Lecture 18: Focus+Context

Visualization SFU Cmpt 467/767, Fall 2010

Tamara Munzner

UBC Computer Science

Fri, 19 November 2010

Required Reading

A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008. (continued)

H3: Laying Out Large Directed Graphs in 3D Hyperbolic Space. Tamara Munzner, Proc InfoVis 97.

Recreational Reading

A Review and Taxonomy of Distortion-Oriented Presentation Techniques. Y.K. Leung and M.D. Apperley, ACM Transactions on Computer-Human Interaction, Vol. 1, No. 2, June 1994, pp. 126-160.

http://www.ai.mit.edu/people/jimmylin/papers/Leung94.pdf

The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies. John Lamping and Ramana Rao, Proc SIGCHI '95. http://citeseer.nj.nec.com/lamping95focuscontext.html

Yet More Reading

Generalized Fisheye Views. Furnas. CHI 86.

A Fisheye Follow-up: Further Reflection on Focus + Context. Furnas. CHI 06.

TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility. Munzner, Guimbretiere, Tasiran, Zhang, and Zhou. SIGGRAPH 2003. http://www.cs.ubc.ca/~tmm/papers/tj

Real-time rendering in curved spaces. Weeks. IEEE Computer Graphics and Applications, Nov-Dec 2002.

SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Catherine Plaisant, Jesse Grosjean, and Ben B. Bederson. Proc. InfoVis 2002. ftp://ftp.cs.umd.edu/pub/hcil/Reports-Abstracts-Bibliography/2002-05html/2002-05.pdf

A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. UBC Computer Science Technical Report TR-2010-11, October 2010. http://www.cs.ubc.ca/cgi-bin/tr/2010/TR-2010-11

Survey: Unified Framework

- taxonomy
 - overview+detail: spatial separation
 - zooming: temporal separation
 - focus+context: integrated
 - cue-based: selectively highlight/suppress
 - crosscutting
- empirical study results
 - low-level task: target acquisition
 - high-level task: explore search space

A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008.

Overview+Detail

A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008.

Survey: Overview+Detail

- multiple views: same data, different resolution
 - spatial separation between views
- linked navigation
 - shortcut navigation, thumbnail to detail
 - explore overview without changing detail
 - if fully synchronized could not explore
 - detail changes immediately shown in overview

Terminology Issue

- their defn: lens as O+D
 - since O and D separated in z/depth
 - nonstandard usage, I'm not a fan
- common use: lens as F+C
 - Toolglass and Magic Lenses, Bier/Stone/Pier/Buxton/DeRose

A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008. Toolglass and magic lenses: the see-through interface. Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D. DeRose. Proc. SIGGRAPH'93, pp. 73-76.

Survey: Zooming

- single window, changing view
 - temporal multiplexing
 - not side by side views: pix below from different times

A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008.

Zooming

- standard zooming
 - hard to make intuitive zoomout control
- semantic zooming
 - different representations at different scales
 - zoomable user interfaces (ZUIs)
- space-scale diagrams (last lecture)
- challenge: stability
- challenge: comparison of currently visible to memory
 - Animation: Can It Facilitate? Tversky et al, 2002

Survey: Focus+Context

embed focus and context in same view

A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008.

F+C vs. O+D

- two windows: overview + detail
 - conjecture: cognitive load to correlate

- solution
 - merge overview, detail
 - "focus+context"

Metaphor: Rubber Sheet

- stretch and squish, orthogonal order maintained
 - Document Lens, Table Lens

Document Lens, Robertson and Mackinlay 1993. Table Lens, Rao and Card 1994.

Scaling Up Stretch and Squish

- TreeJuxtaposer: guaranteed visibility
 - scaling up when many more items than pixels
 - video

TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility. Munzner, Guimbretière, Tasiran, Zhang, and Zhou. Proc SIGGRAPH 2003, pp 453-462.

Metaphor: Move Surface Closer To Eye

Perspective Wall

Perspective Wall, Mackinlay, Robertson and Card 1991

Pliable Surfaces

■ general framework for distortion-based F+C

Graph Folding: Extending Detail and Context Viewing into a Tool for Subgraph Comparisons. Carpendale, Cowperthwaite, Fracchia, Shermer. Proc. Graph Drawing 1995.

Metaphor: 3D Perspective as F+C

- Cone Trees (early argument)
 - now 3D must be carefully justified for nonspatial data
 - now 3D not usually considered F+C

Cone Trees: Animated 3D Visualizations of Hierarchical Information. Robertson, Mackinlay, and Card. CHI 1991

Metaphor: Fisheye

Graphical Fisheye Views, Sarkar and Brown 1992

2D Hyperbolic Trees

- fisheye distortion effect from hyperbolic geometry
 - video: open-video.org/details.php?videoid=4567

[The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies. John Lamping and Ramana Rao, Proc SIGCHI '95.]

3D Hyperbolic Trees/Graphs

- H3
 - 3D vs 2D justification: information density at periphery

[H3: Laying Out Large Directed Graphs in 3D Hyperbolic Space. Tamara Munzner, Proc InfoVis 97.]

Avoiding Disorientation

- F+C problem
 - maintain user orientation when showing detail
 - hard for big datasets

Exponential Amount Of Room

- trees require exponential amount of space
 - node count exponential in tree depth
- hyperbolic space has exponential amount of space
 - available area exponential not quadratic

2D hyperbolic plane embedded in 3D space

[Thurston and Weeks 84]

hemisphere area

hyperbolic: exponential $2\pi \sinh^2 r$

euclidean: polynomial $2\pi r^2$

Noneuclidean Geometry

- Euclid's 5th Postulate
 - exactly 1 parallel line
- spherical
 - geodesic = great circle
 - no parallels
- hyperbolic
 - infinite parallels

(torus.math.uiuc.edu/jms/java/dragsphere

Parallel vs. Equidistant

- euclidean: inseparable
- hyperbolic: different

2D Hyperbolic Models

[Three Dimensional Geometry and Topology, William Thurston, Princeton University Press]

Minkowksi

1D Hyperbolic Space: Klein Model

hyperbola projects to line

2D Hyperbolic Space: Klein Model

hyperbola projects to disk

 $(graphics.stanford.edu/papers/munzner_thesis/html/node8.html\#hyp2Dfig)$

2D Hyperbolic Space: Poincare Model

hyperboloid projects to disk

[The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies. John Lamping and Ramana Rao, Proc SIGCHI '95.]

Klein vs Poincare

- Klein
 - straight lines stay straight
 - angles are distorted
- Poincare
 - angles are correct
 - straight lines curved
- graphics
 - 3D Klein: 4x4 real matrix
 - 2D Poincare: 2x2 complex matrix
- further reading
 - Real-time rendering in curved spaces, Jeff Weeks, IEEE Computer Graphics and Applications, Nov-Dec 2002.

3D Hyperbolic Space

- 3-hyperboloid projects to solid ball
- H3 layout:
 - 3D hyperbolic cone tree with good information density
 - circumference → hemisphere

http://graphics.stanford.edu/papers/munzner_thesis/html/node8.html#conefig

3D vs. 2D Hyperbolic Scalability

■ information density: 10x better

H3 Layout

- bottom-up: allocate space for nodes
- top-down: place child on parent hemisphere

Euclidean	Hyperbolic
$ an heta = rac{opp}{adj}$	$\tan \theta = \frac{\tanh(opp)}{\sinh(adj)}$
$\sin\theta = \frac{opp}{hyp}$	$\sin \theta = \frac{\sinh(opp)}{\sinh(hyp)}$
πr^2	$2\pi(\cosh(r)-1)$
$2\pi r^2$	$2\pi \sinh^2(r)$
$2\pi r^2(1-\cos\phi)$	$2\pi\sinh^2r(1-\cos\phi)$
	$\tan \theta = \frac{opp}{adj}$ $\sin \theta = \frac{opp}{hyp}$ πr^2 $2\pi r^2$

Spanning Tree Layout

- problem
 - general graph layout problem is NP-hard

Spanning Tree Layout

- problem
 - general graph layout problem is NP-hard
- solution
 - tractable spanning tree backbone
 - appropriate iff matches mental model
 - quasi-hierarchical
 - use domain knowledge to construct
 - select parent from incoming links
 - required as input, not automatically computed

Spanning Tree Layout

- problem
 - general graph layout problem is NP-hard
- solution
 - tractable spanning tree backbone
 - appropriate iff matches mental model
 - quasi-hierarchical
 - use domain knowledge to construct
 - select parent from incoming links
 - required as input, not automatically computed
 - draw non-tree links only on demand

Degree of Interest: General F+C Model

- DOI: API(x) D(x,y)
 - API: a priori interest
 - D: distance, semantic or spatial
 - x: data element
 - y: current focus
 - supports single or multiple foci
- infer DOI
 - interaction or explicit selection
- use of DOI
 - selective presentation or distortion

Generalized Fisheye Views, Furnas, CHI 86.

Distortion Challenges

- how to visually communicate distortion
 - gridlines, shading
- target acquisition problem
 - lens displacing items away from screen loction
- unsuitable if must make relative spatial judgements
- mixed results with empirial comparison to O+D, pan/zoom
- A Fisheye Follow-up: Further Reflection on Focus + Context. George W. Furnas. SIGCHI 2006.
 - cautions that geometric distortion was not his main point

F+C Without Distortion

- specialized hardware
 - high-res center, low-res surround

[A review of overview+detail, zooming, and focus+context interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41(1), 2008. From: Baudisch 1992.]

SpaceTree: F+C Without Distortion

- focus+context tree: filtering, not geometric distortion
 - animated transitions

semantic zooming

demo

Survey: Cue-based Techniques

- idiosyncratic not standard category
 - semantic depth of field blur
 - halos arcs show offscreen info scent
- crosscuts other three categories (and all infovis)

[A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008. Fig 14.]

Survey: Evaluation

- complex picture of costs/benefits
 - spatial separation
 - costs: real estate, mental integration overhead
 - zooming
 - costs: cognitive load
 - anim transitions help, but don't solve
 - concurrent, unimanual over serial or bimanual
 - focus+context
 - strengths: overview, graphs
 - costs: distortion
- can combine: e.g. zooming + multiple views

Evaluation: Further Reading

- design guidelines from systematic review of 22 studies
 - A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam/Munzner.
 - UBC CS TR-2010-11, (monograph soon).
- four-point decision tree
 - single or multi-level interface
 - create the high-level displays (overviews)
 - simultaneous or temporal display of visual levels
 - sim: embedded or separate display of visual levels
- three design guidelines
 - number of levels in display and data should match
 - high visual levels should display only task-relevant info
 - simultaneous display not temporal switching for tasks with multi-level answers