations spanning the duration of the sliding win-
dow. A bisection line search is used to find the local minima in the
direction of the gradient, and the gradient-descent operation then
repeats. The process stops when the objective function ceases to
improve or after 15 iterations have elapsed. The optimization time
grows linearly with the number of steps.

It is possible to pose stepping stone sequences that are impossi-
ble for the optimization to solve to a desired degree of accuracy.
This can result in two possible outcomes. The character may end
up losing balance and falling, in which case we terminate the step-
ping sequence and remove the data associated with the five previous
steps. Alternatively, the character may end up performing badly in
terms of the proposed objective function. We note however that
these latter cases still result in valid training data samples. In the
data collection phase we are interested in the actual outcome of an
action and not necessarily in the desired outcome that was used to
generate it. The optimization is nevertheless important because it
shapes all the stepping actions in a consistent fashion, thereby giv-
ing the action space a considerable amount of structure which we
later rely on.

As shown in Figure 2, the user has three avenues by which to influ-
ence the stepping behavior. The problem stepping sequence specifi-
cation determines the range of step lengths to be accomodated. The
base-control parameters Abase determine the walking style. Lastly,



it is possible to influence the way in which step adaptations should
be made by altering W or by choosing a different parameterization
of the base controller.

3.3 3D Control

The offline synthesis process applied to our 3D character is largely
identical. The goal for the 3D problem is to achieve constrained
stepping as seen in the character’s sagittal plane. Our 3D char-
acter has human-like proportions and mass distribution. The con-
trol strategy closely follows that presented in [Yin et al. 2007]. A
swing-leg placement strategy is used as a balance strategy in both
the sagittal and coronal planes. The base controller uses three states
per step. States one and two have fixed-duration dwell times, and
state three ends upon the foot strike that demarcates the beginning
of the next step. As before, action space A consists of a subset of the
target angles used in the states. The specific nine target angles that
comprise A are: the sagittal torso angle, with respect to the vertical,
in all three states; the sagittal swing hip angle, in all three states;
the sagittal stance ankle angle, in states one and two; and the dwell
times of states one and two, which are assumed to be identical.

In the objective function, x and xtarg are measured in their projec-
tion to the character’s sagittal plane, as defined by the root link
coordinate frame. We use W = I. We add one additional term
to the objective function that measures lateral step deviation, i.e.,
(zi − ztarg)2, where ztarg defines a desired lateral foot spacing of
15cm. While there are no explicit parameters in A to directly af-
fect lateral stepping, this term discourages the use of subspaces of
A which introduce unnecessary lateral disturbances. Single-sided
finite differences are used for the 3D case. The 3D offline opti-
mization requires 2.5 minutes per example step. The 3D simulation
runs 3× faster than real time. For comparison, the 2D simulation
runs 5× faster than real time.

4 Motion Analysis

Motions are planned on a step-by-step basis using an abstract model
of the step-to-step dynamics. Given the current state, the planner
evaluates the state resulting from each of many possible actions for
the current step. This can be applied recursively to look two or
more steps into the future. In support of this, the example data is
used to build a step-to-step dynamics model (SSDM). As shown in
Figure 3, the model predicts the state at the start of the next step,
s̃′, as a function of the state at the start of the current step, s, and
the applied action during the step, A. It also predicts the resulting
step length, l̃, and the uncertainty, Ũ , of its prediction. The offline
data will also be used to predict the subspace of reasonable actions
that can be taken from a given state s, which we refer to as the
capabilities model.

The SSDM makes its predictions based upon the example steps
computed during the offline synthesis. We employ k-NN interpola-
tion as a simple form of non-parametric regression. Direct applica-
tion of this in the high-dimensional state space of s×A yields poor
results and ignores the fact that both the states and actions of the
example steps exhibit significant structure. To this end, we manu-
ally define a lower-dimensional state space, and use PCA to define a
lower-dimensional action space. The low-D action space also plays
an important role in the planning process by providing a compact
action space to sample from, i.e., that defined by Â, as opposed to
having to draw samples from the original high-D action space. We
now describe in more detail how each aspect of the SSDM is de-
fined.

Low-dimensional state space: The state s is 18-dimensional for
planar characters and much higher for the 3D human model. In

Figure 3: The step-to-step dynamics model (SSDM). The non-
parametric (example-based) model makes predictions using the re-
sults of the offline synthesis. The given dimensions for the state and
actions spaces are for the 2D bipeds.

order to simplify functions that operate on the character state, we
define a reduced dimensional representation of the state given by
ŝi = (d,v,θtorso,θLhip,θRhip), where d,v are the position and ve-
locity of the center of mass as measured with respect to the stance
foot, and the remaining parameters are the torso, left-hip, and right-
hip angles. These features are motivated by the need to model the
state in a compact fashion but still capturing the essence of the
state. The specific joint angles that we therefore use are those that
drive the heaviest links in the character. It should also be feasi-
ble to use an automatically-computed low-dimensional state space
representation, although we have not yet explored this. We de-
fine the distance between two different states si and s j according
to d2(si,s j) = d2(ŝi, ŝ j) = (ŝi− ŝ j)T X(ŝi− ŝ j) where X is a diago-
nal weighting matrix. We use X = diag(2,1,0.5,0.5,0.5) for all our
characters and styles. For the case of 3D characters, all parameters
are identical, but taken in a sagittal projection.

Low-dimensional action space: A principal component analysis
(PCA) of all the example actions reveals that there is significant
structure in the control actions computed by the offline optimiza-
tion. 66% of the variation is contained in the first two principal
components. We use these first two principal components to define
a latent 2D action space Â, whose purpose is to define a unique 2D
parameterization for the 6D action space (9D for the 3D charac-
ter). We project from A down to Â using the PCA matrices. Where
necessary, we estimate A from Â using kNN interpolation, as will
be described shortly. In practice, this gives reconstructions that are
better than the 66%-of-variation PCA reconstruction.

kNN regression for SSDM: During planning, the outcomes of
many different actions are explored for the current state. In order
to efficiently support repeated queries involving the same state s,
the regression process first finds the subset of K example steps that
have a starting state s j most similar to s, as measured by d(s,s j).
This subset can be reused for subsequent queries involving the
same state. We use K = 25. A kD-tree is used to efficiently find
the K examples, yielding 3× speedup over straight linear search.
The second stage of the regression prediction selects the k nearest
neighbors from K based on their distance in reduced action space,
||Âi− Â||. We use k = 3. Lastly, we compute the weights for each
of the k samples using wi = 1/(d(si,s) + α||Âi− Â||), followed by
a normalization step. The final weights thus take into account dis-
tances in both state and action space. We use α = 1. Interpolation
is carried out using ṽ = ∑i wivi, where v is the value we wish to
see interpolated as a function of the query (s, Â). We expect that
alternative regression procedures such as Gaussian process latent
variable models would likely produce similar results.

During planning, the SSDM is used to predict the resulting state,
the step length, and the uncertainty of its own prediction. Once the
planner has committed to an action, the SSDM is also used to es-
timate the full dimensional action, A, that corresponds to Â. This



Figure 4: Two-step finite horizon planning using the reduced action
space. Abstractions of future states considered by the planner are
shown.

then becomes the action to be applied. Estimating A using Â as a
latent variable has two advantages over the alternative of using lin-
ear reconstruction from the related PCA matrices. It allows A to be
modeled as a curved manifold in the high-dimensional space, and it
ensures that the model always interpolates and never extrapolates.

Uncertainty model: The uncertainty U provides a way for the
SSDM regression to express doubt about the values that it is be-
ing asked to estimate. As described in the following section, the
planner avoids actions that have uncertain predicted outcomes, ei-
ther by eliminating them from consideration, or, for fixed-stepping
scenarios, adding a penalty cost. For each example step si,Ai,s′i, li,
we associate an uncertainty estimate Ui, which is computed using
leave-one-out cross-validation. We temporarily remove the data for
example step i from the set of examples and then use the SSDM
to estimate the step resulting from (si, Âi). This produces s̃′i and l̃i
as estimates of the resulting state and step length, respectively. A
comparison of these with their known values is used to compute the
uncertainty, which we define as Ui = d(si, s̃i) + β |li− l̃i|. We use
β = 1.

Capabilities model: The example data is also used to provide a
model of the subspace of reasonable actions that should be consid-
ered when in a given state. This subspace of actions is then used
in the planning process. The subset of K example steps having s j
closest to s is used for this, i.e., the same set used in the first stage
of the kNN regression. The feasible subspace of actions is defined
by the axis-aligned bounding box placed around the K actions in
the reduced action space, as illustrated in Figure 4. More generally,
the convex hull could also be used.

5 Motion Planning and Execution

Given a good step-to-step dynamics model, a planning algorithm
can use this model to accomplish its task. The goal of the plan-
ning can be to return the first satisfactory solution, or, alternatively,
to return the best solution according to an optimization criterion.
Given the constraint of wanting to control simulated characters in
real-time, we opt for either finding the first satisfactory solution,
or using the best solution that is found within a fixed number of
samples of the action space. We explore three types of planning al-
gorithm, each of which samples from the feasible space of actions
as defined by the capabilities model. Each algorithm can plan over
a multiple-step horizon, as illustrated in Figure 4. Unless otherwise
noted, we use a two-step planning horizon. Replanning occurs after
each step.

Samples drawn from the space of feassible actions can still result in
a number of unacceptable outcomes. The planners reject samples

having too much uncertainty, U ≥ Umax (Umax = 0.75), or which
have an associated predicted step length which results in stepping
into a gap. For stepping-stone scenarios, a sample can be rejected
for stepping too far from a desired location. We use a threshold
of 6cm for this. In order to make a final choice among multiple
acceptable options, we use a weighted sum of the predicted step
error (as summed over the planning horizon) and the uncertainty
associated with the immediate action. We weight the uncertainty
with a constant cu = 0.1.

We consider three planning techniques.

Regular Sampling: A first possible planning algorithm is to reg-
ularly sample the feasible action space, which can be done recur-
sively until a satisfactory plan is constructed for the next n steps.
This technique thoroughly examines the action space and is thus our
method of choice for fully-constrained stepping-stone problems, as
shown in Figure 8.

Random Sampling: For less-constrained problems, such as ter-
rains with sequences of gaps, exhaustive sampling of the action
space is typically not required. In such cases we resort to ran-
dom sampling. For any given step, the random sampling terminates
when a satisfactory solution is found or a maximum number of sam-
ples for that step has been reached. When applied in the context of
building an n-step finite horizon planning, the search operates in a
depth-first fashion, and the first solution to successfully achieve n
steps is used. The traversal shown in Figure 6 is produced using
this planning technique.

All planning for the 3D character uses the random sampling ap-
proach with a two-step horizon and an upper bound of 500 samples
in order to achieve real-time planning. In order to converge to a
regular gait in the absence of obstacles, the base controller Abase is
used whenever the nearest impending gap is more than 1m in front
of the character. Otherwise, random sampling with a two-step hori-
zon is employed, using an upper bound of 500 samples. If this fails
to produce a solution that strictly avoids the gaps, the solution that
best avoids the gap is chosen.

Hybrid: One aspect missing thus far from our planner is the notion
of a preferred step length. In order to incorporate this, we develop
a hybrid model. A simple footstep planner is first used to deter-
mine the lengths of the next two steps to be taken. Steady-state step
lengths are preferred (36cm for the 2D and 3D humanoid bipeds,
and 66cm for big-bird). If a planned step location falls within a
gap, it is moved to either before the gap or after, depending on
which edge is closer. Given the footstep plan, a first attempt is
made to match the planned steps using a sparse regular sampling in
the reduced action space. In the absence of an acceptable solution
being found, the footstep planning is abandoned and the random
sampling planner is invoked.

6 Results

Parameter settings: Our 2D simulation uses optimized Newton-
Euler equations of motion and a damped-spring penalty method
ground contact model (kp = 100000N/m,kd = 6000Ns/m) with a
time step of 0.0005s. We compute up to 2000 example steps in
order to be able to evaluate the effects of the number of example
steps on the quality of our solutions. An average of 11.9 optimiza-
tion iterations were required per step. For a randomly selected run
of 100 steps, the average error in the desired foot placements is
4.3cm, with 77% of the step errors being less than 6cm, and 9%
more than 12cm. It is worth noting that not all sequences of steps
can be satisfied. The 3D simulation uses the Open Dynamics En-
gine (ODE) physics simulator and we generate 1000 example steps.
All of the parameters described above for the 2D bipeds are quali-
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Figure 5: Walking Style Examples. (a) Regular walk. (b) High-
stepping walk. (c) Big-bird walk.

Figure 6: Constrained terrain walking.

tiatively similar for the 3D biped. Examples computed using the
random-sampling and hybrid planners run in real time, which en-
compasses most of our examples. Two exceptions are the result
shown in Figure 1(b) and Figure 8, which each use a higher sam-
pling rate during planning in order to find feasible solutions to these
highly-constrained problems.

Highly constrained walking: The 2D and 3D simulated characters
can plan their way across highly constrained terrains. Animations
of our results are best seen in the video that accompanies this paper.
Figure 8 shows the result of a stepping stone traversal, which fully
constrains the desired foot locations for each step. Smooth walking
involving a mix of small and large steps requires anticipation and
this is provided by the planner. The sequence of steps is different
from any it has seen in the example data. The error for the last step
is 8.9cm, which is almost twice our average stepping error of 5cm.
The regular-sampling planner is used for this particular example,
which does not run in real-time.

For the highly-constrained terrains shown in Figures 1(b) and (d),
the planner must decide where and how to step. The hybrid planner
is used for both examples and runs in real-time for the 3D model ter-
rain traversal (Figure 1(d)). The largest gaps for this latter example
are 50cm wide and therefore require at least a 70cm step in order to
safely cross with a 20cm foot. The 2D result shown in Figure 1(b)
runs slower than real time because of the high sampling rate needed
in order to find a feasible solution to this particular problem.

Styles and Characters: Figure 5(a) shows a result for our primary
model, a 7-link planar biped. A significant feature of our method

Figure 7: Following a path while avoiding crevasses.

Figure 8: Results for a stepping-stone problem.

is that it can be readily applied to alternate walking styles and al-
ternate physical models without making any changes to the synthe-
sis pipeline or any of its parameters. Figure 5(b) shows the terrain
traversal simulation that results from using a base walking style that
lifts the swing leg much higher during mid-stance. This same style
is preserved in the resulting simulated motions. Similarly, we can
apply the synthesis pipeline to a new character, such as the big-
bird character shown in Figure 5(c). The same synthesis-analysis-
synthesis steps are applied, with no changes to any of the parameter
settings. Interestingly, the strategy that emerges to deal with con-
strained foot-placements for the big-bird character is quite different
from that of the human-like biped. Qualitatively, it accomplishes
much of the required constrained stepping by having the body move
at a relatively constant speed and stepping faster when constraints
require taking short steps. This is an effective strategy and we spec-
ulate that it may result in part from the small foot of this creature.
Figure 6 shows a highly constrained walk that can be planned in
real time.

3D Path Following: Figure 7 is an example of following a path
while using real-time planning to step across crevasses. The path is
defined using a sequence of way-points. Turning towards the way
point is accomplished on any given step using the stance hip, as
described in [Yin et al. 2007]. Once within 50cm of the current
waypoint, the next waypoint becomes the goal.

Interaction and Replanning: Replanning at every step allows for
interactive unplanned physical interaction of the characters (planar
and 3D) with their environment. Figure 9 shows how a mid-stride
push will affect the resulting motion. The use of a continually-
active balance mechanism [Yin et al. 2007] adapts the placement
of the swing foot without delay, although of course an unfortu-
nately timed push could in this way cause a step into a gap. Upon
foot-strike, the planning process takes the current state into account
when developing its subsequent plan. The video also demonstrates
robustness to small changes in terrain height (4cm) while stepping
over gaps, as well as an example of the 3D model adapting to a
push. While the pre-existing balance mechanism provides the im-
mediate response, it is the step-by-step motion planning that results
in the required adaptation with respect to upcoming gaps.

Effect of number of example steps: The locomotion skill of the
character is in part a function of the number and span of the motion
prototypes that are computed offline. Figure 10 shows the distribu-



(a)

(b)

Figure 9: The effect of a push on the result of a terrain traversal
simulation. (a) Resulting motion with no push. (b) Resulting motion
with a push. The extra forward speed from the push results in only
a single step being taken on the terrain before the last gap.

Figure 10: Performance as a function of the number of example
steps. The colored histograms give the distributions of stepping
length errors when using the given number of synthesized example
steps.

tion of foot-placement errors for a fully-constrained stepping stone
walk across a new stepping-stone sequence for the planar human
model. The ability to precisely follow a given stepping-stone se-
quence improves with more example data. The performance figures
are for a terrain that has the same uniform random distribution of
requested step lengths as was used for generating the example data.

Effect of planning horizon: The effect of the planning horizon is
shown in Figure 11 as evaluated on the planar human biped. A set
of fully-constrained stepping stone problems is solved using one,
two, and three-step planning horizons. The distribution of stepping
errors is shown. A one-step planning horizon performs poorly as
it aims to accurately achieve the next foot placement while disre-
garding subsequent steps. The three-step planning horizon yields
results that are qualitatively similar to the two-step planner, having
slightly fewer large errors and fewer small errors. We hypothesize
that the limitation on the quality of predictions made three steps
into the future may be too low to yield an advantage over a two-
step time horizon plan. A two-step time horizon further seems to
allow sufficient flexibility for the posed problems.

Effect of sampling density during planning: The quality of the
motion is a function of the number of samples used per state during
the planning process, as shown in Figure 12. We collect stepping-
length error data for stepping-stone sequences as a function of the
number of samples used by the planner. Planning with regular sam-

Figure 11: Effect of varying the planning horizon for a stepping-
stone problem. The colored histograms give the distributions of
stepping length errors.

Figure 12: Effect of the number of interpolated sample actions
used for exploring the action space during planning, applied to the
stepping-stone problems of the type shown in Figure 8. The colored
histograms give the distributions of stepping length errors. Regular
sampling planning is used.

pling is used for this test. The solution quality improves as a func-
tion of the number of samples used.

Terrain stress test: Terrains can vary in difficulty and this can af-
fect the ability of our simulated walking to successfully traverse it.
A systematic characterization requires defining classes of terrain.
As a simple test we develop a set of regular terrains that have a set
of 5 gaps of width w and an inter-gap spacing of length s. We then
record data for 3 simulated walks across the terrains, with each of
these walks beginning at 3 different random distances from the first
gap. We also need to define success. A successful walk can some-
times be obtained even without a solid foot placement on the far
side of a gap. We define any footfall where less than half of the foot
is on the ground to be a failure even if it does not result in a fall.
Errors significant enough to cause a fall also count as a failure. Ta-
ble 1 shows the results for various values of w and s and evaluated
for the planar human model. As might be expected, the harder ter-
rains are the ones with wider gaps and less space between the gaps.
We note that traversing a 50cm gap requires taking a 70cm step, as
measured heel-to-heel, and that our character has 90cm legs.

7 Discussion

The demonstrated technique shares ideas with kinematic data-
driven methods such as motion graphs and their many variants. It
is perhaps most similar with methods that develop continuously-
parameterized kinematic models of motion. However, our work
differs in several key respects.



w
0.2 0.3 0.4 0.5

1 1 1 1 0.93
s 0.75 1 1 1 0.93

0.5 0.86 0.93 0.86 0.6
0.25 0.8 0.93 0.66 0.3

Table 1: Effect of gap width and gap spacing on successful traver-
sal. The fraction of successful steps is given for terrains with gap
width w and inter-gap spacing s, as measured in metres.

First, the model synthesizes its own example data to work from,
which allows the method to work in the absence of motion cap-
ture data. Much of the power of computer graphics as a medium
has always been its ability to portray new worlds and this requires
abstract models that do not rely on large quantities of real-world
data. The motion models developed in this paper are the product
of the physical structure of the given biped, an initial cyclic step-
ping motion, physics, and the optimization objective function used
to compute the offline example steps.

Second, while our approach is data-driven, it is applied to compute
control actions that drive physics-based simulations instead of the
kinematic interpolation of motions. Many kinematic techniques as-
sume that it is possible to blend or transition between all pairs of
stepping motions. We note that the analogous result does not hold
in the dynamic setting. For example, a fast long step is infeasible
without sufficient initial momentum. Applying a planning strategy
analogous to that of motion graphs can be trivially implemented in
our setting by considering the set of all stepping actions that begin
from a state that is ‘close enough’ to the current state. In our frame-
work this amounts to considering only the K actions beginning from
similar states and which we use to define our action-space bound-
ing box. We have experimented with this type of discrete action
space and found it to be consistently inadequate. This motivates
the sampling in a continuous action space that is used by our plan-
ner, which effectively allows for interpolation between previously
observed actions.

Third, it is not obvious how to parameterize the dynamics of the
example step data because it involves high-dimensional actions that
govern transitions between high-dimensional states. Specific states
and actions are unlikely to repeat. The 2D action space manifold,
which we parameterize using the first two PCA coordinates of the
high-dimensional actions, introduces the necessary structure that
makes sampling the action space a tractable proposition.

The results demonstrate that skills which anticipate features of the
environment can be developed for real-time, reactive physics-based
character animation in a largely automated way. Taken as a whole,
the synthesis-analysis-synthesis process aims to automatically cre-
ate a complete interconnected family of motions rather than indi-
vidual motions. It establishes close connections between the con-
straints and objectives that shape a skill and the resulting patterns
of action. The technique could likely be extended to other problems
such as stepping over objects by using continuation methods to de-
velop the required solutions to the example problems [Yin et al.
2008].

An interesting alternative to the current planning approach is to di-
rectly use regression to compute the next desired action. First, a
desired sequence of target foot placements can be constructed using
a simple fixed model of the minimum and maximum step lengths
that the character can take. The action required for any given step
could then be predicted directly from the example data set using re-
gression, i.e., A = q(s, l1) or A = q(s, l1, l2), where s is the current
state of the character, l1, l2 are the next two desired step lengths, and

q defines an appropriate regression-based estimator. Experimenta-
tion with this scheme revealed a number of limitations. One issue
is that the planner needs to be very conservative in its placement
of planned steps. Simply assuming that all step sequences satisfy-
ing the minimum and maximum step-length bounds of the example
problems are equally feasible results in poor performance. A sec-
ond issue is that it is not obvious how many future steps should
be included in estimating the current action. Only considering the
imminent step provides insufficient anticipation of upcoming steps.
Considering the next two or three steps results in regression queries
that have sparse (poor) data support, given that it is unlikely that the
example data will contain a sufficiently similar example.

Our work has a number of limitations. The motions synthesized for
our human-like 2D and 3D bipeds are not as natural as we would
like. In particular, the 2D motion does not make significant use of
the ankles and thus does not achieve the toe-off behavior expected
in a human gait. Motion capture data could be used in two ways to
help correct this. The base cyclic motion could be designed to more
accurately mimic motion capture data. Additionally, if stepping
sequence motion data were available, similarity to this data could
be incorporated into the objective function for the offline synthesis.

The current method focusses on modeling the dynamics of vari-
able length steps as seen in the sagittal-plane. This is sufficient for
making the 3D model step across large gaps in the way that hu-
mans commonly do, namely stepping forwards across gaps and not
sideways. It can be applied to general 3D curved paths as long as
the required steps still happen predominantly in the sagittal plane.
However, this does not solve the fully general version of the step-
ping stone problem, namely navigating across an arbitrarily-placed
sequence of 3D stepping stones, also perhaps having variations in
height. Significant progress has been demonstrated on developing
kinematic solutions to this class of problem [Choi et al. 2003; Sa-
fonova and Hodgins 2007], although to the best of our knowledge
these techniques do not yet, subjectively speaking, exhibit highly
agile stepping and turning behaviors that would be indistinguish-
able from human motion captured directly in the same context. Ex-
tending our current technique to allow for diagonal steps would re-
quire adding one or two dimensions to the action space and adding
extra dimensions to the low-dimensional state representation. We
feel the technique would probably scale to accomodate diagonal
steps with a small lateral component, although we have not tested
such a scenario. Developing control strategies for much more arbi-
trary highly agile motions in highly constrained 3D environments
remains an open problem, although we hope that our work may
serve as a significant building block for this class of problem.

8 Conclusions

Developing skills for simulated characters is a challenging prob-
lem. We have presented an automated synthesis-analysis-synthesis
pipeline for producing simulated walking skills for planar bipeds
that are capable of navigating across terrains with gaps and foot-
placement constraints. The pipeline supports variation in character
design and walking style. It can synthesize constrained walking
control strategies in the absence of prior motion data, thereby al-
lowing physically-simulated skills to be developed as a function of
what a particular biped structure will allow.

We wish to extend the capabilities of our controllers in a variety of
ways. The walking skills do not yet demonstrate the agility of hu-
man walking. We wish to develop walking controllers that can stop,
start, and perform rapid step adaptations in a way that mirrors hu-
man capabilities. The ability to incorporate timing constraints may
be important in some situations. Better imitation of human terrain-
navigation behaviors may be possible by taking observational data



into account. Incorporating an energy-based term into the offline
motion optimizations may yield more plausible motions for real and
imaginary characters.
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