## Some Challenges of Color

## Tamara Munzner

Department of Computer Science University of British Columbia

THINK Conference 33, Santa Cruz CA
5 November 2017


## Categorical vs ordered color


[Seriously Colorful: Advanced Color Principles \& Practices. Stone.Tableau Customer Conference 2014.]

## Decomposing color

- first rule of color: do not talk about color!
-color is confusing if treated as monolithic
- decompose into three channels
- ordered can show magnitude
- luminance: how bright
- saturation: how colorful
- categorical can show identity
- hue: what color

Luminance

Saturation

Hue

$\square$
$\square$
$\square$
$\square$

- channels have different properties
- what they convey directly to perceptual system
-how much they can convey: how many discriminable bins can we use?


## Definitions: Marks and channels

- marks
- geometric primitives
- channels
- control appearance of marks
- can redundantly code with multiple channels
$\Theta$ Points

$\Theta$ Color
$\rightarrow$ Both
$\cdot \cdot$

$\Theta$ Shape
$\rightarrow$ Vertical
$\Phi$
$\Theta$ Tilt
-     * 



$\Theta$ Size
$\rightarrow$ Length
$\rightarrow$ Area
$\rightarrow$ Volume

## Visual encoding

- analyze idiom structure
-as combination of marks and channels



## Channels



## Channels: Matching Types


$\Theta$ Identity Channels: Categorical Attributes
Spatial region

Color hue

Motion

Shape


- expressiveness principle -match channel and data characteristics


## Channels: Rankings

$\Theta$ Magnitude Channels: Ordered Attributes

| Position on common scale | $\longmapsto$ |
| :---: | :---: |
| Position on unaligned scale | $\longmapsto-$ |
| Length (1D size) | - - - |
| Tilt/angle | $1 / 2$ |
| Area (2D size) | - ■ |
| Depth (3D position) | $\longmapsto \bullet \longmapsto \bullet$ |
| Color luminance |  |
| Color saturation |  |
| Curvature | $1)$ ) |
| Volume (3D size) | $\cdots \pm 1$ |

$\Theta$ Identity Channels: Categorical Attributes
Spatial region
Color hue

Motion

Shape

- expressiveness principle
- match channel and data characteristics
- effectiveness principle
-encode most important attributes with highest ranked channels
- distinguishability
-enough levels in channel to match data 8


## Spectral sensitivity



Visible Spectrum

## Luminance

- need luminance for edge detection
- fine-grained detail only visible through luminance contrast
- legible text requires luminance contrast!
- intrinsic perceptual ordering

Luminance information


Chroma information

[Seriously Colorful: Advanced Color Principles \& Practices. Stone.Tableau Customer Conference 2014.]

## Opponent color and color deficiency

- perceptual processing before optic nerve
- one achromatic luminance channel ( $L^{*}$ )
-edge detection through luminance contrast
- 2 chroma channels
-red-green ( $\mathrm{a}^{*}$ ) \& yellow-blue axis ( $\mathrm{b}^{*}$ )
- "color blind": one axis has degraded acuity

$-8 \%$ of men are red/green color deficient
-blue/yellow is rare


Designing for color deficiency: Check with simulator


Normal vision

Deuteranope Protanope

http://rehue.net
[Seriously Colorful: Advanced Color Principles \& Practices. Stone.Tableau Customer Conference 2014.]


Tritanope

## Color spaces

－CIE L＊a＊b＊：good for computation
－L＊intuitive：perceptually linear luminance
$-a^{*} b^{*}$ axes：perceptually linear but nonintuitive
－RGB：good for display hardware
－poor for encoding
－HSL／HSV：somewhat better for encoding
－hue／saturation wheel intuitive
－beware：only pseudo－perceptual！
－lightness（L）or value $(\mathrm{V}) \neq$ luminance or $\mathrm{L}^{*}$
－Luminance，hue，saturation
－good for encoding
－but not standard graphics／tools colorspace

Corners of the RGB color cube
$\square$

$\square$
$\square$
$\square$


## Color/Lightness constancy: Illumination conditions



## Color/Lightness constancy: Illumination conditions



## Categorical color: limited number of discriminable bins

- human perception built on relative comparisons -great if color contiguous -surprisingly bad for absolute comparisons
- noncontiguous small regions of color
-fewer bins than you want
-rule of thumb: 6-12 bins, including background and highlights


[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]


## ColorBrewer

- http://www.colorbrewer2.org
- saturation and area example: size affects salience!



## Ordered color: Rainbow is poor default

- problems
- perceptually unordered
-perceptually nonlinear
- benefits
-fine-grained structure visible and nameable


[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and.Treinish. Proc. IEEE Visualization (Vis), pp. I I 8-I 25, I995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz I998. http://www.research.ibm.com/people/l/lloydt/color/color.HTM]


## Ordered color: Rainbow is poor default

- problems
- perceptually unordered
-perceptually nonlinear
- benefits
-fine-grained structure visible and nameable
- alternatives
-large-scale structure: fewer hues



## Ordered color: Rainbow is poor default

- problems
- perceptually unordered
-perceptually nonlinear
- benefits
-fine-grained structure visible and nameable
- alternatives
-large-scale structure: fewer hues
-fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]



## Viridis

- colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance




brewer yellow-green-blue
https://cran.r-project.org/web/packages/ viridis/vignettes/intro-to-viridis.html


## Ordered color: Rainbow is poor default

## - problems

- perceptually unordered
-perceptually nonlinear
- benefits
-fine-grained structure visible and nameable
- alternatives
-large-scale structure: fewer hues
-fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]
-segmented rainbows for binned or categorical

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz I998. http://www.research.ibm.com/people/l//lloydt/color/color.HTM]


## Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014
-Chap 10: Map Color and Other Channels
- ColorBrewer, Brewer.
-http://www.colorbrewer2.org
- Color In Information Display. Stone. IEEE Vis Course Notes, 2006.
-http://www.stonesc.com/Vis06
- A Field Guide to Digital Color. Stone.AK Peters, 2003.
- Rainbow Color Map (Still) Considered Harmful. Borland and Taylor. IEEE Computer Graphics and Applications 27:2 (2007), I4-I7.
- Visual Thinking for Design.Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition. Ware. Morgan Kaufmann / Academic Press, 2004.
- https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html


## Encode


$\Theta$ Map
from categorical and ordered attributes

-■ I $\quad$ (1 ) ) )
$\rightarrow$ Shape
$+\quad \square \Delta$
$\rightarrow$ Motion
Direction, Rate, Frequency, ...
What?

Why?

How?



## More Information

- this talk
http://www.cs.ubc.ca/~tmm/talks.htm\| \#vad I 7color-short
- book page (including tutorial lecture slides) http://www.cs.ubc.ca/~tmm/vadbook
-20\% promo code for book+ebook combo: HVNI7
- http://www.crcpress.com/product/isbn/978|466508910
-illustrations: Eamonn Maguire
- papers, videos, software, talks, courses http://www.cs.ubc.ca/group/infovis http://www.cs.ubc.ca/~tmm


