Some Challenges of Color

Tamara Munzner Department of Computer Science University of British Columbia

THINK Conference 33, Santa Cruz CA 5 November 2017

www.cs.ubc.ca/~tmm/talks.html#vad17color-short

Categorical vs ordered color

Annual sales by state

Stone.Tableau Customer Conference 2014.]

www.cs.ubc.ca/~tmm/talks.html#vad17color-short

Decomposing color

- first rule of color: do not talk about color! -color is confusing if treated as monolithic
- decompose into three channels
 - -ordered can show magnitude
 - luminance: how bright
 - saturation: how colorful
 - -categorical can show identity
 - hue: what color
- channels have different properties
 - -what they convey directly to perceptual system
 - -how much they can convey: how many discriminable bins can we use?

www.cs.ubc.ca/~tmm/talks.html#vad17color-short

Luminance		
Saturation		
Hue		

Definitions: Marks and channels

- marks
 - -geometric primitives
- channels
 - control appearance of marks
 - can redundantly code with multiple channels

Visual encoding

• analyze idiom structure

-as combination of marks and channels

mark: line

mark: point

mark: point

www.cs.ubc.ca/~tmm/talks.html#vad17color-short

4: vertical position horizontal position color hue size (area)

mark: point

Channels

Channels: Matching Types

-match channel and data characteristics

Channels: Rankings

- expressiveness principle
 - -match channel and data characteristics
- effectiveness principle
 - -encode most important attributes with highest ranked channels
- distinguishability
 - -enough levels in channel to match data

Spectral sensitivity

	L

Luminance

- need luminance for edge detection
 - -fine-grained detail only visible through luminance contrast
 - -legible text requires luminance contrast!
- intrinsic perceptual ordering

Luminance information

Stone.Tableau Customer Conference 2014.]

www.cs.ubc.ca/~tmm/talks.html#vad17color-short

Opponent color and color deficiency

- perceptual processing before optic nerve
 - -one achromatic luminance channel (L*)
 - -edge detection through luminance contrast
 - -2 chroma channels
 - -red-green (a^{*}) & yellow-blue axis (b^{*})
- "color blind": one axis has degraded acuity
 - -8% of men are red/green color deficient
 - -blue/yellow is rare

www.cs.ubc.ca/~tmm/talks.html#vad17color-short

Stone.Tableau Customer Conference 2014.]

Luminance information

Chroma information

Designing for color deficiency: Check with simulator

Normal vision

Deuteranope Protanope

Tritanope

Stone.Tableau Customer Conference 2014.]

http://rehue.net

Color spaces

- CIE L*a*b*: good for computation
 - L* intuitive: perceptually linear luminance
 - $-a^*b^*$ axes: perceptually linear but nonintuitive
- RGB: good for display hardware
 - poor for encoding
- HSL/HSV: somewhat better for encoding
 - hue/saturation wheel intuitive
 - beware: only pseudo-perceptual!
 - lightness (L) or value (V) \neq luminance or L*
- Luminance, hue, saturation
 - good for encoding
 - but not standard graphics/tools colorspace

Corners of the RGB color cube

I from HIS All the same

Luminance values

L* values

www.cs.ubc.ca/~tmm/talks.html#vad17color-short

Color/Lightness constancy: Illumination conditions

Image courtesy of John McCann <u>www.cs.ubc.ca/~tmm/talks.html#vad17color-short</u>

Color/Lightness constancy: Illumination conditions

Image courtesy of John McCann <u>www.cs.ubc.ca/~tmm/talks.html#vad17color-short</u>

Categorical color: limited number of discriminable bins

- human perception built on relative comparisons

 great if color contiguous
 surprisingly bad for absolute comparisons
- noncontiguous small regions of color
 - -fewer bins than you want
 - -rule of thumb: 6-12 bins, including background and highlights

-alternatives? other talks! *multiple org* <u>www.cs.ubc.ca/~tmm/talks.html#vad17color-short</u>

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.] **r-short**

ColorBrewer

- <u>http://www.colorbrewer2.org</u>
- saturation and area example: size affects salience!

www.cs.ubc.ca/~tmm/talks.html#vad17color-short

problems

- -perceptually unordered
- -perceptually nonlinear
- benefits
 - -fine-grained structure visible and nameable

[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

[A Rule-based Tool for Assisting Colormap Selection. Bergman, Rogowitz, and Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/Iloydt/color/color.HTM]

problems

- -perceptually unordered
- -perceptually nonlinear
- benefits
 - -fine-grained structure visible and nameable
- alternatives
 - -large-scale structure: fewer hues

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/Iloydt/color/color.HTM]

• problems

- -perceptually unordered
- -perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
- alternatives
 - –large-scale structure: fewer hues
 - –fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

Viridis

 colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance

heat

ggplot defaul

brewer blues

brewer yellow-gree

1-blue	
h-blue	
_	

21

• problems

- -perceptually unordered
- -perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
- alternatives
 - –large-scale structure: fewer hues
 - -fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]
 - -segmented rainbows for binned or categorical

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/lloydt/color/color.HTM]

[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

Further reading

 Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014

-Chap 10: Map Color and Other Channels

- ColorBrewer, Brewer.
 - -<u>http://www.colorbrewer2.org</u>
- Color In Information Display. Stone. IEEE Vis Course Notes, 2006. <u>http://www.stonesc.com/Vis06</u>
- A Field Guide to Digital Color. Stone. AK Peters, 2003.
- Rainbow Color Map (Still) Considered Harmful. Borland and Taylor. IEEE Computer Graphics and Applications 27:2 (2007), 14–17.
- Visual Thinking for Design. Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition. Ware. Morgan Kaufmann / Academic Press, 2004.

 <u>https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html</u> www.cs.ubc.ca/~tmm/talks.html#vad17color-short

How?

	

	I	C	u	u	C	C

More Information

• this talk

http://www.cs.ubc.ca/~tmm/talks.html#vad17color-short

- book page (including tutorial lecture slides) http://www.cs.ubc.ca/~tmm/vadbook
 - -20% promo code for book+ebook combo: HVN17
 - <u>http://www.crcpress.com/product/isbn/9781466508910</u>
 - -illustrations: Eamonn Maguire
- papers, videos, software, talks, courses http://www.cs.ubc.ca/group/infovis http://www.cs.ubc.ca/~tmm

Illustrations by Ramonn Maguire

Visualization Analysis and Design. Munzner. A K Peters Visualization Series, CRC Press, Visualization Series, 2014.

(*a*)tamaramunzner

Visualization Analysis & Design

Tamara Munzner

