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Parameterized Gait

Synthesis

he study of gaits dates back to the earliest

attempts to draw or sculpt animals in
motion. Many important questions remained unre-
solved until photography made it possible to obtain
clear images of humans and animals in motion.! Recent
work in animation, robotics, and biomechanics has
turned from the analysis of gaits to the problem of gait

This physics-based
animation technique uses
control mechanisms
analogous to windup toys.
The parameterized control
yields common gaits and
other useful motions for
simulated creatures, despite
the lack of active control

over balance.

synthesis, using either physics-
based simulations or real robotic
mechanisms. Solutions to this prob-
lem hold promise as power(ul tools
for animation, enabling the creation
of realistic motions with minimal
effort. However, gait synthesis is
still a challenge.

This article presents a method of
producing gaits by using control
mechanisms analogous to windup
toys. The synthesis technique is
based on optimization. One of the
primary characteristies of “virtual
windup toys” is that they are oblivi-
ous to their environment. This
means that these creatures or simu-
lated toys have no active control
over balance. Nevertheless, “blind"
parameterized control mechanisms
can produce many common period-
ic gaits as well as aperiodic motions

such as turns and leaps. The possibilities and limitations
of this technique are presented in the context of exam-
ple creatures having one, two, four, and six legs. Figures
1 and 2 show animations of two of these creatures.

An important attribute of the proposed synthesis
method is that the motions produced can be parame-
terized. Thus, you can synthesize a family of motions
instead of just a single fixed instance of a motion. The
examples used here are

m a hopping gait parameterized with respect to speed,
m a turning walk parameterized with respect to the
turning rate, and
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m a leap parameterized with respect to the size of the
leap.

The animator can thus interactively specify the hopping
speed, turning rate, and leap size, respectively, for these
physics-based motions.

Related work

Humans, robots, and animals together form an inter-
esting and challenging class of objects to animate
because they are active. Movement must be achieved
through the coordination of actuators internal to the
object-—the muscles, motors, or other mechanisms that
cause motion.

We can contrast active objects with passive physical
systems whose motions are determined solely by exter-
nal forces, as is the case for a marionette or for a rock
rolling down a hill. The control problem for active
objects to solve for the muscle or motor acrions neces-
sary to achieve a desired motion. In general, the problem
takes the form depicted in Figure 3.

Ower the past two decades, a variety of workable solu-
tions to the contro! problem for motion synthesis have
been proposed and implemented, with application to
computer animation, robotics, biomechanics, and arti-
ficial life. The predominant methods for animation of
legged locomotion are kinematic. Physical simulations
are a more recent possibility. The early work of Girard®
used kinematics and simplified dynamics to govern the
behavior of legged creatures. Physical simulations guar-
antee that the laws of physics are obeyed and thus ensure
realism. However, since the simulations do not produce
desired or natural motions unless the appropriate control
functions are applied, the methods for producing these
control functions require investigation. The simulated
creatures must somehow acquire basic motor skills.?

Hopping and running are presently among the most-
studied classes of motions.** Research has been success-
fully applied to monopeds, bipeds, and quadrupeds, both
on real robots and in physics-based simulations for com-
puter animation. The controllers used for these motions
are constructed by decomposing the motion into distinct
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phases according to the legs in con-
tact with the ground at any point in
time. Appropriate control laws are
then designed for each phase.

Researchers have developed sev-
eral schemes for controlling the
motion of hexapods.® The problem
in this case is more one of coordina-
tion than balance because hexapods
are statically stable in many config-
urations. Much of the previous work
on hexapod control has focused on
problems beyond simple locomo-
tion. We will deal here with the loco-
motion problem for a simulated ant
to show that it falls within the scope
of the proposed control synthesis
method.

Biped locomotion has fascinated
people who build walking robots as
well as those who simulate it for pur-
poses of animation. Walking is most
often treated as a separate problem
from running because the two
motions have different types and
durations of ground contact. Biped

control algorithms often do not gen- ai?g{e
eralize beyond walking motions for iRt Gan

a specific physical model.

More recently, researchers have
employed optimization methods to
automatically synthesize locomotion
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controllers for simple articulated fig-

ures.”® These approaches begin with

a specific choice of architecture or

control representation for calculating the actuator forces
and torques from the sensory and state information, The
most detailed approach models the neural activation as
a function of time.” Ngo and Marks® use a control repre-
sentation that can be described as a finite set of stimu-
lus-response (SR) rules, where a particular actuator
response is chosen based on the rule activated by the cur-
rent stimuli. In the approach described by van de Panne
and Fiume,” a weighted, nonlinear network with time
delays is used to connect sensors indirectly to the actua-
tors. This structure is referred to as a sensor-actuator
network (SAN).

In both the latter cases, the architecture defines the
form of the controller, but not its function. The function
is determined by the values assigned to a set of frec para-
meters that exist within the controller. The vector Prwill
denote the set of free parameters for a controller. For
the SR representation, Prconsists of the conditions nec-
essary to trigger a particular response as well as the
responses themselves. For SANs, Py consists of the
weights and time delays used in the network. In either
case, Prgoverns the behavior of the controller.

Given the control representation, the problem of find-
ing a suitable controller for a desired motion is reduced
to assigning a set of values to the free parameters. A
desired motion is defined through the choice of a scalar-
valued optimization function f, such as one that mea-

Feedback

sures the distance traveled in a fixed amount of time or
the maximal height achieved during a jump. We can
search for the values of Prthat lead to an optimal value
of f in several ways. The previous work with the SR rep-
resentation used genetic algorithms, while separate
global and local searches were used to optimize SANS.

In either case, the optimization is stochastic, carried
out by randomly generating or modifying the values
assigned to Py, and followed by a short trial simulation
with the controller instance specified by Py. Such a trial
begins with the creature in a predefined initial state and
then simulates its motion with the given controller for
a fixed time duration. The optimization function is eval-
uated over the performed motion. The results are then
used by the chosen optimization algorithm to make
appropriate modifications to Py for the next trial, as
shown in Figure 4 on the next page.

More recent work " presented the use of pose-control
graphs as a control representation and investigated sev-
eral variations for optimization algorithms, as well as
ways of describing the motion in terms of limit cycles,
bifurcations, and potentially chaotic movements. The
methods described here expand on the pose-control
technique, showing that it can be extended to control
more complex, 3D figures, In particular, I wish to
demonstrate the ability to synthesize common gaits and
to have parameterized control over these gaits.

f——— - - .- A -

1 A physics-
based walking
monster.

2 A bounding
fat cat.

3 Control
problem for
motion
synthesis.

A
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Animating Gait and Locomotion

4 A generate-
and-test motion
synthesis
system.

5 Apose-
control graph
for Luxo, an
animated lamp.
The arc labels
indicate the
duration of the
timed state
transitions.

Animator

»~ T

Model of creature
and environment

Optimization
function for motion
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Although PD controllers work
toward making individual joints
achieve desired behaviors, itis worth
remembering that the final motion
of a creature is the product of all its

parameters

* joints working together to cause a

* specific interaction with the envi-
Generation Py f(Pr)  ronment. Simulated land creatures

or modification g Trial simulation k| MotioN must ultimately use ground reaction
of controller evaluation

forces to propel themselves forward,

{

just as an aquatic creature must be
propelled forward by the reaction
forces of water.

Actuator 2

Pose-control graphs

The control representation used here is a finite-state
machine having timed transitions, as shown in Figure 5
forthe animated lamp ecalled Luxo. The labels on the arcs
of the finite-state machine give the durations that the
machine remains in a given state before proceeding on
to the next state. The output of each state is referred to
as a pose, which is the desired position to be attained by
each of the actuators. Finite-state machines have been
extensively used in many types of control problems.

Apose bears a superficial resemblance to a keyframe,
although the pose only specifies the desired shape for
the creature and not its global position or orientation.
More importantly, the object might never actually reach
the configuration specified by a pose, and the animator
never deals directly with poses. Only the synthesis algo-
rithm generates and modifies poses in attempting to pro-
duce a desired motion. Poses are held constant for the
duration of time spent in a state. The pose-control graph
in Figure 5 consists of a cycle of three poses, each spec-
ifying the desired joint angles for Luxo’s two joints.

Given a desired position for an actuator, we canuse a
proportional derivative (PD) controller to calculate an
actuating torque:

T=kp(8a—0) — ks

where 1 is the applied torque, 8; corresponds to the
desired position as specified by a pose, § and o are the
actual angular position and velocity of the joint, and k,
and kg are gain constants. The PD controllers cause the
creature to work toward taking the shape specified by
the poses in the pose-control graph. However, the crea-
ture’s actual shape will rarely match that specified by
the controlling pose because of external forces, namely
gravity and ground reaction forces.

The controller shown in Figure 5
is completely described by the set of
parameters

Pi= {n’ ka! kf—{J‘J ri-:v elj}a
T AT 1t e I |

where nis the number of states, m is
the number of actuators for a crea-
ture, t; is the duration of state i, 0; is
the desired angle of actuator j in
state, and k;; and kg are the PD con-
stants associated with actuator j.
This parameter set is further partitioned into two sub-
sets, P.and Py, where P, contains constant parameters to
be supplied by the animator and Py contains the free
parameters to be determined by the synthesis technique.
In the work presented here, this partition is as follows:

P = {n, kyj, kaj, ti}, Pr= {05}

The user-supplied parameters in P, contain important
information that could potentially be synthesized auto-
matically, but they are presently included as part of the
problem gpecification. The number of states is an indi-
cator of the complexity of the motion. For all the motions
considered here, n = 3 orn = 4 yields the desired gaits.
All transition times are initially assumed to be equal and
are given by t; = T/n, where T'is the period of the desired
gait. T'is typically estimated from the creature’s size. For
example, we can expect the duration of an elephant’s
stride to be much longer than that of an ant’s. Lastly, we
can consider k, and k4 to be part of the creature’s design,
as they specify the strength and response of its actuators.
Reasonable values can be determined by calculating the
necessary torques for a creature to support its own
weight when standing.

The components of Py define the search space that
must be explored to synthesize desired motions. For the
example of Figure 5, Prhas six parameters (two joints
times three states) and thus represents a six-dimension-
al search space. Any point in this search space defines a
controller and can be evaluated by carrying out a simu-
lation of the creature. An optimization function is eval-
uated over the duration of the simulation, typically
measuring quantities such as distance traveled, angle
turned, or energy consumed. Simulation trials of six to
eight cycles of locomotion are usually sufficient, corre-
spondineg to 3 to 4 seconds of simulated time for crea-
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tures having the scale of a large cat
or human. The synthesis process
must explore the multidimensional
search space using repeated trials in
looking for a global optimum of the
optimization function.

Creature modeling

The current modeling system gives
creatures an articulated skeleton
composed of rigid links and joints
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having one or two degrees of free-

dom. Figure 6 shows the skeletons for

four ereatures considered here. The
skeletons are then “dressed” usinga  (d)
deformable, elastic skin, as shown in
Figure 7. The actuators at each joint
require specification of the joint
range as well as the actuator
“strength” implied by its PD con-
stants, k, and k. The system moni-
tors a fixed number of prespecified
points for contact with the ground,
which is simulated using a spring
and-damper model. The ground con-
tact model also approximates friction
and slippage. No hard joint limits are
included. Instead, the system uses
joint ranges to bound the desired
angles for the control of joints.

The Monster (Figure 6b) has the
skeletal construetion of a bird. The
Cat skeleton (Figure 6¢) was origi-
nally constructed using a set of real-
istic dimensions, but it subsequently
had to be widened and lengthened
to obtain stable gaits. The Ani
(Figure 6d) is modeled after
Euponera Sikorae.

We can derive the masses and
moments of inertia for a model’s links
from either the skeleton or the vol-
ume enclosed by the skin. In the for-
mer case, the “bones” belonging to
each link are assigned a uniform lin-
ear density used to determine mass-
es and inertia tensors for the links. If
the skin is chosen as the basis for caleulating physical
properties, we can assign a uniform volumetric density
to the creature and apply a voxel flood-fill to estimate the
interior volume of the ereature, Each voxel is then con-
sidered to be a constituent mass of the closest articulated
link, as defined by the distance from the voxel center to
the closest bone.

Table 1 (next page) gives the basic properties of the
modeled creatures. The equations of motion necessary
to physically simulate the models are produced using a
commercially available simulation package.' In gener-
al, it can be useful to construct skeletons at various lev-
els of detail. The control can be synthesized using the
simpler skeleton, with the detailed skeleton being used
to produce the final motions. A simpler skeleton has the

advantage of reducing the number of actuators and
hence the size of the search space, as well as speeding
the simulation computations. Figure 8 shows the
detailed skeleton used for the Cat.

6 Creature
skeletons with
one, two, four,
and six legs:
(a) Luxo,

(b) Monster,
(c) Cat, and
(d) two views
of Ant.

7 Creaturesin
motion: (a) Cat
walk, (b)
Monster walk,
and (<) Ant
tripod gait.

8 Arefined Cat
skeleton.
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Animating Gait and Locomotion

9 Optimization
space for the
Cat trot.

10 Local
optimization for
a Cat walk.
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Table 1. Creature properties.

Total Degrees

* Luxo model is planar.
% Includes the rail.
#%% The extra 11 actuators provide only passive control.

Creature Mass (kg) Length (m) Height (m) Links Actuators of Freedom
Luxo 0.55 0.20 0.60 3 2 5
Monster 9.81 0.25 0.45 7 6 12
Simple Cat | 5.77 0.355 0.30 11 70 16
Detailed Cat 6.47 0.78** 0.30 20 . s 27

Ant 0.0076 0.019 0.01 7 12 19

Speed

1.5

expensive for the high-dimensional
space of the full optimization prob-
lem. Thus a better search method is
required.

The selected optimization tech-
nique is based on a global search fol-
lowed by a separate local search.”
The global search carries out a fixed
number of evaluations at randomly
chosen points in the parameter
space and retains the best results.
While most trials do not produce
much useful motion, there are nev-
ertheless a small but consistent
number of trials (from 1 to 5 per-
cent) that do produce a reasonable
first attempt at forward motion of
various types.

0.5
0
20 30 Param 2
Param 1
50 60 0
5 T T T T T

0 |

T The subsequent local search
: begins at one of the best results
found by the global search and car-
ries out a greedy modify-and-test
strategy. The local search also
includes the transition times
between states, t;, as part of the
parameter set to be optimized. This
lets us increase or decrease the time
period of a stride, as is often neces-

1 L 1 1
0 50 100 150 200 250 300
Trials

Optimization

At the heart of the motion-synthesis process lies an
optimization algorithm, which must assign values to the
free parameters of the controller, Py, in order to synthe-
size a motion. The choice of optimization technique
depends largely on the behavior of the optimization
function. An optimization function replete with local
maxima (or minima) must be treated differently from
one that is smooth and unimodal. Figure 9 shows a typ-
ical example of variations in the optimization function
with respect to two free parameters. The parameters in
this case correspond to desired angles for a single joint
in the Cat for two states of a four-state pose-control
graph. The graph represents the distance traveled by
the cat for different values of the two chosen controller
parameters. The kind of regular, exhaustive sampling
necessary to create this graph is clearlv prohibitively

sary to change the speed of a gait.
The algorithm makes a small change
of fixed magnitude and random sign
to a randomly selected parameter and evaluates the
resulting modified controller to determine if the change
improved performance. If it did, the change is retained.
Otherwise, it is rejected. This could be considered anal-
ogous to an athlete experimenting with small changes
in his or her technique, although our “athlete” is not sys-
tematic in selecting the change to be attempted.
Figure 10 shows the performance of the Cat during a
series of 400 local optimization trials to obtain a walk-
ing gait. In this case the optimization function is speed,
and the walk eventually becomes a trot. The effective-
ness of the search procedure depends in part on the
parameters associated with the deseribed algorithm.
For the simulations here, the modifications applied to
desired joint angles during the local search typically cor-
respond to 4 to 10 percent of the actuator’s range. Many
refinements are possible for the local search process. !
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Table 2. Summary of synthesized gaits.
Symmetry Global Selection Local Optimization

Gait Creature Constraints Criteria Function
1-legged hop Luxo None Speed Speed
2-legged hop Monster 0 Speed Speed
2-legged walk Monster 180 Speed Speed
4-legged trot Cat 180 Speed Speed
4-legged rack Cat 180 Visual Speed
4-legged walk Cat 180 Visual Lateral rock
4-legged bound Cat 0 Speed Speed
6-legged tripod Ant 180 Speed Speed
6-legged wave Ant 0 Speed Speed

Gait synthesis

In these experiments, we can
arrive at the most common gaits by
choosing speed as an optimization
metric, imposing suitable symmetry
conditions on the controller, and
being selective about the gait
obtained from the global search
phase. Table 2 sunmarizes the gaits
and their synthesis criteria.

To reduce the size of the parame-
ter space in searching for useful
gaits, it helps to take advantage of
symmetries exhibited in the desired
gaits. In these cases, we can take advantage of left-right
symmetry, as the creatures here and their desired gaits
exhibit such lateral symmetry.

Three possibilities emerge with respect to using later-
al symmetry, as shown in Figure 11. The first is to impose
no lateral symmetry constraints at all. This is useful in
synthesizing turning motions, for example. The second
is to enforce a constraint that left and right limbs operate
synchronously. The last possibility is to have left and right
operate out of phase, as occurs when limbs take alter-
nating steps. This requires an even number of states in
the pose-control graph so that each state can have its out-
of-phase counterpart perform the same action one half
stride later. The symmetry constraints are imposed direct-
Iy on the poses of the pose-control graph. Both types of
lateral symmetry constraints reduce the dimensionality
of the parameter space by two. The animator fixes the
choice of symmetry constraint as part of the desired
motion specification, before initiating the synthesis.

In general, symmetry constraints can be implemented
between arbitrary pairs of legs, for example, diagonal
pairs to obtain a trot.*® However, this can present a prob-
lem for cases where the legs involved do not have iden-
tical construction. Many creatures exhibit only lateral
symmetry, including our quadruped, the Cat. As aresult,
the specification of the desired lateral symmetry alone
is still insufficient for automatic synthesis of all the gaits
we might wish. For example, quadruped walks, trots,
and racks all exhibit out-of-phase lateral symmetry. We
solve this problem by relying on the well-defined local
maxima that common quadruped gaits exhibit when
speed is chosen as an optimization function.

To automatically synthesize quadruped walks, trots,

No symmetry

0 degree symmetry

180 degree symmetry

and racks, this gait-synthesis system first carries out a
single initial global search using a lateral symmetry con-
straint. The best solutions in terms of speed are then visu-
ally examined and classified as resembling trots, walks,
orracks. At present, it is unclear how this visual classifi-
cation could be best automated. For the Cat, the speed-
iest gait found in a global search is consistently a trot, so
this particular case requires no visual classification.

The best selected trot and rack gaits from the global
search retain their basic characteristics (that is, relative
phasing of the limbs) when they are individually further
optimized for speed using the local optimization. This
indicates that these gaits represent well-established
local maxima in terms of speed. Unfortunately, the same
cannot be said for quadruped walks, which tend to turn
into trots when further optimized for speed. Improved
walking gaits were obtained by minimizing the lateral
rock, which is defined as

_ J‘m2 (t)de

where w is the angular velocity about the body’s longi-
tudinal axis. Figure 12 (next page) shows the footfall
patterns obtained for the various synthesized
quadruped gaits.

In surnmary, the synthesis of both walking and run-
ning gaits can take place in a framework that does not
require dividing the motion into distinct phases based on
the different contact configurations with the ground that
may occur. A clear deficiency of the pose-control graphs
is the lack of active balance in the control they provide,
especially for the walking and hopping motions of the

11 Symmetry
conditions for a
four-state pose-
control graph
(shaded arrows
indicate lateral
symmetry).
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12 Footfall patterns for various
gaits for the Cat. The horizontal
axis indicates the passage of time.
Shaded areas indicate that the LF
given foot is in contact with the
ground. The gaits shown are

(a) bound, (b) trot, (c) walk, and

(d) rack.

13 Interpolating between gaits.
(a) Nominal gait for this example.
(b) A variation of the gaitin (a),
which tilts the front of the base
further down during a jump.

(c) A gait determined by a
controller calculated to lie midway
between that of (a) and (b), and
then simulating the result.

(d) Result of using the equivalent
kinematic interpolation

between (a) and (b).

(e) The gait in (c) further mixed
with a fast gait.

14 Obtaining
variations of a
motion, as
viewed in the
controller
parameter
space.
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LF: left front
LR: left rear RF: right front

RR: right rear

tion method described here is based
on interpolation between existing,

synthesized controllers to yield con-
trollers providing the appropriate
in-between motions.

Note that interpolating between
two controllers to produce an in-
between motion is different from

interpolating directly between the
two motions. The motion obtained
using the interpolated controller has
the desired characteristics of an

interpolated gait while at the same
time being faithful to the laws of
physics. In general, kinematic inter-

(4x scaling in x for all graphs)

I_,A

polation between motions can vio-
late physical constraints. Figure 13
shows an example illustrating the
difference between these two types
of interpolation.

The parameterized motions are
built on the same assumption under-
lying the local optimization phase of
the synthesis process, namely that a

small change to the parameters of a
synthesized pose-control graph, P,

@® Nominal values
@ Optimized variations
Synthesized variations

usually leads to a small change in
the resulting motion. As a result of
this property, we can interpolate

Monster. All the creatures retain some measure of dynam-
ic stability, but this is because contact with the ground
drives the system toward a limit eycle. The attraction to
this limit cycle must be enhanced by active feedback to
improve the simulated creatures’ sense of balance.

Parameterizing motions

Parameterized motions are an effective way of deal-
ing with the enormous space of all possible motions.
They provide a useful substrate for high-level motion
planning and for constructing more abstract motion rep-
resentations. They also serve to amortize the computa-
tional cost of cantroller synthesis if controllers suitable
for producing an entire family of motions are produced,

between similar motions by inter-
polating between their controller
parameters. We shall define similar
motions as any in a set of motions
originally derived from the same pose-control graph.

Before further discussing interpolation, we must know
how to create a set of similar controllers to use as the
basis for interpolation. One method already discussed is
to optimize a motion with respect to a chosen function.
These typically lead to controllers such as those marked
a and b in Figure 11. The graph illustrates how two con-
troller parameters typically change during an iterative
optimization process. The current implementation
makes changes to one parameter at a time, resulting in
Manhattan walks in the parameter space.

Another method of automatically generating varia-
tions of a motion is to randomly choose a direction in
the parameter space and explore changes in this direc-
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exploration results in synthesized variations of the type
also shown in Figure 14, This approach requires speci-
fying a single similarity metric. To date, only speed has
been used as a similarity criterion. Any gait having a
speed within £30 percent of the nominal gait is classified
as being similar.

After we have created a set of controller variants, we
can produce parameterized motions by interpolating
between them. A parameterized controller is given by

P= ZW,-R-, Zw]- =1, w, = [0,1]

where the parameter vectors Py ... P, define the con-
troller variants.

Linear weightings of control parameters generally
result in predictable motions, but not always. Convex
combinations of controllers are generally the most pre-
dictable, although extrapolation can be used to produce
exaggerated motions, which themselves could prove
useful for producing entertaining animation. In all cases,
the motion instance is produced by carrying out a sim-
ulation using controller P,

Figure 15 shows the results of interpolating between
aslow gaitand a fastone to produce
a speed parameterization for the
walking Cat. The fast gait was
obtained by optimizing the slow gait
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for speed. Although the speed is not
completely linear with respect to the
interpolation parameter k, il is in
general unimodal and well behaved.
Figure 16 shows a turn parameteri
zation for the Monster, achieved by
interpolating between a forward
walking gait and one optimized for
turning. In this case the parameter-
ization is clearly not as well
behaved, although it proves suffi-
cient to build a working (but not
very stable) path-following con-
troller for the Monster.

It is also possible to experiment
interactively with linear combinations of existing con-
trollers. Figure 17 shows an example of the current inter-
face. The large window on the left displays an ongoing
physical simulation using an interpolated controller,
while the nine smaller windows play back animations
of gaitvariations used as the basis for the interpolation.
The sliders associated with the nine smaller windows
can increase the relative weight of the current controller
parameters toward those of the chosen motion varia-
tion. The changes are reflected immediately in the ongo-
ing simulation displayed on the left.

Aperiodic motions

For aperiodic motions that are variations of periodic
motions, we can “unwind” a synthesized cyclic pose-
control graph to vield a linear chain of poses. Here we
consider the example of Luxo, the hopping lamp, per-
forming a large leap halfway through a series of hops.
We begin with a synthesized eyclic pose control graph

having poses A, B, and C, as shown in the top left of
Figure 18. We now unwind two cycles of the motion so
that a linear chain of poses exists at the time of the
desired leap. Four states in the chain are marked as
being modifiable, as is the timing of the transitions
between these states. The poses of these modifiable
states and their timed transitions become the parame-
ter set to be optimized.

The leap itself is specified by using the distance trav-
eled over all the hops as an optimization function. The
periodic motion serves as a point of departure for the
motion synthesis, thus the leap requires only the local
optimization procedure. As the modify-and-test trials
proceed, the middle hop becomes a full-fledged leap.
Proper anticipation and recovery is ensured because the
entire sequence of hops is simulated during each trial.
All changes resulting in a fall are rejected.

Figure 19 shows the results of synthesizing a leap. The
synthesis of such a motion typically requires on the order

15 Speed para-
meterization for
a Cat walk using
linear interpo-
lation between
two controllers.

16 Turn para-
meterization for
the Monster
using linear
interpolation
between two
controllers.

17 The display
for interactive
gait design.
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18 Unwinding
a pose-control
graph. A
periodic motion
can serve as the
basis of an
aperiodic
motion by
unrolling a
portion of the
cyclic pose-
control graph.

19 Synthesis of a leap. (a) Regular
hopping gait for Luxo—for clarity,
only the motion of the middie link is
shown. (b) Result of a leaping
motion derived from (a) through
optimization. (c) Details of the
anticipation and recovery involved.
(d) A smaller leap, obtained by
interpolating between the control C
used for (a) and (c).

- Modifiable transition

— Fixed transition

of 300 simulation trials, which take approximately one
hour to compute on a modern workstation (~60
SPECfp92).

The result can also be parameterized, because in
determining the control for as large a leap as possible,
we have also determined the control for intermediate-
size leaps. Figure 19d shows the result of a medium-
sized leap, obtained by interpolating between the
original and final pose-control graphs of the synthesis
process. A creature could directly use the parameterized
control in conjunction with an “obstacle detector” to
always generate appropriate jumps.

Conclusions

This work shows that pose-control graphs are a
sufficient control representation for many common
gaits. Their synthesis can be automated and the
resulting control (and hence the resulting gaits) can be
parameterized with respect to quantities such as the
speed or turning rate of a periodic gait or the jumping
distance of a leaping motion.

Techniques for computer animation must typically

I
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strike a compromise between detailed control over th
motion and an interface requiring minimal effort t
specify a motion. Within this spectrum, the paramete:
ized controllers discussed here can be used at two dif
ferent points: as building blocks for constructing highl
autonomous locomotion behaviors or as a means ©
return some measure of control to the animator in a
otherwise automated system.

Many interesting problems related to gait synthesi
remain to be explored. The lack of active feedback in th
control means that dynamically stable controllers can
not always be found. The question of how best to auto
matically synthesize controllers that make use o
sensory information is both interesting and challeng
ing. Quadruped gallops have not yet been addressed
nor has the problem of automatically synthesizing arbi
trary gait transitions. Lastly, better modeling tools ar
required to build skeletal models that more closely rep
resent real animal (or monster) skeletons. |

Many of the animations in this article are on the Web a
http://www.dgp.utoronto/ca/DGP/Animations. ktml.
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Animating Gaits and Locomotion
Linda World, Assaciate Editor

Gaits and locomotion are the subject of interd isciplinary
research, ranging from kinesiology (the study of muscles
and their movements) to robotics.

Gait analysis plays a particularly important role in the
investigation of human movement disabilities. Readers with
Web access can visit an elegant site on gait analysis at the
University of Virginia’s Motion Analysis Laboratory in the
Kluge Children’s Rehabilitation Center (http://www.med.
Virginia.EDU:80/medcntr/gaitlab). KCRC specializes in
ameliorating the effects of cerebral palsy. The lab uses a
variety of 3D systems to study walking patterns and to gather
«data on joint kinematics and kinetics, muscle activity and
timing patterns, and muscle strength. Researchers, surgeons,
and clinicians use the data to document deviations from
normal gait patterns; to plan surgery, therapy, or bracing;
and to evaluate the effects of intervention.

Robotics and computer graphics approach the study of
gaits and locomotion from a different direction, namely, the
simulation of these phenomena in dynamic system models.
Students in Cornell University’s Human Power, Biomech-
anics, and Robotics Laboratory (http://tam.cornell.edu/
programs/humanpower/) have developed a “passive
dynamic walking” simulation and robot, driven entirely by
gravity- down a shallow slope. However, most work in
simulation addresses the control algorithms that generate
stable gaits, as does the work of both van de Panne and Ko
and Badler in this issue.

In graphics, the simulation of gaits and locomotion is part
of a larger project to simulate living creatures. As Ko and
Badler point out, physically accurate gaits are not the equi-
valent of realistic looking gaits. Creating interactive human
agents that behave realistically is one of the research goals
of the University of Pennsylvania’s Center for Human

niques, robotics, and selected topics in modeling and
rendering. He received his BSc in electrical engineering
Jfrom the University of Calgary in 1987, and his MASc and
PhD in electrical and computer engineering from the Uni-
versity of Toronto in 1989 and 1994.

Readers may contact the author at the Department of
Computer Science, University of Toronto, 10King’s College
Road, Toronte, Ontario, Canada, M5S 1A4, e-mail
van@dgp.utoronto. ca.
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Modeling and Simulation (http://www.cis.upenn.edu/
~hms/). The Center’s Jack software, under development
since the late 1970s, is a commercially available, 3D inter-
active environment for controlling articulated figures. Jack is
“the virtual employee of choice” in human factors
applications, according to Norman Badler, Jack’s originator
and the Center’s director. In fact, Jack appeared on the
centerfold of the 1991 annual report for heavy-equipment
manufacturer John Deere.

The Life Forms package resulted from research at Simon
Fraser University (http://fas.sfu.ca/css/groups/lifeforms.
html). Also commercially available, Life Forms emphasizes
the precise choreography of human motion and employs
existing motion libraries as well as more complex
parameterized motions.

Human simulation is the major focus of the Thalmann
research group at the Ecole Polytechnique Fédérale de
Lausanne (http://ligwww.epfl.ch/~thalmann/research.
html), whose animation of Marilyn Monroe is almost as
famaus in computer graphics as the Utah teapot.

For an interesting comparison of simulated motions to
real motions, visit the animation lab at Georgia Tech
(http://www.cc.gatech.edu/gvu/animation/) and take an
informal “Turing Test,” where you must attempt to
distinguish between real and simulated motions.

The tools of motion capture/analysis and motion
simulation work together in the proprietary software of
Biomechanics, an R&D company in Marietta, Georgia, that
provides technology used in the production of video games,
as well as medical, sports, and robotics applications
(http://www.crl.com/~biomech/). Although the company's
original product focused on 3D motion analysis, they also
developed physics-based tools to enhance the visualization
of the rapid transitions from one situation to another that
occur in interactive games. More recently, Biomechanics
applied these tools in a collaboration with Acclaim
Entertainment for special effects in the movie Batman
Forever. They wanted to keep the subtle complexities of
human movement while allowing Batman to jump from a
tall building and land gracefully—not something easily
picked up with a motion-capture system. |
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