Lecture 18: Focus+Context Visualization SFU Cmpt 467/767, Fall 2010

Tamara Munzner
UBC Computer Science

Fri, 19 November 2010

Required Reading

A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008. (continued)

H3: Laying Out Large Directed Graphs in 3D Hyperbolic Space. Tamara Munzner, Proc InfoVis 97.

Recreational Reading

A Review and Taxonomy of Distortion-Oriented Presentation Techniques. Y.K. Leung and M.D. Apperley, ACM Transactions on Computer-Human Interaction, Vol. 1, No. 2, June 1994, pp. 126-160. http://www.ai.mit.edu/people/jimmylin/papers/Leung94.pdf

The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies. John Lamping and Ramana Rao, Proc SIGCHI '95.
http://citeseer.nj.nec.com/lamping95focuscontext.html

Yet More Reading

Generalized Fisheye Views. Furnas. CHI 86.
A Fisheye Follow-up: Further Reflection on Focus + Context. Furnas. CHI 06.
TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility. Munzner, Guimbretiere, Tasiran, Zhang, and Zhou. SIGGRAPH 2003. http://www.cs.ubc.ca/ ${ }^{\text {tmm }} /$ papers/tj

Real-time rendering in curved spaces. Weeks. IEEE Computer Graphics and Applications, Nov-Dec 2002.

SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Catherine Plaisant, Jesse Grosjean, and Ben B. Bederson. Proc. InfoVis 2002. ftp://ftp.cs.umd.edu/pub/hcil/Reports-Abstracts-Bibliography/2002-05html/2002-05.pdf

A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. UBC Computer Science Technical Report TR-2010-11, October 2010. http://www.cs.ubc.ca/cgi-bin/tr/2010/TR-2010-11

Survey: Unified Framework

■ taxonomy
■ overview+detail: spatial separation
■ zooming: temporal separation
■ focus+context: integrated
■ cue-based: selectively highlight/suppress

- crosscutting

■ empirical study results
■ low-level task: target acquisition

- high-level task: explore search space

A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008.

Overview+Detail

A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008.

Survey: Overview+Detail

■ multiple views: same data, different resolution

- spatial separation between views

■ linked navigation

- shortcut navigation, thumbnail to detail

■ explore overview without changing detail
■ if fully synchronized could not explore
■ detail changes immediately shown in overview

Terminology Issue

■ their defn: lens as $O+D$
■ since O and D separated in $z /$ depth

- nonstandard usage, I'm not a fan

■ common use: lens as $\mathrm{F}+\mathrm{C}$
■ Toolglass and Magic Lenses, Bier/Stone/Pier/Buxton/DeRose

A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008.
Toolglass and magic lenses: the see-through interface. Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D. DeRose. Proc. SIGGRAPH'93, pp. 73-76.

Survey: Zooming

- single window, changing view

■ temporal multiplexing
■ not side by side views: pix below from different times

A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008.

Zooming

- standard zooming

■ hard to make intuitive zoomout control
■ semantic zooming
■ different representations at different scales

- zoomable user interfaces (ZUIs)

■ space-scale diagrams (last lecture)
■ challenge: stability

- challenge: comparison of currently visible to memory

■ Animation: Can It Facilitate? Tversky et al, 2002

Survey: Focus+Context

■ embed focus and context in same view

A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008.

$F+C$ vs. $O+D$

■ two windows: overview + detail
■ conjecture: cognitive load to correlate

- solution

■ merge overview, detail
■ "focus+context"

Metaphor: Rubber Sheet

■ stretch and squish, orthogonal order maintained
■ Document Lens, Table Lens

Document Lens, Robertson and Mackinlay 1993.
Table Lens, Rao and Card 1994.

Scaling Up Stretch and Squish

■ TreeJuxtaposer: guaranteed visibility
■ scaling up when many more items than pixels
■ video

TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility. Munzner, Guimbretière, Tasiran, Zhang, and Zhou. Proc SIGGRAPH 2003, pp 453-462.

Metaphor: Move Surface Closer To Eye

■ Perspective Wall

Perspective Wall, Mackinlay, Robertson and Card 1991

Pliable Surfaces

■ general framework for distortion-based F+C

Graph Folding: Extending Detail and Context Viewing into a Tool for Subgraph Comparisons. Carpendale, Cowperthwaite, Fracchia, Shermer. Proc. Graph Drawing 1995.

Metaphor: 3D Perspective as $\mathrm{F}+\mathrm{C}$

■ Cone Trees (early argument)
■ now 3D must be carefully justified for nonspatial data

- now 3D not usually considered F+C

Cone Trees: Animated 3D Visualizations of Hierarchical Information. Robertson, Mackinlay, and Card. CHI 1991

Metaphor: Fisheye

■ Graphical Fisheye Views

Graphical Fisheye Views, Sarkar and Brown 1992

2D Hyperbolic Trees

■ fisheye distortion effect from hyperbolic geometry
■ video: open-video.org/details.php?videoid=4567

[The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies. John Lamping and Ramana Rao, Proc SIGCHI '95.]

3D Hyperbolic Trees/Graphs

■ H3
■ 3D vs 2D justification: information density at periphery

[H3: Laying Out Large Directed Graphs in 3D Hyperbolic Space. Tamara Munzner, Proc InfoVis 97.]

Avoiding Disorientation

- $\mathrm{F}+\mathrm{C}$ problem

■ maintain user orientation when showing detail
■ hard for big datasets

Exponential Amount Of Room

■ trees require exponential amount of space
■ node count exponential in tree depth
■ hyperbolic space has exponential amount of space
■ available area exponential not quadratic

2D hyperbolic plane embedded in 3D space

hemisphere area
hyperbolic: exponential $2 \pi \sinh ^{2} r$
euclidean: polynomial

$$
2 \pi r^{2}
$$

[Thurston and Weeks 84]

Noneuclidean Geometry

■ Euclid's 5th Postulate

- exactly 1 parallel line

■ spherical

- geodesic = great circle
- no parallels

■ hyperbolic
■ infinite parallels

Parallel vs. Equidistant

■ euclidean: inseparable
■ hyperbolic: different

Euclidean

Hyperbolic

2D Hyperbolic Models

Klein/projective
Poincare/conformal

Upper Half Space

[Three Dimensional Geometry and Topology, William Thurston, Princeton University Press] Minkowksi

1D Hyperbolic Space: Klein Model

- hyperbola projects to line

2D Hyperbolic Space: Klein Model

■ hyperbola projects to disk

(graphics.stanford.edu/papers/munzner_thesis/html/node8.html\#hyp2Dfig)

2D Hyperbolic Space: Poincare Model

■ hyperboloid projects to disk

[The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies. John Lamping and Ramana Rao, Proc SIGCHI '95.]

Klein vs Poincare

- Klein

■ straight lines stay straight

- angles are distorted
- Poincare
- angles are correct

■ straight lines curved
■ graphics

- 3D Klein: 4×4 real matrix
- 2D Poincare: 2×2 complex matrix

■ further reading
■ Real-time rendering in curved spaces, Jeff Weeks, IEEE Computer Graphics and Applications, Nov-Dec 2002.

3D Hyperbolic Space

■ 3-hyperboloid projects to solid ball
■ H3 layout:

- 3D hyperbolic cone tree with good information density
- circumference \rightarrow hemisphere

http://graphics.stanford.edu/papers/munzner_thesis/html/node8.html\#conefig

3D vs. 2D Hyperbolic Scalability

■ information density: 10x better

H3 Layout

■ bottom-up: allocate space for nodes
■ top-down: place child on parent hemisphere

Formula	Euclidean	Hyperbolic
right-angle triangle	$\tan \theta=\frac{o p p}{a d j}$	$\tan \theta=\frac{\tanh (o p p)}{\sinh (a d j)}$
right-angle triangle	$\sin \theta=\frac{o p p}{h y p}$	$\sin \theta=\frac{\sinh (o p p)}{\sinh (h y p)}$
circle area	πr^{2}	$2 \pi(\cosh (r)-1)$
hemisphere area	$2 \pi r^{2}$	$2 \pi \sinh ^{2}(r)$
spherical cap area	$2 \pi r^{2}(1-\cos \phi)$	$2 \pi \sinh ^{2} r(1-\cos \phi)$

Spanning Tree Layout

- problem
- general graph layout problem is NP-hard

Spanning Tree Layout

- problem
- general graph layout problem is NP-hard
- solution
- tractable spanning tree backbone
- appropriate iff matches mental model
- quasi-hierarchical

■ use domain knowledge to construct

- select parent from incoming links
- required as input, not automatically computed

Spanning Tree Layout

- problem

■ general graph layout problem is NP-hard

- solution

Degree of Interest: General F+C Model

- DOI: $\operatorname{API}(x)-D(x, y)$

■ API: a priori interest

- D: distance, semantic or spatial

■ x: data element
■ y: current focus
■ supports single or multiple foci
■ infer DOI

- interaction or explicit selection
\square use of DOI
- selective presentation or distortion

Generalized Fisheye Views, Furnas, CHI 86.

Distortion Challenges

■ how to visually communicate distortion
■ gridlines, shading

- target acquisition problem
- lens displacing items away from screen loction

■ unsuitable if must make relative spatial judgements

- mixed results with empirial comparison to $O+D$, pan/zoom

■ A Fisheye Follow-up: Further Reflection on Focus + Context. George W. Furnas. SIGCHI 2006.

- cautions that geometric distortion was not his main point

F+C Without Distortion

- specialized hardware

■ high-res center, low-res surround

[A review of overview+detail, zooming, and focus+context interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41(1), 2008. From: Baudisch 1992.]

SpaceTree: F+C Without Distortion

■ focus+context tree: filtering, not geometric distortion
■ animated transitions

■ semantic zooming

■ demo

Survey: Cue-based Techniques

■ idiosyncratic not standard category
■ semantic depth of field - blur

- halos - arcs show offscreen info scent

■ crosscuts other three categories (and all infovis)

[A review of overview+detail, zooming, and focus+context interfaces. Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. ACM Computing Surveys 41(1), 2008. Fig 14.]

Survey: Evaluation

■ complex picture of costs/benefits
■ spatial separation
■ costs: real estate, mental integration overhead
■ zooming

- costs: cognitive load
- anim transitions help, but don't solve
- concurrent, unimanual over serial or bimanual

■ focus+context

- strengths: overview, graphs
- costs: distortion

■ can combine: e.g. zooming + multiple views

Evaluation: Further Reading

- design guidelines from systematic review of 22 studies

■ A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam/Munzner.
■ UBC CS TR-2010-11, (monograph soon).
■ four-point decision tree

- single or multi-level interface
- create the high-level displays (overviews)

■ simultaneous or temporal display of visual levels
■ sim: embedded or separate display of visual levels

- three design guidelines

■ number of levels in display and data should match
■ high visual levels should display only task-relevant info
■ simultaneous display not temporal switching for tasks with multi-level answers

